
Electronic Communications of the EASST
Volume 63 (2014)

Proceedings of the
Eighth International Workshop on

Software Clones
(IWSC 2014)

Investigating Intentional Clone Refactoring

— Position Paper —

Wei Wang and Michael W. Godfrey

6 pages

Guest Editors: Nils Göde, Yoshiki Higo, Rainer Koschke
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Investigating Intentional Clone Refactoring

Wei Wang and Michael W. Godfrey1

David R. Cheriton School of Computer Science
University of Waterloo, Canada

w65wang@uwaterloo.ca, migod@uwaterloo.ca

Abstract:

Software clone refactoring has been studied from many perspectives, including em-
pirical research on clone refactoring history, IDE support for tracking clone change,
and recommendation systems for clone management. Most of the work relies on
having access to and being able to analyze the history of clone refactoring. However,
refactoring cloned code is not equivalent to clone management, as code refactoring
can be motivated by goals unrelated to cloning. In this position paper, we introduce
a dataset of intentional clone refactoring, which is produced by keywords matching
in commit messages within the version control system of Linux kernel. By inves-
tigating two important clone evolution scenarios — clone removal and inconsistent
changes — in subsystems of Linux kernel, we find that intentional clone refactoring
accounts for only a small proportion of all detected clone evolution.

Keywords: Clone Evolution, Code Refactoring, Clone Management

1 Introduction

Software clone management entails detecting, tracking, visualizing, and maintaining clones for
developers. Previous research on clone management includes empirical research on clone evolu-
tion ([ACD07], [Gö09], [Gö10]) and tool support to track clones ([ZPX+13], [Hot13], [Kos08]).

In previous longitudinal studies of clone management, researchers have primarily employed
clone refactoring data to understand clone removal, bug proneness of clones, and clone main-
tenance patterns. However, for a given clone refactoring instance, it is not always clear if the
original developer is aware of the duplication, or if the specific change is made for cloning-
related reasons. It is easy to imagine, for example, that the removal of duplication of a clone
class could be caused by manual optimization to one clone fragment, instead of a deliberate
effort of clone.

In this position paper, we discuss our finding of 348 source code commits that explicitly men-
tion clone management in their associated commit message. After locating code clones (iden-
tified by a clone detector) that are changed by these commits (which we call intentional clone
refactoring in this paper), we report a few general findings of these code clones. We further
investigate two clone evolution scenarios — clone fragment removal and inconsistent change in
clones — and we find that clones that are associated with intentional clone refactoring account
for fewer than 1% of all detected clone changes.

1 / 6 Volume 63 (2014)

mailto:w65wang@uwaterloo.ca, migod@uwaterloo.ca

2 Clone Management Data Set

2.1 Recognizing Clone Management in Version Control Logs

The Linux kernel git repository has maintained the version history of Linux kernel since 2005.
In analysing commits to this repository, we have identified some commit messages that explicitly
discuss cloning-related topics. For example, Fig. 1 shows a commit that describes clone removal
its primary activity. Further details of this commit can be found by querying the Linux kernel
git repository. During our manual investigation, we have found commit messages that explicitly
discuss refactoring of clones, including creating duplications, modifying duplicated code, and
the removal of replication.

We use keyword matching to identify intentional clone refactoring in commit messages. To
avoid false positives, in this position paper we consider only instances that match the keywords
“duplicated code” in commit messages. We explicitly do not match words such as “clone” and
its stemming words (“cloning”, or “cloned (code)”), as we have found that in practice these terms
exclusively refer to the cloning of git nodes of the version control system, which is obviously
unrelated to code cloning as we commonly use the term. By matching word pattern “duplicated
code” in commit messages, we identified 348 distinct commits out of a total number of 28,538
commits in Linux kernel git repository; this is likely a lower bound on the amount of cloning
discussed in commit messages.

2.2 Clone Detection Results and Clone Management Instances

After recognizing intentional clone refactoring instances from Linux kernel git repository, we
incorporate these instances with clone detection results. We apply the Bauhaus iClones clone
analysis tool on each minor release of Linux kernel (33 releases in total, from Version 2.6.21
to Version 3.12rc), with 20 tokens as the threshold for clone detection. Our goal is to identify
the last associated clone fragment (identified by clone detector) before the commit is reflected in
releases, so that clone refactoring described in commit can also be captured by clone evolution
analysis. After generating clone detection result, we match it against the intentional clone refac-
toring dataset based on location (start/end line number in a file) and version (by running “git
tag --contains”).

Due to the limited scope of this position paper, we restrict our investigations to four major
subsystems in the Linux kernel source code base. Table 1 shows the number of matched clone
fragments. One surprising finding is that clone fragments involved in intentional clone refactor-
ing are significantly smaller in size, the median of clone fragment tokens for three out of four
subsystems are below 35 tokens, while the most common threshold of clone detection we have
observed is 50 tokens (for example, in [BPS+07], and [JMSG07]).

3 Clone Evolution in Intentional Clone Refactoring Instances

After matching clone detection result with intentional clone refactoring instances, we study two
clone evolution scenarios: clone fragment removal and inconsistent change. The goal of this
study is to understand the percentage of intentional clone refactoring over all detectable clone

Proc. IWSC 2014 2 / 6

ECEASST

 commit 421f38835fe677d8c2e8c25628ae9cd4019653d2

Date: Tue Feb 28 16:12:44 2012

 USB: serial: whiteheat.c: use module_usb_serial_driver

This converts the whiteheat.c driver to use the
module_usb_serial_driver() call instead of having to have a
module_init/module_exit function, saving a lot of duplicated code.

diff --git a/drivers/usb/serial/whiteheat.c
 b/drivers/usb/serial/whiteheat.c
 --- a/drivers/usb/serial/whiteheat.c
 +++ b/drivers/usb/serial/whiteheat.c
 @@ -1454,30 +1454,7 @@ out:

Figure 1: A commit which indicates intentional clone refactoring in Linux kernel.

Table 1: Clones associated with intentional clone refactoring in Linux kernel

Subsystem #Clone Fragments Median of #Token

arch.powerpc 37 29
drivers.infiniband 208 66

drivers.usb 119 35
sound.soc 111 30

Table 2: Clone Fragments Removed in Linux Subsystems

Intentional Clone Refactoring Other

arch.powerpc 4 38,801
drivers.infiniband 27 33,179

drivers.usb 37 76,927
sound.soc 12 42,729

evolution instances.

3.1 Clone Fragment Removal

The Bauhaus iClones detects clone evolution by mapping suffix tree-based code changes between
consecutive revisions. Details of clone evolution analysis in iClones can be found in [GK09]. In
this paper, the clone evolution data provided by iClones is used to indicate clone removal cases.
Clones that are clone management in four Linux subsystems are shown in Table 2. Clearly, the
intentional removal of cloned code is only a small proportion of entire set of clone removal cases.

3 / 6 Volume 63 (2014)

Table 3: Clone Fragments with Inconsistent Changes in Linux Subsystems

Intentional Clone Refactoring Other

arch.powerpc 6 21,642
drivers.infiniband 33 15,344

drivers.usb 36 51,221
sound.soc 10 65141

3.2 Inconsistent Changes of Clones

Change consistency within a clone class has long been considered as a sign of poor clone man-
agement. Similar to clone removal cases, we make direct use of clone change consistency result
from Bauhaus iClones. Based on the result shown in Table 3, inconsistent changes in intentional
clone refactoring account for only a small proportion of the entire set of inconsistent changes.

4 Discussion

4.1 Implications to Software Clone Research

There is already a line of empirical research on clone management ([Gö09], [Gö10], [ACD07],
[Hot13], [WG12]), all of which provide insights into the evolution and maintenance of code
clones. However, a clone evolution or maintenance instance, based on findings of clone refactor-
ing, might be made because of a change in functionality — a reason irrelevant to code cloning.
In other words, we know little about design decisions that drive refactoring throughout the life-
cycle of a clone (from its creation, to its evolution, and to possible removal). Indeed, the result
shown in Table 2, and Table 3 suggests that the majority of cloned code refactoring cases are
not mentioned in commit messages for four subsystems in Linux kernel.

We argue that intentional clone refactoring can offer strong insights into the practice of cloning
in industrial software, and so may be a useful tool in cloning research. Intentional clone refac-
toring data may indicate features of clone management in practice. For example, according on
Table 1, we would have missed a majority of intentional clone refactoring if we had set 50 to-
kens as the clone minimum length, which is often used in research settings. Likewise, possible
patterns in intentional clone refactoring (e.g., ways of removing duplication) seem key to for a
better understanding of clone management as practiced; in turn, this may lead to new research
opportunities in clone management tool design.

5 Conclusion

In this position paper, we introduce a corpus data of intentional clone refactoring from Linux
kernel. By matching keywords in commit messages of version control system, we identify 348
commits with intentional clone refactoring. We select four major subsystems in the Linux kernel
and run clone evolution analysis. The result shows that intentional clone refactoring accounts for

Proc. IWSC 2014 4 / 6

ECEASST

only a small share of overall clone removal instances, suggesting that majority of clone removal
instances may be caused by reasons other than intentional clone refactoring. This also applies
to inconsistent changes of clones. We argue that this observation may affect how we interpret
result of clone evolution or clone management. The corpus data of commits with intentional
clone refactoring also offers new research opportunity for cloning research.

Acknowledgements: We sincerely thank Rainer Koschke and his research group for providing
us with the Bauhaus clone detector, its associated toolset, and aid in their use.

Bibliography

[ACD07] L. Aversano, L. Cerulo, M. Di Penta. How Clones Are Maintained: An Empirical
Study. In Proceedings of the 11th European Conference on Software Maintenance
and Reengineering. CSMR ’07, pp. 81–90. IEEE Computer Society, Washington,
DC, USA, 2007.

[BPS+07] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, S. Jarzabek. Efficient Token Based
Clone Detection with Flexible Tokenization. In The 6th Joint Meeting on European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering: Companion Papers. ESEC-FSE companion ’07,
pp. 513–516. ACM, New York, NY, USA, 2007.

[Gö09] N. Göde. Evolution of Type-1 Clones. In Proceedings of the 2009 Ninth IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation. SCAM
’09, pp. 77–86. IEEE Computer Society, Washington, DC, USA, 2009.

[Gö10] N. Göde. Clone Removal: Fact or Fiction? In Proceedings of the 4th International
Workshop on Software Clones. IWSC ’10, pp. 33–40. ACM, New York, NY, USA,
2010.

[GK09] N. Göde, R. Koschke. Incremental Clone Detection. In Software Maintenance and
Reengineering, 2009. CSMR ’09. 13th European Conference on. Pp. 219–228. 2009.

[Hot13] K. Hotta. Efficient Code Clone Management based on Historical Analysis and Refac-
toring Support. 2013.

[JMSG07] L. Jiang, G. Misherghi, Z. Su, S. Glondu. DECKARD: Scalable and Accurate Tree-
Based Detection of Code Clones. In Proceedings of the 29th International Con-
ference on Software Engineering. ICSE ’07, pp. 96–105. IEEE Computer Society,
Washington, DC, USA, 2007.

[Kos08] R. Koschke. Frontiers of software clone management. In Frontiers of Software Main-
tenance, 2008. FoSM 2008. Pp. 119–128. 2008.

5 / 6 Volume 63 (2014)

[WG12] W. Wang, M. W. Godfrey. We have all of the clones, now what? Toward integrating
clone analysis into software quality assessment. In Software Clones (IWSC), 2012
6th International Workshop on. Pp. 88–89. 2012.

[ZPX+13] G. Zhang, X. Peng, Z. Xing, S. Jiang, H. Wang, W. Zhao. Towards Contextual and
On-Demand Code Clone Management by Continuous Monitoring. In Proc. ASE.
Pp. 497–507. IEEE, 2013.

Proc. IWSC 2014 6 / 6

	Introduction
	Clone Management Data Set
	Recognizing Clone Management in Version Control Logs
	Clone Detection Results and Clone Management Instances

	Clone Evolution in Intentional Clone Refactoring Instances
	Clone Fragment Removal
	Inconsistent Changes of Clones

	Discussion
	Implications to Software Clone Research

	Conclusion

