Electronic Communications of the EASST

Volume 63 (2014)

Proceedings of the
Eighth International Workshop on
Software Clones
(IWSC 2014)

Clone Detection in Matlab Stateflow Models
Jian Chen Thomas R. Dean Manar H. Alalfi

13 pages

Guest Editors: Nils Gdde, Yoshiki Higo, Rainer Koschke

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eﬁ ECEASST

Clone Detection in Matlab Stateflow Models

Jian Chen Thomas R. Dean Manar H. Alalfi

{chenj, dean, alalfi} @cs.queensu.ca
School of Computing, Queen’s University, Kingston, Canada

Abstract: Matlab Simulink is one of the leading tools for model based software
development in the automotive industry. One extension to Simulink is Stateflow,
which allows the user to embed Statecharts as components in a Simulink Model.
These state machines contain nested states, an action language that describes events,
guards, conditions and actions and complex transitions. As Stateflow has become
increasingly important in Simulink models for the automotive sector, we extend
previous work on clone detection of Simulink models to Stateflow components.

Keywords: Model, State Machine, Stateflow

1 Introduction

Models play an increasingly important part in software development, particularly in areas where
risk to life or property is an issue such as the automotive sector. Simulink' is a modelling
language that has been widely used in the development of automotive embedded systems. One
component of Simulink is Stateflow”, an environment for modeling and simulating combinatorial
and sequential decision logic based on hierarchical state machines (i.e. state charts [Har87]) and
flow charts. Stateflow can be used to combine graphical and tabular representations, including
state transition diagrams, flow charts, state transition tables, and truth tables, to model how
systems react to events, time-based conditions, and external input signals. Stateflow is used
to design logic for supervisory control, task scheduling, and fault management applications.

Software clones are segments of code that are similar according to some definition of similarity
[Kos06]. Software clones have an impact on maintenance, and it is important to identify duplicate
artefacts [ACD ™" 12a]. The potential impact of identifying redundancy at the higher levels of
abstraction provided by models makes clone detection in models important since it can help in
testing design consistency and completeness before implementation.

Model clones are different from code clones, as they are based on matching sub graphs. In
previous model clone types categorization by our research group [ACD™ 12a], three types of
model clones are defined:

* Type 1 (exact) model clones are identical model fragments, ignoring variations in visual
presentation, layout, and formatting.

* Type 2 (renamed) model clones are structurally identical model fragments, ignoring vari-
ations in labels, values, types, and the variations from Type 1.

! www.mathworks.com/products/simulink
2www.mathworks.com/products/Stateﬂow

1/13 Volume 63 (2014)

mailto:\protect \T1\textbraceleft chenj, dean, alalfi\protect \T1\textbraceright @cs.queensu.ca

Clone Detection in Matlab Stateflow Models Eﬁ

Transformation Clone Detection
(Folding/Splitting) Normalization Analysis
(Using TXL) (Using Simone)

Figure 1: Steps of our approach

* Type 3 (near-miss) model clones are model fragments with further modifications such as
small additions or removals of model elements, in addition to the variations from Type 1
and 2 clones.

For our purposes, clones in Stateflow are models that are structurally similar. For example,
the same structure states and transitions with different labels, conditions and actions would be
considered a clone. There are various techniques and tools for clone detection in program source
code [RCKO09] such as textual comparison and program dependency graph comparison. Rather
than using computationally expensive sub-graph isomorphism to find similar graphs, we extend
the approach our research group used for Simulink in SIMONE [ACD™ 12a] and apply clone
detection techniques to the textual representation of the Stateflow model.

In Simulink, clones are structural in nature and follow natural syntactic boundaries such as
subsystems. Stateflow is also represented as a nested set of graphs, but the graphs represent the
behaviour of a component in the larger Simulink model as opposed to the structure of the model.
The addition of Stateflow clone detection to SIMONE serves two purposes. The first is to detect
common behavioural elements of the models that are expressed as state machines. The second is
by extending the clone detection to Stateflow models, we can improve clone detection in those
Simulink models that contain blocks that refer to the Stateflow models. SIMONE detects clones
by considering model elements of the same type similar, so currently all blocks that encapsu-
late Stateflow models are also considered similar. We evaluate our approach on a large set of
Stateflow models available to us from Mathworks.

2 Approach

Our approach, shown in figure 1 consists of three stages. The first stage transforms the Stateflow
textual representation into a hierarchical textual structure as SIMONE's initial input. The sec-
ond stage, implemented as a SIMONE plugin, normalizes the initial input to remove irrelevant
elements and rename irrelevant naming differences to make the process of clone identification
more accurate. The final stage identifies potential clone candidates and cluster them into classes.
In the folllowing subsections, we discuss each of the stages in more detail.

2.1 Stateflow TXL Grammar

Our approach is implemented in TXL [Cor06], a structural transformation and parser-based lan-
guage. Thus the first step is to build a Stateflow TXL grammar allowing TXL to parse Stateflow
models. We derive a TXL grammar form a large set of example Stateflow models in the public
domain by using iterative inference techniques. Figure 3 shows a small snippet of the Stateflow

Proc. IWSC 2014 2/13

Eﬁ ECEASST

Stateflow {

machine {

id 1

name "powerwindow"
}
chart {

id 2

name "control"

windowPosition [24 266 702 602]

viewLimits [0 843.043 2.915 444.795]
zoomFactor 1.282

screen [1 1 1280 1024 1.041666666666667]
treeNode [0 22 0 0]

}
state {
id 3
labelString "passengerneutral\nentry:\nmoveUp = 0;\nmoveDown = 0;"
position [724.059 27.423 98.524 90.095]
fontSize 12

treeNode [15 0 0 6]
}

junction {
id 23

linkNode (50 0]
}

transition {
id 24
labelString "after(100,ticks)"
src { ...}
dst { ... }

linkNode [5 0 25]

Figure 2: Example snippet of the textual representation used by Stateflow

TXL grammar. Our grammar identifies all observed elements of the Stateflow models, includ-
ing machines, charts, states, translations, junctions, events, data, instances, targets and other
elements.

2.2 Representation Transformation

The first stage of our approach is representation transformation. This stage performs two tasks.
The first task is to transform the sequential representation of the model into a nested version that
explicitly represents the hierarchy of the model. The second task is to separate the actions of the

3/13 Volume 63 (2014)

Clone Detection in Matlab Stateflow Models Eﬁ

9:9.9.0
07070"0"0"0"0"0"00"0 0000000000000 00000000000

% Stateflow component

% Top level containing object, presumably used

% to separate stateflow from other simulink entities
% in the model file.
9,9,0,0.0

07070"0"0"0"0"0"0"0"0"0"0" 0000000000000 000000000

redefine stateflow_list
'Stateflow { [NLI[IN]
[repeat stateflow_list_element]
[EX]
} [NL]
end redefine

define stateflow_list_element
[sf_machine_list]

| [sf_chart_list]

| [sf_state_list]

| [sf_transition_list]

| [sf_event_list]

| [sf_data_list]

| [sf_instance_list]

| [sf_target_list]

| [sf_junction_list]

end define

Figure 3: Example snippet of the inferred TXL grammar

state from the name of the state, representing each as separate attributes.

2.2.1 Explication of Hierarchical Structure

Figure 2 shows an excerpt of the textual representation of a Stateflow model, which in turn is
embedded in a Simulink model file. Each item in the figure (i.e. state, transition, or junction)
is stored sequentially, independent of the hierarchy inherent in the model. Instead, the hierarchy
of the model is represented using the treeNode and linkNode attributes. The treeNode attributes
are used in chart and state elements of the model to encode hierarchy by identifying the parent,
first child and sibling elements. In the figure, the first state at the top level of the chart (or root
of the Stateflow machine) has the id 22. State 22 is not shown in the figure due to length but is
located before junction 23. The linkNode attributes are used in junction and transition elements
to identify sibling elements at the same hierarchical level. The src and dst attributes of transitions
identify the source and destination attributes of transitions.

SIMONE takes advantage of the natural nesting of model elements that is used in the Sim-
lulink textual representation. Subsystems are textually nested within the block that represents
the subsystem at the next highest level of abstraction in the model. Thus to handle a Stateflow
model, we must provide an initial transform that moves the textual description of any substates,
junctions and transitions and nests them within the description of the parent state.

The transformation takes a folding approach that examines each element in turn and inserts it
into the appropriate parent element. At the same time, the nested elements are sorted by type:

Proc. IWSC 2014 4/13

Eﬁ ECEASST

Model {
. simulink model...

}
Stateflow {
chart {
state{
state {
}
transition{
}
}
}
}

Figure 4: Simplified example of folded Stateflow model

first states, then transitions, and finally junctions. Figure 4 shows a simplified outline of the new
representation. In the figure, the state flow section of the Simulink file contains a single chart,
with a single state, that contains a single nested substate and one nested transition. We have
omitted the other attributes to emphasize the nested structure.

2.2.2 Label Splitting

Figure 2 also shows that the state actions are encoded along with the state name into a single
string given by the labelString attribute. The state shown in the figure has the name passen-
gerneutral as well as an entry action that initializes two variables to zero. States may have ac-
tions associated with the entry and exit from the state, actions that are performed while the state
is active and actions that are performed if an event occurs while the state is active. Transition
labels are also complex, having triggers, conditions, condition actions and transition actions.

As our approach is based on comparing line as a whole, a difference in a single component of
a state or transition label renders the entire line different. Thus we split the state labels into the
constituent parts, each with its own attribute. The state name, if present, is encoded using a new
textlabel attribute. The entry, during and exit actions, when present, are encoded using separate
attributes of similar names (entrylabel, duringlabel, and exitlabel). If the author of the state
machine model has included formatting such as newlines into the actions, such as in the example
in figure 2, the actions are split into multiple attributes with the same name. Thus a change in
code associated with an entry action will not also imply that the during and exit actions of the
state are also different.

Figure 5 shows the labels generated for the state label in figure 2. The state name has been
provided in a textlabel attribute, and the entry actions have been transformed to three entrylabel
attributes.

Transitions do not have names. However we also separate each of the components of the
transition labels into separate attributes. These components are identified by the new attributes
eventlabel, conditionlabel, condition action, and actionlabel. This provides us finer grained
control over the comparisons used for clone detection. For example we can distinguish between
a change in an event label from a change to both an event label and the code given by the action

5/13 Volume 63 (2014)

Clone Detection in Matlab Stateflow Models

entrylabel "entry:"
entrylabel "moveUp = 0;"
entrylabel "moveDown = 0;"
textlabel "passengerneutral"

Figure 6:

Blower
during:setpoint_calc();

/B

Figure 5: Example of a split state label

_off
entry:BlowerOut=0.0;

Blower

E[in_temp._range(.5,203)]

f\weu,un

~

E[absTempDiff>203 || absTempDiff<=0.5]

A Blower 4
[TA(Blower 4] && n_temp_rangeq17,20 entry BlowerOut=0.8;

(Heater AC N
E[SetPTemp-IntTemp<=0.5] E[SetPTemp-IntTemp>=-0.5] |
H
HeaterAct =[H_oflAC_off }= ACAct H
<2 2 1 o !
TTSetPTemp-IntTempSUST T ={SetPTemp-Intlamp== H
'
(AirDist iy
Blower 5 i
¥ Out=10; i
H
H
H
J

s

function setpoint_calc()

function
b = in_temp_range(minTemp,maxTemp)

/

[Recye_off

=i
b
o

(a) ClimateControlSystem/Temperature Control Chart

lower
during:setpoint_calc(); Blower_off

entry-BlowerOut=0 0; [

E[in_temp_range(.5,203)]

B EfabsTempDiff>203 Il absTempDiff<=0.5]

) Heater_AC,

E[SetPTemp-IntTemp<=0.5] E[SetPTemp-IntTemp>=-0.5- |

HeaterAct

H_offAC_off

2
E[SetPTemp-IntTemp=0-3] T

Blower_on ™
5 Blower_1
CTin{Blower, n_temp_range(1.5. entry:BlowerQut=0.2;

Blower_2
entry:BlowerOut=0.4;

Blower 3
3T EE T Temp_TangeTZ, T5]T <] entry:BlowerOut=0.6;

Blower 4
entry:BlowerOut=0.8;

Blower 5
entry:BlowerOut=1.0;

function_setpoint_calc()

function b =in_temp_range(minTemp,maxTemp)

¢ AirDist

el |
w

| Defrost

['Recyc,mr ‘|‘
| 1
| '
! Recyc_on !
| i
| RecycReq 2 IRecycReq TTATORT Defrost) |
H i
i i
! lﬁecyc,on]
“‘ ,"

(b) Temperature Control Chart

Example of Stateflow clones
sldemo_auto_climatecontrol.mdl in Matlab demo automotive models

from

sldemo_auto_climate_elec.mdl and

Proc. IWSC 2014

6/13

Eﬁ ECEASST

of the transition.

2.3 Extractor Plugin

The extractor in SIMONE is responsible for identifying and extracting the clone candidates from
the models. Our extractor for Stateflow provides two granularities of clone candidates. The first,
chart granularity extracts all of the Stateflow charts as clone candidates. Charts in Stateflow
represent entire machines. A Simulink model may have more than one chart, each of which may
be instantiated multiple times as blocks in the Simulink Model. The second level of granularity,
state granularity, extracts all states in all charts as clone candidates. This allows us to identify
cloned state machines that are nested within states.

We tested our extractor on the set of Stateflow demo models provided by MathWorks. There
are total of 269 model files that contain Stateflow in the demo set. Our initial, baseline experi-
ment uses only the candidates extracted at both levels of granularities without any normalization.
Using a threshold of 30% difference(i.e. at least 70% of the lines are the same) and a minimal
clone size of 100 lines, we were able to find several clones in the demo set. A clone class is the
equivalence class induced by the clone pair relationship. If a and b are clone pairs, and b and ¢
are clone pairs, then a, b and ¢ form a clone class. Figure 9, the Extractor only column, shows the
initial results. We found 205 state clone pairs clustered in 24 clone classes, and 514 chart clone
pairs clustered in 27 clone classes. Examination of the results showed relatively small Stateflow
models, with limited nesting, making clone detection at the state level uninteresting.

Further examination of the results reveal that models that are identical in the graphical view
do not have one hundred percent similarity. The most obvious differences were differences in
layout attributes, and normalizing these attributes could improve clone detection. To evaluate the
effectiveness of the normalization of the states at improving clone detection, we have concen-
trated on clone detection of charts. These normalizations may also be applied at the state level
of comparison.

2.4 Normalization

In this stage, we normalize the result of the model files from stage one. The task of this stage
includes removing irrelevant elements, renaming elements and sorting elements. These steps can
improve the precision and recall of the clone detection phase.

2.4.1 Filtering

In order to improve the detection of clones, we introduce a filtering plugin similar to the filtering
plugin we used for Simulink models in our previous research. This plugin removes the irrelevant
elements from the potential clones. While some of these irrelevant attributes are the same as used
in Simulink, others were new. Since there is no published reference for the textual representation
of Stateflow models, we were obliged to infer which of the attributes were important and which
were irrelevant. Figure 2 shows some of these irrelevant elements: the position of each element,
the font size used to display labels, the zoom factor of the chart. While these attributes are
important to the human understanding of the model, they are not relevant to the semantic meaning

7/13 Volume 63 (2014)

Clone Detection in Matlab Stateflow Models

fo
)
O

ut_1= GlobalOperator(In_1) + G_1;

function Y_1 = GlobalOperator(U_1)

{

/* Returns Y and modifies the global G_1 */
Y_1=sin(U_1);

o= v 1

é}

(a) ex_mg_hisl_0062/One

{
Gio=1-
}

[ﬁOu(_2 = G_2 + GlobalOperator(In_2);
)

:

function Y_2 = GlobalOperator(U_2)

Y_2 =sin(U_2);
@ oy

O)
(b) ex_mg_hisl_0062/Two

{
[/* Returns Y and modifies the global G */

Figure 7: A Type 2(renamed model clone), both (a) and (b) in the ex_mg_hisl_0062 model.
Simone similarity 81%.

{output = factorial(input);}
-0

function result = factorial(n)

[n==0){result = 1;}

function out = fixout(fixin) Q) =
? S . 7

‘ {output=fixout(input);} o —
\Iv

\C}[ﬁxin>=0]{oul=3’ﬁxin;) >0 8& N2
v e -
O ;

{result = n*factorial(n-1);}
gouh-yﬁxin;)

(a) Fixed-Point Graphical Functions/Chart

Q

[*if n >27T, abort */
{result = 0;}

(b) Recursive Graphical Function
Demonstration/Chart

Figure 8: A Type 3(near-miss model clone), Fixed-Point Graphical Functions in sf_fxptgf model
and Recursive Graphical Function Demonstration in sf_gfrecursive. Simone similarity 75%.

of the models. Two models identical when comparing states, transitions, junctions and actions
may actually contain differences based on how they are rendered for view. The differences in
these attributes can overwhelm the similarities in the attributes that carry the semantic meaning
of the model.

The similarity of some of the clone pairs identified by only using the extractor is increased
when using these filters. However, the filters do not identify more clone pairs and clone classes.
The filtering can improve some similarity but not significantly. Figure 6 shows an example from
two different Stateflow demo models, sldemo_auto_climatecontrol and sldemo_auto_climate_elec,
which include the identical Temperature Control Chart.

Proc. IWSC 2014 8/13

Eﬁ ECEASST

Total nontrivial Extractor Filtered Filtered Filtered, Sorted

states(1372) & Only Only & Renamed & Renamed

charts(339) state | chart | state | chart | state | chart | state chart
Clone pairs 205 | 514 | 198 | 378 | 317 | 1639 | 314 1482
Clone class 24 27 21 23 50 29 54 29

Figure 9: Initial results of the Stateflow model clones found in the Matlab demo set.

2.4.2 Renaming

While filtering improves the similarity of the clones, we found that there are still some clones we
could identify manually that are still not detected. Some of the values of the attributes represent
internal information such as the id number of a state and are used to build structural information
such as the relationship between transitions and states.

In order to identify Type 2 (renamed) behavioural clones, a blind or consistent renaming of
elements will be necessary. Thus far, we detect all state and charts near-miss exact clones (Type
3-1), but only some near-miss renamed clones (Type 3-2).

We adapted the SIMONE blind renaming plugin to rename the attributes, giving them all the
same value. Renaming significantly improved the similarity and also new cloned pairs were
found. All detected clones have been checked by hand to compare the graphical representation,
all clones found in the example set models were all valid clones.

Figure 7 shows an example type 2 clone of two different chart, One and Two, in the ex_mg_hisl_0062
model of the Simulink example set. As you can see from the figure, the structure is the same,
but the labels have been changed, replacing the string “_1" with the string “_2”. Figure 8 shows
a type 3 clone between the Fixed-Point Graphical Functions Chart of the sf_fxptgf model and
the Recursive Graphical Function Demonstration Chart of the sf_gfrecursive model of the State-
flow demo set. A new transition has been added and one junction has been removed, as well as
naming and attribute changes to other transition and lines.

2.4.3 Sorting

The last source of difference in similar models was the order in which the elements were saved
to the file. For example, there are two clone models X and Y, have the same states A B and C. In
model X the order of the states are A B and C. In model Y the order of the states might be C' B
and A . In Simulink models, we use the Type, Name, Source, Block, and Port attributes as sorting
criteria. Unfortunately, Stateflow does not have a name attribute we can use. Our solution is to
sort the elements by size. Each state may contain a different number of substates, junctions and
transitions. We sort the states by the number of nested elements. After sorting, the similarity of
clones is improved, but no new clone pairs were detected.

Figure 10 and Figure 11 show the textual presentation of sf_aircraft_screen_library model in
the Simulink demo set. They both have the identical states "zero","one","two","three" and "no
valid signals" and they have different order inside the model file. We sort them by the size of

"non non nn

each state, and we have the new order "no valid signals", "one", "three","two", and "zero".

9/13 Volume 63 (2014)

Clone Detection in Matlab Stateflow Models Eﬁ

chart {
id 2
name "Position Monitor,\n(No Filter)/Screen Signals/screen logic"
state {
id 4
labelString "zero"
}
state {
id 6
labelString "three"
}
state {
id 7
labelString "two"
}
state {
id 8
labelString "one"
}
state {
id 11
labelString "no valid signals"
}
}

Figure 10: Example snippet of sf_aircraft_screen_library

Figure 9 shows the total number of clone pairs and classes detected by each of these options.
Filtering reduced the total number of clones by removing the false positives generated by sim-
ilarities only in unimportant attributes. Renaming increased the number of clones detected by
allowing different names to match. Sorting improved the quality resulting in slightly fewer clone
pairs, but a few more clone classes.

3 Related Work

While code clone detection was extensively researched [RCK09], research on model clones iden-
tification has received less attention [DHJ ™ 10]. Thus far, the majority of approaches are tailored
for Simulink models[DHJ 10, ACD ™ 12a, DHJT08, ACD'12b, SASC12, PNNT09], and these
techniges either use graphical based comparison or text base techniques to do clone detection on
Simulink models. None of them has been applied to Matlab Stateflow models.

Storrle [Sto13] proposed an approach to identify clones in UML models, specifically class,
activity and use case diagrams, and claims the approach is extendable to simulink and Stateflow
models. However, it has not been demonstrated on StateFlow. Storrle uses a different definition

Proc. IWSC 2014 10/13

Eﬁ ECEASST

chart {
id 165
name "Hydraulic Monitor,\n(No Filter)/Screen Signals/screen logic"
state {
id 167
labelString "one"
}
state {
id 171
labelString "three"
}
state {
id 172
labelString "two"
}
state {
id 173
labelString "no valid signals"
}
state {
id 174
labelString "zero"
}
}

Figure 11: Example snippet of Hydraulic Monitor of sf_aircraft_screen_library.

of model clone. His definition requires that the structure of the models be the same, and that the
labels on each of the model elements be similar. Thus his approach identifies Type 1 and Type 2
near miss clones, but not Type 3 near miss clones.

4 Conclusion and future work

In this paper we extend SIMONE to perform clone detection on Stateflow models. The initial
clone detection results from the Matlab example set are similar machines with variations in
labels(i.e. state and transition names) and other attributes such as position. We still need to
evaluate out approach on more Stateflow models, as well as to refine our SIMONE plugin to
improve clone detection. We are also investigating explicating the state machines into the parent
Simulink model in a similar manner to Grant et al. [SS11]. This will allow us to use similarity
of state machines to improve the accuracy of Simulink clones. We also found some clone classes
that appear to be embedded Matlab code for use by state and transition labels. Improving our
approach to better deal with embedded code is also a line of future research.

11/13 Volume 63 (2014)

Clone Detection in Matlab Stateflow Models Eﬁ

Acknowledgements: This work is supported in part by NESERC, as part of the NECSIS Au-
tomotive Partnership, and by the Ontario Research Fund through a Research Excellence grant in
model-driven engineering.

Bibliography

[ACD"12a] M. Alalfi, J. Cordy, T. Dean, M. Stephan, A. Stevenson. Models are code too:
Near-miss clone detection for Simulink models. In /ICSM. Pp. 295-304. 2012.

[ACD™12b] M. Alalfi, J. Cordy, T. Dean, M. Stephan, A. Stevenson. Near-miss model clone
detection for Simulink models. In IWSC. Pp. 78-79. 2012.

[Cor06] J. R. Cordy. The TXL source transformation language. Sci. Comput. Program.
61(3):190-210, 2006.

[DHJT08] F. Deissenboeck, B. Hummel, E. Jirgens, B. Schitz, S. Wagner, J.-F. Girard,
S. Teuchert. Clone detection in automotive model-based development. In ICSE.
Pp. 603-612. 2008.

[DHJT10] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfachler, B. Schaetz. Model clone
detection in practice. In IWSC. Pp. 57-64. 2010.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3):231-274, June 1987.

[Kos06] R. Koschke. Survey of Research on Software Clones. In Dagstuhl Seminars. 2006.

[PNNT09] N.Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, T. Nguyen. Complete and accurate
clone detection in graph-based models. In /CSE. Pp. 276-286. 2009.

[RCKO09] C. K. Roy, J. R. Cordy, R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming T4(7):470 — 495, 2009.

[SASCI12] M. Stephan, M. Alafi, A. Stevenson, J. Cordy. Towards qualitative comparison of
Simulink model clone detection approaches. In IWSC. Pp. 84-85. 2012.

[SS11] J. C. S. Grant, D. Martin, D. Skillicorn. Contextualized Semantic Analysis of Web
Services. In WSE 2011. Pp. 33-42. 2011.

[St613] H. Storrle. Towards Clone Detection in UML Domain Models. Software and Sys-
tems Modeling 12(2):307-329, 2013.

Proc. IWSC 2014 12/13

	Introduction
	Approach
	Stateflow TXL Grammar
	 Representation Transformation
	Explication of Hierarchical Structure
	Label Splitting

	Extractor Plugin
	Normalization
	Filtering
	Renaming
	Sorting

	Related Work
	Conclusion and future work

