
Electronic Communications of the EASST
Volume 63 (2014)

Proceedings of the
Eighth International Workshop on

Software Clones
(IWSC 2014)

Measuring Copying of Java Archives

— Position Paper —

Tetsuya Kanda, Daniel M. German, Takashi Ishio and Katsuro Inoue

6 pages

Guest Editors: Nils Göde, Yoshiki Higo, Rainer Koschke
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Measuring Copying of Java Archives

Tetsuya Kanda1, Daniel M. German2,1, Takashi Ishio1 and Katsuro Inoue1

1 t-kanda@ist.osaka-u.ac.jp, ishio@ist.osaka-u.ac.jp, inoue@ist.osaka-u.ac.jp
Graduate School of Information Science and Technology

Osaka University, Japan

2 dmg@uvic.ca
Department of Computer Science

University of Victoria, Canada

Abstract: Copying the whole of a library is one of the major types of reuse in soft-
ware development. In Java, a single library archive file often contains other libraries
it depends on, but users of the library hardly know about such inner libraries. Since
reusing libraries is a black-box method, developers may combine some libraries
without knowing that those libraries contain the same library inside independently.
As a result, a library may contain inside several copies of a library it reuses. In this
research, we measured copying of jar archives in the Maven Central Repository, a
collection of open source Java libraries. Our results show that about 14% of top-
level jar files are reused in other jar files and some of them are duplicated in a single
jar file. We also found that some libraries contain two or more different versions of
the same library.

Keywords: software reuse, Java library, duplication

1 Introduction

Reusing software components reduces time and cost when constructing new software, and copy-
ing the whole of a library into the software development project is one of the major types of
reuse. Heinmann et al. showed that software reuse is common among open source Java projects
and the black-box is the predominant form of reuse [HDG+11].

In the case of Java, library archive files often contain their dependent libraries. One reason is
that developers want to use specific versions of libraries that might be considered reliable.

Once black-box reuse method has been done, it might not be known which version of which
library is included in the library archive file. Davis et al. pointed out that the provenance of in-
cluded components is not clearly stated and they proposed a method to determine the provenance
of source code contained within Java archives [DGGH13].

However, there is a possibility that developers are also copying duplicated libraries in the
reused libraries without knowing that. When developers copy some libraries into their project,
they may also unconsciously copy the same version of the library they already have or copy
different versions of the library, but developers might not be aware of this duplication.

The mainstream of the software clone research is for the source code [Kos07] and few re-
searches focuses clones of other software artifacts. There are some researches for Java archives

1 / 6 Volume 63 (2014)

mailto:t-kanda@ist.osaka-u.ac.jp
mailto:ishio@ist.osaka-u.ac.jp
mailto:inoue@ist.osaka-u.ac.jp
mailto:dmg@uvic.ca


Measuring Copying of Java Archives

A.jar

E.jar

D.jar

C.jar

B-2.jar

C.jar

B.jar

B.jar

Top-level jar file

B.jar

Inner jar files

Figure 1: Example of nested jar files

[BHV98, SMBZ07]. They dealt with a problem that how to compress class files to reduce file
size, but they paid no attention to the duplication of class files or whole of archives.

In this research, we performed an experiment to measure copying of jar archives in the Maven
Central Repository, a collection of open source Java libraries. We set these research questions as
a first step of the study of this type of duplication.

RQ1: How many jar files in a large software repository contain jar files inside and how many
jar files are reused?

RQ2: Does duplication of reused jar files in other jar files really exist? If so, are those duplicated
jar files the same version or different versions?

2 Background

Apache Maven [Mav] is a software project management and comprehension tool. It automati-
cally downloads dependent Java libraries from Maven repositories at build time. Maven Central
Repository (Maven2) is the default repository of Apache Maven. Maven2 repository contains
many popular libraries and projects.

Java archive file is the typical format used to distribute Java applications and libraries. A Jar
file contains Java class files and metadata and resources, and even another jar archive inside.

We define the term “top-level jar file” and “inner jar file” in this paper. A “top-level jar file” is
a jar file found in the Maven2, and therefore, it corresponds to a component ready to be reused.
An “inner jar file” is a jar file that is included in another jar file, either a “top-level jar file” or an
“inner jar file”.

Figure 1 shows an example of a library with nested jar files. A node corresponds to a jar file.
The jar file at the start of the arrow contains the jar file at the end of the arrow. In this case, the
top-level jar file A.jar is found in the target repository and contains four inner jar files in it; B.jar,
C.jar, E.jar. C.jar contains B.jar which is exactly same file as B.jar under A.jar. D.jar contains
C.jar so B.jar appeared again inside of C.jar. E.jar contains B-2.jar which is the newer version
of B.jar. In Figure 1, all jar files in the right side of A.jar are inner jar file of A.jar. B.jar and
C.jar are duplicated, and there are two versions of B.jar (B.jar and B-2.jar).

Proc. IWSC 2014 2 / 6



ECEASST

Table 1: Example of how the jar filename was use to identify the name of the library

Path Filename Detected library name
/maven/org/geoserver/web/1.4.0-RC3/ web-1.4.0-RC3.jar web
/maven/org/apache/archiva/archiva/1.1/ archiva-1.1-src.jar archiva-src

3 The experiment

We conducted an experiment to find how many archive files contained duplicate archive files
inside. We detected two types of duplication of jar files: the same version of the same library
and the different versions of the same library.

3.1 Setup

We used a framework for Software Bertillonage proposed by Davis et al. [DGGH13]. The
framework extracts metrics of source and archive files. We use two metrics, the filename and
SHA1 hash of the file contents, to find jar files with exactly the same contents. If the file is
contained in the archive file, SHA1 hash of the parent file is also extracted so that we can find
out the contents of jar file.

3.2 Inner Jar Files

There are 607,319 top-level jar files in the Maven2 repository. Removing exactly the same files,
with the same file name and the same hash, we get 599,498 top-level jar files. Checking the
contents inside each top-level jar files, we found that 4,747 top-level jar files contain at least one
jar file inside. 1,833 of them contains only one jar file and the largest one has 282 jar files in
it, 13.1 on average and median was 2. We also found that 118,361 different inner jar files are
contained in other jar files and 89,054 of them are found in the Maven2 repository as a top-level
jar file. This means that most inner jar files are reused directly from the Maven2 repository.

3.3 Detecting Duplication

To find the two types of duplication inside jar files, we checked inner jar files using the following
method:

First, we identify duplication of the same version of the libraries. If two jar files have the same
file name and the same file hash, this means that they have exactly the same contents so they are
considered as duplicated and they are the same version. We did not care about the nest level of
jar file. In Figure 1, three B.jar are all different nest level counting from A.jar, but it does not
affect the analysis.

Second, we identify duplication of different versions of the libraries. To detect different ver-
sions of the same library, we remove the version information from the jar file name. Version
names are not only restricted in the number but also some strings such as “RC” and “SNAP-
SHOT”. We found that many libraries are also found in the Maven2 repository so we use the
jar path name in Maven2 to identify its version. In the Maven2, most projects have their own

3 / 6 Volume 63 (2014)



Measuring Copying of Java Archives

Table 2: Analysis result for A.jar in Figure 1

Step File list
Unique inner jar file B, C, D, E, B-2
Unique inner jar file without version names B, C, D, E

Table 3: Duplication of inner jar files

Contains Duplication Type Total
inner jar Same Different Both duplication

#files 4,747 105 394 30 469
#projects 886 39 49 14 73

directory, and a subdirectory for each version. We regard the directory name as the version name
of the library and remove it from file name of the library. We also remove a leading hyphen
or underscore with the version name. Table 1 shows two examples. This step is skipped if the
library is not found in the Maven2 repository since we cannot get the version name from the
directory name.

Table 2 shows the example resuly of analysis for Figure 1. In the example Figure 1, B.jar
appears three times and C.jar appears twice. In this case B.jar and B-2.jar have the same library
name so they are determined as different versions of the library B.

Table 3 shows the results of the experiment. We count the number of libraries in two ways;
counting number of jar files and counting number of projects used disregarding their version as
described as Step 3.

In total, 469 jar files contain duplicate libraries inside, about 10% of the top-level jar files that
contains inner jar files. Counting the number of projects, the result also shows that about 8% of
maven projects contain inner jar files that have duplicated libraries in them.

We found both types of duplication in the Maven2 repository: 394 jar files contain the same
version of the same library and 105 jar files contain the different versions of the same library.
We also found that 30 files have both types of duplication.

Some jar files which have duplication of different versions of the archive files have “test” in
their file name. The inner jar files of nexus-app-1.7.1-tests.jar, listed in Table 4, it contains 28
different inner jar files, including six different versions of log4j library. In total there are 32 inner
jar files named log4j inside nexus-app-1.7.1-tests.jar and each versions of log4j appeared 3 to 7
times.

3.4 Revisiting Research Questions

RQ1 How many jar files in a large software repository contain jar files inside and how many
jar files are reused?

In the Maven2 repository, there are 4,747 of 599,498 jar files that contain inner jar files. The
number of inner jar files is at least one and at most 282 files, 13.1 on average and median was
2. From the point of view of reuse, 89,054 of top-level jar files in the Maven2 repository also
appeared as inner jar files.

Proc. IWSC 2014 4 / 6



ECEASST

Table 4: List of inner jar files of nexus-app-1.7.1-tests.jar

antlr-2.7.6 (7) nexus-3148-1.0.20100111.064938-1 nexus-indexer-1.0-beta-5-20080718.231118-50
antlr-2.7.7 (5) nexus-3148-1.0.20100111.065026-2 nexus-indexer-1.0-beta-5-20080730.002543-149
log4j-1.2.12 (5) nexus-indexer-1.0-beta-3-20010711.162119-2 nexus-indexer-1.0-beta-5-20080731.150252-163
log4j-1.2.13 (5) nexus-indexer-1.0-beta-3-SNAPSHOT nonuniquesnap-1.1-SNAPSHOT
log4j-1.2.13-sources (5) nexus-indexer-1.0-beta-4 plexus-plugin-manager-1.0-20081125.071530-1
log4j-1.2.14 (5) nexus-indexer-1.0-beta-4-SNAPSHOT sonatype-test-evict 1.4 mail-1.0-SNAPSHOT
log4j-1.2.14-sources (5) nexus-indexer-1.0-beta-4-SNAPSHOT-cli very.very.long.project.id-1.0.0-20070807.081844-1
log4j-1.2.15 (3) nexus-indexer-1.0-beta-4-SNAPSHOT-jdk14 very.very.long.project.id-1.1-20070807.081844-1
log4j-1.2.8 (7) nexus-indexer-1.0-beta-4-SNAPSHOT-sources
log4j-1.2.9 (7) nexus-indexer-1.0-beta-5-20080711.162119-2
(n) represents the number of files

RQ2 Does duplication of reused jar files in other jar files really exist? If so, are those dupli-
cated jar files the same version or different versions?

Yes, 10% of jar files which have inner jar files contains duplicated jar files. We can say that
the duplication in libraries are not an unusual problem. Both type of duplication are found in the
Maven2 repository.

4 Conclusion and Future Work

Developers reuse existing libraries by copying them into the software development project and
this style reuse reduces time and cost on constructing new software. On the other hand, there is
a possibility that developers are also copying duplicated libraries in the reused libraries without
knowing that.

The result of our experiment indicates that the duplication of archive files in a single archive
file is not frequent, but it exists. And furthermore, we must remember that many archive files are
copied into others so that further duplication can occur. Concretely, we found that about 5,000
jar files in the Maven2 repository contain other jar files in them and about 470 of them contains
duplicate libraries, some of them are the same version and some of them are different versions.
We also found that about 14% of top-level jar files in the Maven2 repository are copied into other
top-level jar files.

Based on this result, we are planning to perform further studies. We found duplication of jar
files but did not check all contents of them, and finding out which duplicated archive is most
frequently reused is our future work. In addition, we should also analyze other types of archive
files. We only used jar archives but the Maven2 repository has .zip, .tar.gz, .war, .ear formats of
archives and these are not limited in binary archives but also source archives.

Another interesting fact is that there are some inner jar files and some duplications even though
Apache Maven has a system to download needed jar files at built time. We want to investigate
whether it is possible to remove the duplication.

Acknowledgements: This work is supported by Japan Society for the Promotion of Science,
Grant-in-Aid for Scientific Research (S) “Collecting, Analyzing, and Evaluating Software Assets
for Effective Reuse” (No.25220003). This work is also supported by Osaka University Program
for Promoting International Joint Research, “Software License Evolution Analysis.”

5 / 6 Volume 63 (2014)



Measuring Copying of Java Archives

Bibliography

[BHV98] Q. Bradley, R. N. Horspool, J. Vitek. JAZZ: An Efficient Compressed Format for
Java Archive Files. In Proceedings of the 1998 Conference of the Centre for Ad-
vanced Studies on Collaborative Research. CASCON ’98, pp. 7–. 1998.

[DGGH13] J. Davies, D. M. Germán, M. W. Godfrey, A. Hindle. Software Bertillonage - Deter-
mining the provenance of software development artifacts. Empirical Software Engi-
neering 18(6):1195–1237, 2013.

[HDG+11] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, M. Irlbeck. On the
Extent and Nature of Software Reuse in Open Source Java Projects. In Proceedings
of the 12th International Conference on Software Reuse. Pp. 207–222. 2011.

[Kos07] R. Koschke. Survey of Research on Software Clones. In Duplication, Redundancy,
and Similarity in Software. 2007.

[Mav] Apache Maven Project.
http://maven.apache.org/

[SMBZ07] D. Saougkos, G. Manis, K. Blekas, A. Zarras. Revisiting Java Bytecode Compres-
sion for Embedded and Mobile Computing Environments. Software Engineering,
IEEE Transactions on 33(7):478–495, 2007.

Proc. IWSC 2014 6 / 6

http://maven.apache.org/

	Introduction
	Background
	The experiment
	Setup
	Inner Jar Files
	Detecting Duplication
	Revisiting Research Questions

	Conclusion and Future Work

