Electronic Communications of the EASST

Volume 63 (2014)

Proceedings of the
Eighth International Workshop on
Software Clones
(IWSC 2014)

Toward a Code-Clone Search through the Entire Lifecycle
of a Software Product

— Position Paper —
Toshihiro Kamiya

7 pages

Guest Editors: Nils Gdde, Yoshiki Higo, Rainer Koschke

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Toward a Code-Clone Search through the Entire Lifecycle
of a Software Product

Toshihiro Kamiya'

! kamiya@fun.ac.jp
Department of Media Architecture,
School of Systems Information Science,
Future University Hakodate
116-2 Kamedanakano-cho, Hakodate, Hokkaido, Japan 041-8655

Abstract: This paper presents a clone-detection method/tool currently under devel-
opment. This tool is useful as a code-clone search through the entire lifecycle of
a software product; The tool searches code examples and analyzes of code clones
in both preventive and postmortem ways[LRHK10]. The approach is based on a
sequence equivalence on execution paths[Kam13] and extends the equivalence to
include gaps, thus type-3[BKA07] clone detection. Each of the detected clones is
a sub-sequence of an execution path of a given program, in other words, a set of code
fragments of multiple procedures (methods) which can be executed in a run of the
program. The approach is relaxed in terms of adaptability to incomplete (not-yet-
finished) code, but also makes use of concrete information such as types (including
hierarchy) and dynamic dispatch when such information is available.

Keywords: Code Clone, Code Search, Postmortem Code-Clone Detection, Preven-
tive Code-Clone Detection

1 Introduction

This paper presents a clone-detection method/tool under development. The tool will support
searching a similar code at each stage of the entire lifecycle of a software product, that is,
(1) a code example search will be executed even when no (or a very small volume of) code
of a product has been written, (2) preventively (or instant)[LRHK10], i.e., in an automatic
code-clone search to encourage code reuse by searching code fragments similar to the code
written by a developer, and (3) postmortem[LRHKI10]; i.e., in the code-clone search for a
refactoring[BYM " 98][HKKI04][ZR11] or a consistent code modification[Kri07]. A model of
these stages is explained in Sec. 2.

The proposed method/tool is a kind of searching where both an input (query) and an out-
put (search results) are code fragments. As for such kind of tools, CodeBroker[YFROO] and
Sniff[CJS09] search code fragments with a similarity of identifiers and text in comments. A tool
Strathcona|HMO06] searches code fragments with a similarity of types (including the types that
are related with the query code in terms of inheritance), or with methods directly called in the
query code fragment.

The essence of the search algorithm first identifies candidate code fragments with a similarity
of names/values of types, literals, and direct- or indirect-call of procedures, and then filters out

1/7 Volume 63 (2014)

mailto:kamiya@fun.ac.jp

Toward a Code-Clone Search through the Entire Lifecycle

of a Software Product Eﬁ

S pypy ../agoat.prog/src/ags.py query setForeground getForeground

org.gjt.sp.jedit.textarea.StandaloneTextArea void initPainter() {
org.gjt.sp.jedit.textarea.TextAreaPainter void setForeground(java.awt.Color) (line: *)
org.gjt.sp.jedit.textarea.TextAreaPainter void setStyles(org.gjt.sp.jedit.syntax.SyntaxStyle[]) { (line: *)
org.gjt.sp.jedit.textarea.TextAreaPainter java.awt.Color getForeground() (line: 268)

i
s

Figure 1: Searching keywords in source code of jEdit

(or sorts) the candidate code fragments with a similarity as a sequence on an execution path; thus,
a kind of structure. Here an execution path represents a set of the code fragments that appear in
distinct procedures, but are connected with procedure calls[Kam13], and consequently, a type-
3[BKA"07] (including arbitrary-size gaps) clone.

A picture of the proposed search method is explained in Sec. 3. (The implementation is built
on top of the code search method/tool[Kam14]. Figure 1 shows a sample run of the code search
tool, where two keywords setForeground and getForeground were searched. Here the
former was called directly in a method body of initPainter and the latter called indirectly,
via a method setStyles. In this latter case, the tool found such an example code of code
fragments from distinct source files but connected by an execution path.)

Note that this approach is opposite to approaches that find similarity in structures in terms of
software architectures[BJO5][TEB12], data flow[DHJ"08][PNN"09][ACD" 12], PDG(program
dependence graph)[Kri01][GJS08], AST(abstract syntax tree)[BYM "98][KFF06][JMSGO07]
[TH12], and sequences of such as token[LHMIO7][GKO09], line [Bak12][DRD99], or byte
code[DG10]. These approaches regard names/values as parameters of a structure, while the
proposed approach finds similarity of names/values before structures.

2 Development Stages and Available Information

Figure 2 shows a model of the development stages. In an early stage of software development,
a code search tool perhaps uses (as a query) only names/values of a code edited by a developer,
because structures of such unfinished code will be incorrect or unstable. In the later stages, if a
code being edited is stable enough and modifications on it are relatively few and small ones, its
structures will be stable and a code search tool will use the structures as a query in addition to
the names/values of the code.

As for search targets, in an early stage of development (or when a product introduces a totally
new feature and the product’s code base does not include any reference code in a practical sense),
the tool is not able to use a product’s code base as a target. In such a case, the tool searches in
code bodies of libraries (or frameworks) to be reused. In the later stage, the tool also searches in
a code body of the product under development.

An actual product would be a mix of these stages, especially in an incremental development
process; some source files are matured and the others are immature or not-yet finished. In such
a case, the proposed method/tool will be applicable in a seamless way, without develpers’ caring
about which source files are at which stage.

Proc. IWSC 2014 2/7

ECEASST

Search code examples to
understand functionalities /
API usages / designs of libraries.

Avoid writing duplicated
functions, by searching existing
functions in the product
repository.

To modify the same (or similar)
functions in a consistent way,
search similar code before
modification.

will U
8 become : e :

New code fragment Product under Libraries/
(unfinished) development Frameworks
names/values
Query Targets
structures

(a) Example Search

@ will be 8 ﬁ
added
-------- >

New code fragment . .
(unfinished) g Product under Libraries/
development Frameworks
names/values names/values
Query Targets
structures structures

(b) Preventive

0 E) e

taken from

e (5 =7

Code fragment
o be mo%i fiod Product under Libraries/
development Frameworks
names/values names/values names/values
Query Targets
structures structures structures

(c) Postmortem

Figure 2: Model of development stages and clone searching

3/7

Volume 63 (2014)

Toward a Code-Clone Search through the Entire Lifecycle

of a Software Product Eﬁ
@ Target code

Query code
Execution
Step 1. Query Information paths
Extraction

~

Lexical Analysis
values Step 2. Clone Search
N

if successful y
hsu u Word search
on execution paths

. Linking - o

RS oo < By Structure similarity
\ \\ measurement
|
Search
results

Figure 3: Steps of clone-search method

.

B Pasing re-ee-

=
n
c
Q
o
D
n
n
a
t=H

v

3 Steps of the Searching Method

The proposed clone-code search consists of two steps. Figure 3 shows a overall architecture of
Searching Methods including these steps.

3.1 Step 1. Query Information Extraction

For better precision of search results, more detailed information extraction is required; the tool
has to extract names/values and structures (if possible) from a query code. At the same time, for
applicability to a product at any stage, robustness is required; the tool has to be applicable to a
query code incomplete in terms of semantic and syntactic structures. To balance the precision
and the robustness, the tool at first tries to compile (and link) the code, then (if not successful)
tries parsing the code, and tries lexical analysis at the end.

Table 1 shows an information extracted in each of these trials. If the code is successfully
compiled and linked, as shown Compilation/Linking column in the table, extract names/values
and structures including not only types, literals, and directly-called procedures the developer
explicitly described in the code, but also types of “intermediate” values in expressions (such as
a return value of a method call, which is passed to another method call as an argument without
being assigned to a variable) or indirectly-called procedures. On the other hand, if the code is not
finished yet and incorrect in terms of grammar of a programming language (e.g., unbalanced { }),
the tool can extract only names (of something) or literals from such code fragment, as shown in

Proc. IWSC 2014 4/7

Eg ECEASST

Table 1: Information extracted from a query code

Lexical Analysis Parsing Compilation/Linking
Values * Literals (of string, « “
integer, boolean, etc.)
Names * Identifiers which may | Variable names «
be either variables, ¢ Function/method names * Type names of
functions/methods, or | * Type names appearing in intermediate values
types declarations
Structures * Branches «
* Direct calls (detected with | Indirect calls with a
a inner-method analysis) dynamic dispatch

(inter-method analysis)

The “<" represents “the same items to the left cell”.

the Lexical Analysis column in the table.

3.2 Step 2. Clone Search

In [Kam14], a data structure named an And/Or/Call graph was introduced to represent (both
inner- and inter-method) execution paths of a given program in a compact form. The code-search
algorithm finds the sub-graphs that include all keywords (of types, string literals, method signa-
tures) and convert the sub-graphs into execution paths. The planned code-clone search algorithm
will be an extension of the above algorithm in the following ways: (1) finding execution paths
including many keywords (not all keywords are necessary) and (2) filtering or ranking execution
paths with similarity of structures, in terms of order, distance, and frequency of appearances of
these names/values on each execution path.

4 Summary

The paper has presented a code-clone search tool/method usable through the lifecycle of a soft-
ware product. In such a development process, available information differs between development
stages and the tool design should maximize applicability and precision at these stages.

Acknowledgements: This work was supported by JSPS KAKENHI Grant Number 24650013.

Bibliography

[ACD"12] M. Alalfi, J. Cordy, T. Dean, M. Stephan, A. Stevenson. Near-Miss Model Clone
Detection for Simulink Models. In Proc. IWSC 2012. Pp. 79-79. 2012.

[Bak12] B. Baker. On Finding Duplication and Near-Duplication in Large Software Systems.
In Proc. WCRE 1995. Pp. 86-95. 2012.

5/7 Volume 63 (2014)

Toward a Code-Clone Search through the Entire Lifecycle

of a Software Product Eﬁ

[BJOS]

[BKA107]

[BYM'98]

[CIS09]

[DG10]

[DHJ*08]

[DRD99]

[GJSO8]

[GKO09]

[HKKIO4]

[HMO6]

[IMSGO07]

[Kam13]

[Kam14]

[KFF06]

[KriO1]

H. Basit, S. Jarzabek. Detecting Higher-level Similarity Patterns in Programs. In
Proc. FSE 2005. Pp. 156-165. 2005.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo. Comparison and Evalua-
tion of Clone Detection Tools. IEEE TSE 33(9):577-591, 2007.

I. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, L. Bier. Clone Detection Using Ab-
stract Syntax Trees. In Proc. ICSM 1998. Pp. 368-377. 1998.

S. Chatterjee, S. Juvekar, K. Sen. Sniff: A Search Engine for Java Using Free-Form
Queries. In Proc. FASE 2009, LNCS 5503. Pp. 385-400. 2009.

I. Davis, M. Godfrey. From Whence It Came: Detecting Source Code Clones by
Analyzing Assembler. In Proc. WCRE 2010. Pp. 242-246. 2010.

F. Deiflenbock, B. Hummel, E. Jiirgens, B. Schitz, S. Wagner, J.-F. Girard,
S. Teuchert. Clone Detection in Automotive Model-Based Development. In Proc.
ICSE 2008. Pp. 603-612. 2008.

S. Ducasse, M. Rieger, S. Demeyer. A Language Independent Approach for Detect-
ing Duplicated Code. In Proc. ICSE 1999. Pp. 109-118. 1999.

M. Gabel, L. Jiang, Z. Su. Scalable Detection of Semantic Clones. In Proc. ICSE
2008. Pp. 321-330. 2008.

N. Gode, R. Koschke. Incremental Clone Detection. In Proc. CSMR 2009. Pp. 219—
228.2009.

Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue. Refactoring Support Based on Code
Clone Analysis. In Proc. PROFES 2004, LNCS 3009. Pp. 220-233. 2004.

R. Holmes, G. Murphy. Approximate Structural Context Matching: An Approach
to Recommend Relevant Examples. IEEE TSE 32(12):952-970, 2006.

L. Jiang, G. Misherghi, Z. Su, S. Glondu. Deckard: Scalable and Accurate Tree-
Based Detection of Code Clones. In Proc. ICSE 2007. Pp. 96-105. 2007.

T. Kamiya. Agec: An Execution-Semantic Clone Detection Tool. In Proc. ICPC
2013. Pp. 227-229. 2013.

T. Kamiya. An Algorithm for Keyword Search on an Execution Path. In Proc.
CSMR-WCRE 2014 (to appear). 2014.

R. Koschke, R. Falke, P. Frenzel. Clone Detection Using Abstract Syntax Suffix
Trees. In Proc. WCRE 2006. Pp. 253-262. 2006.

J. Krinke. Identifying Similar Code with Program Dependence Graphs. In Proc.
WCRE 2001. Pp. 301-309. 2001.

Proc. IWSC 2014 6/7

E

ECEASST

[Kri07]

[LHMIO7]

[LRHK10]

[PNN*09]

[TEB12]

[TH12]

[YFROO]

[ZR11]

J. Krinke. A Study of Consistent and Inconsistent Changes to Code Clones. In Proc.
WCRE 2007. Pp. 170-178. 2007.

S. Livieri, Y. Higo, M. Matsushita, K. Inoue. Very-large Scale Code Clone Anal-
ysis and Visualization of Open Source Programs Using Distributed CCFinder: D-
CCFinder. In Proc. ICSE 2007. Pp. 106-115. 2007.

M.-W. Lee, J.-W. Roh, S. w. Hwang, S. Kim. A Instant Code Clone Search. In Proc.
FSE 2010. Pp. 167-176. 2010.

N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, T. Nguyen. Complete and Accurate
Clone Detection in Graph-Based Models. In Proc. ICSE 2009. Pp. 276-286. 2009.

U. Tekin, U. Erdemir, F. Buzluca. Mining Object-Oriented Design Models for De-
tecting Identical Design Structures. In Proc. IWSC 2012. Pp. 43—49. 2012.

M. Thomsen, F. Henglein. Clone Detection Using Rolling Hashing, Suffix Trees
and Dagification: A Case Study. In Proc. IWSC 2012. Pp. 22-28. 2012.

Y. Ye, G. Fischer, B. Reeves. Integrating Active Information Delivery and Reuse
Repository Systems. In Proc. FSE 2000. Pp. 60—68. 2000.

M. Zibran, C. Roy. A Constraint Programming Approach to Conflict-Aware Optimal
Scheduling of Prioritized Code Clone Refactoring. In Proc. SCAM 2011. Pp. 105—
114.2011.

717

Volume 63 (2014)

	Introduction
	Development Stages and Available Information
	Steps of the Searching Method
	Step 1. Query Information Extraction
	Step 2. Clone Search

	Summary

