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Abstract: This paper presents some results about some metrics anghdissible
impact on clone detectors. It also discusses some advanbagehy we should use
metrics instead of arbitrary measures.
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1 Introduction

Clone detectors rely on the concept of similarity and distameasures to identify cloned frag-
ments. The choice of a specific distance function in a clortectler is arbitrary up to some
extent. However, with a deeper knowledge of similarity nueas, we can condition this choice
to have some properties that can help improve scalabiliiyqaality of tools. This paper presents
some interesting results, insights and questions aboilasityyand distance measures, including
a somehow counter-intuitive result on the cosine distance.

For a comprehensive survey of many distances and metriestetder is invited to read
[CCaq.

This paper covers the following topics:

e Alink between the Jaccard measure on sets and the Manhatanak in euclidean space
e Limitations of the cosine distance on normalized vectotsapproaches to overcome them

e Unanswered questions on some similarity detection teciesiq

As a convention in this paper, we $&t = [0,)".

2 An Equivalence of the Jaccard Metric and the Manhattan Dis-
tance

Sometimes it is useful to link two known metrics to get a dabibehavior or a better under-
standing of one of the two. In our case, we link the Jaccardionet sets with the Manhattan
distance on the spad¥) . Our equivalence holds for arbitrary sets, but differepresentations
in the spac&’ may be possible, which leads to different applications. \'é firove the result,
then we will explain how the result may be used.
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Recall the Jaccard measure on two finite &kl is defined as:

_unv
9y

and from this we define the Jaccard metric as:

Ju,v)

unv| _uuv|-uny
UV UV

which is known to satisfy all the metric axioms (see sectidor 2 brief recall). The Manhattan
distance, notety, on two vectors u,v from RT is:

SUV)=1

[1(u,Vv) :_i|ui—vi|

Now, lets associate a unique integek1 < |UJV| to every elements in U andV. Now,
choosen = |U JV| and takeu,v € R} such asy =1« p; € U otherwisey; = 0, andv; = 1 <
Ui €V otherwisev, = 0. From this, we draw:

UV = _im@(UbVi)

U ﬂV‘ = _imin(ui,vi)

Theminandmaxterms in the preceding equations are only equsl # v;, otherwise one of
the two isu; and the other is; and becausgy — vi| = |v; — u;| we must have:

UVv|-uV|= |_ima>(ui,vi) —_imin(ui,viﬂ

n
Zzllui—vil
£

Replacing the last two equalities in the original Jaccarttimiads to:

UV -uAvl STau
SUN =0V T S maxun )

with the numerator of the last term being the Manhattan distdoetweemn andv. This proves
the existence of an equivalence between a normalizatiomeoiManhattan distance between
certain vectors and the Jaccard similarity between satseé#sy to generalize this result to allow
any positive integer for; andv; instead of 01. We simply need to project multiple elements
of the setdJ andV onto a single coordinate The proof is then almost identical to the one
presented here.

Why is this result interesting ? In practice, clone detextee a lot of similarity and distance
measures on sets. Most of them are not metrics (like the ieicient, the Tanimoto distance,

1 Actually, to define the Manhattan distance , we do not needulheower of a vector space but only requires the
n-tuples inR'.. However, it is now a custom to name everythingRih a vector and we shall follow the custom.
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etc.) and thus have a behavior less understood. Moreovércsmkead to known opportunity
of optimizations in search spaces that arbitrary distancesot offer CPZ97. Thus, even if
the choice is ultimately arbitrary, there exist some arguisi¢hat favor metrics over arbitrary
distances and knowing the link between some of them can haking a better choice. In this
case, a simple distance between vectors gives us a usefgprieitation as a distance between
sets.

3 Propertiesof Some Angular Distances
We start by proving a result on the sine function.

Theorem 1 Let X be a subset @'} [x€ X — ||x|| = 1. Let 8y be the angle between any two
x and ye X. Finally, letd : RT x R — R be defined ad(x,y) = sinf,y. Then,d is a metric
on X.

Proof. We need to prove thal satisfies the four properties of a metric.

(Non-negativity)d(x,y) > 0. This is true, since the all y have positive coordinates and the
angle between such vectors must béairf].

(Nullity) 6(x,y) =0« x=Yy. This is true, since the sine of an angle restrictefDtg] is 0 if
and only if that angle is 0, and the angle betwgemdy is O if and only ifx =y.

(Symmetry)d(x,y) = d(y,X). This is true since the angle betweerandy equals the angle
betweery andx.

(Triangle inequality)d(x,y) + d(y,z) > d(x,z). The property holds, but it is tricky to prove.
First, observe that if the angle betweeandy or the angle betweeynandzis greater than the
angle between andz, then the property must hold since the sine is monotonidgadiseasing in
[0, Z]. It remains to prove that it holds if the bigger angle is betmeandz

Now, clearly the sum of the anglék, and 8, is greater or equal thaf, ;. Because sine is
monotonically increasing in the considered interval, we have:

sin(6yy) + sin(6yz) > sin(Byy + 6,7) > sin(6x )
We develop the first two members of this inequality:

sin(Byy) +sin(8z) > sin(Bxy + 8,7) = sin(6xy) cog ) + sin(6,z) cog Byy)
Subtracting the right member to the left leaves:

sin(6y) — sin(6xy) cog6yz) +sin(8y2) — sin(&, ) cog bxy) > 0

Because the cosine of these angles lig®ja], we have

sin(Bxy) — sin(Bxy) cog 8,7)
sin(6y,) — sin(8,,) cog By
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and we conclude that the sum of the two must be greater thaguad & 0. The inequality
between the first two members of equation 1 holds, and beaduse definition of the second
member, the inequality between the last two members alrbaldly Thus, we conclude that:

sin(Bky) +sin(8y) > sin(6;)

and the triangle inequality is satisfied.
All four properties hold and we have secured the theorem. O

Why is this result interesting ? First, even if the cosingattise is a very popular similarity
measure on vectors, it is not a metric. To preserve the mamdity of the cosine function, this
results actually states that you need its dual function,sthe, to get a metric, under certain
restriction. The sine is not as straightforward to compstéha cosine on vectors, but it has the
advantage of being a metric on the first quadrariR’adf

It is also worth questioning whether or not the non-lingadt the sine and cosine is a de-
sirable property. The angle distance between two vectoasngetric (this fact is used in the
above proof) and is linear on the arc distance between thergecn a unit circle. It would be
interesting to verify whether or not the cosine is actua#iytér than the sine and the angular dis-
tance considering our arguments. In general, it would beteatompare a measure with closely
related one to assess which is better even if it means a sduificnal computational cost.

4 Further Questionsand Research: Implicit Distances, Why Should
we Recover them ?

The previous sections dealt with special cases of distati@dscan be easily converted to a
metric in order to use all the properties and knowledge wedtaw from the vast literature on

the subject. All these observations are interesting to poimthe context of clone detectors
explicitly based on a similarity or a distance measure. H@remany tools only use implicit

distances that are not properly defined as a mapping betwpain ar a cluster of objects onto

the real lineR. What should be the course of action for these tools ?

As hard as it can be, it should be possible in practice to mxcthe distance function. The
mapping might be hard to express, or too many parameters mexrgct together to produce a
long and complex formula, but these are only additionalarsso support the need to formalize
implicit or hidden distance functions. Complete underdiiag of clone detection technology
is intertwined with our ability to encapsulate their beleavin mathematical formula: if this
task proves to be tedious, what can we say of understandanghtbhavior or how can we even
completely compare them ?

The following questions are a starting point to help ingeg the mathematical foundation
of clone detection tools:

o What distance function does the clone detector uses ?

e How many parameters does the distance depends upon ? Aregsdamelant ? Are some
useless ?
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¢ If no mathematical formula seems possible to exist to endafesthe distance used, why
isitso?

e What key features does the tool use ? Are there other toaig tisose features ? Do those
tools have a well-formulated distance ?

e |s there an already existing distance that approximatesotiis implicit function ? How
good is this approximation ?

Nevertheless, unanswered questions do not hinder penfmesaand tools built around im-
plicit distances can produce good results. To shed a demgterdn why they do have good
results might however help the general understanding okctietectors’ behavior.
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