
Electronic Communications of the EASST
Volume 59 (2013)

Special Issue of the
First Workshop on Patterns Promotion

and Anti-patterns Prevention
(PPAP 2013)

Analysing Anti-patterns Static Relationships with Design Patterns

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh

26 pages

Guest Editors: Aminata Sabané, Wei Wu
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

Analysing Anti-patterns Static Relationships with Design Patterns

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh

Fehmi Jaafar
School of Computing, Queen’s University, Ontario, Canada

Sylvie Hamel
DIRO, Université de Montréal, Québec, Canada

Yann-Gaël Guéhéneuc and Foutse Khomh
DGIGL, École Polytechnique de Montréal, Québec, Canada

Abstract: Anti-patterns are motifs that are usually thought to be good solutions to
some design or implementation problems, but back-fires badly when applied. Pre-
vious studies have reported that anti-patterns make object oriented systems hard to
maintain. Anti-patterns motifs usually have dependencies with other classes in the
system. In this paper, we propose to analyse these dependencies (with in particu-
lar design patterns) in order to understand how developers can maintain programs
containing anti-patterns. To the best of our knowledge, no substantial investigation
of anti-pattern dependencies with design patterns has been done before. This paper
presents the results of a study that we performed on three different systems, Ar-
goUML, JFreeChart, and XercesJ, written in Java, and of size ranges from 1,191
to 3,325 classes, to analyse the static relationships between anti-patterns and de-
sign patterns. We found that these relationships (1) exist, but (2) are temporary
and (3) classes participating in such relationships are more change-prone but less
fault-prone than other anti-pattern classes.

Keywords: Anti-patterns, Design Patterns, Static Relationships, Change-proneness,
Fault-proneness, Software Evolution, Mining Software Repositories.

1 Context and Problem

Software systems continuously evolve in order to incorporate ever changing customers’ require-
ments, performance improvements, and bug fixes. Without proper knowledge, developers may
introduce anti-patterns in the system. In theory, anti-patterns [Web95] are “poor” solutions to
recurring problems. In practice, an anti-pattern is a literary form that describes a bad solution to
recurring design problems that leads to negative effects on code quality [BMMM98]. Opposite
to anti-patterns, design patterns [GHJV94] are “good” solutions to recurring design problems,
conceived to increase reuse, code quality, code readability and, above all, maintainability and
resilience to changes. Large, long-lifespan systems often have both design patterns and anti-
patterns and, consequently, anti-patterns and design patterns may have some relationships, i.e.
the classes participating to some design patterns may be in relation with those participating to
some anti-patterns. The static relationships among classes are typically use, association, aggre-
gation, and composition relationships [GA04].

1 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

Research Problem Most previous work agree that anti-patterns render the maintenance of sys-
tems more difficult [KPGA12, AKGA11] and that design patterns can serve as guide in program
exploration and, thus, ease maintenance [Vok04, ACC+07]. However, there are few previous
work about the relationships between anti-patterns and design patterns. Yet, understanding these
relationships can help developers to better understand and maintain software systems.

Contribution The contribution of this paper is three-fold. First, we extend the existing em-
pirical knowledge by an empirical study that demonstrates that anti-patterns and design patterns
can have static relationships in systems. Second, we provide knowledge about the evolution of
these relationships. Finally, we present the results of an empirical study on the impact of such
static relationships on change proneness and fault proneness. Indeed, in the study reported in
this paper we observe that anti-patterns do have static relationships with design patterns, but that
these relationships are temporary. Yet, anti-pattern classes participating in such relationships
are more change-prone but less fault prone than other anti-pattern classes. Therefore, it seems
that developers sometimes use design patterns as a temporary fix for anti-patterns (since both
the anti-patterns and the relationships to design patterns) are removed later from the systems.
The fix seems to be working since the fault-proneness of anti-patterns are reduced. Detecting
and analysing static relationships of anti-patterns is important from the points of view of both
researchers and practitioners. In fact, we bring evidence to researchers that (1) anti-patterns
do statically relate to some design patterns, that (2) some anti-patterns have more relationships
with design patterns than others, and that (3) these relationships indicate specific trends for the
evolution of classes in term of fault-proneness and change-proneness.

Organisation Section 2 relates our study with previous work. Section 3 presents our method.
Section 4 describes our empirical study. Section 5 presents the study results, while Section 6
discusses them, along with threats to their validity. Finally, Section 7 concludes the study and
outlines future work.

2 Related Work

Several work studied the detection and the analysis of anti-patterns and design patterns. For lack
of space, we only cite some relevant work, the interested readers can find more references in our
previous work [MGDL10] and [GA08].

Anti-patterns Definition and Detection Code smells and anti-patterns both describe re-occurring
software problems. Code smells are symptoms of problems existing in the source code [MGDL10].
Code smells are related to the inner workings of classes while anti-pattern include the rela-
tionships among classes and are more situated on a micro-architectural level. Concretely, code
smells give warnings to software developers that the source code has some problems, while anti-
patterns provide software managers, architects, designers, and developers a common vocabulary
for recognizing possible sources of problems in advance. The first book on “anti-patterns” in
object-oriented development was written in 1995 by Webster [Web95]. In this book, the author

Proc. PPAP 2013 2 / 26

ECEASST

reported that an anti-pattern describes a frequently used solution to a problem that generates in-
effective or decidedly negative consequences. Riel [Rie96] defined 61 heuristics characterising
good object-oriented programming to assess a program quality manually and improve its design
and implementation. These heuristics are similar and–or precursor to code smells. Brown et al.
[BMMM98] discussed 40 anti-patterns, which are often described in terms of lower-level code
smells. These books provide in-depth views on heuristics, code smells, and anti-patterns aimed
at a wide academic audience. They are the basis of all the approaches to detect anti-patterns.

The study presented in this paper relies on anti-patterns detection approach proposed in [MGDL10].
However several other approaches have been proposed in the past. For example, Van Emden et
al. [EM02] developed the JCosmo tool. This tool parses source code into an abstract model
(similar to the Famix meta-model). It uses primitives and rules to detect the presence of smells
and anti-patterns. The JCosmo tool can visualize the code layout and anti-patterns locations. The
goal of JCosmo is to help developers assess code quality and perform refactorings. The main dif-
ference compared with other detection tools is that JCosmo tries to visualize problems by visu-
alizing the design. Marinescu et al. developed a set of detection strategies to detect anti-patterns
using metrics [RDGM04]. They later refined their detection strategies by adding information
collected from the documentation of problematic structures. They showed how to detect several
anti-patterns, such as God Classes and Data Classes. Settas et al. explored the ways in which
an anti-pattern ontology can be enhanced using Bayesian network [SCF12]. Their approach al-
low software developers to quantify the existence of an anti-pattern using Bayesian network;
based on probabilistic knowledge contained in an anti-pattern ontology regarding relationships
of anti-patterns through their causes, symptoms and consequences.

The Integrated Platform for Software Modeling and Analysis (iPlasma) described in [LM06]
can be used for anti-patterns detection. This platform calculates metrics from C++ or Java source
code and applies rules to detect anti-patterns. The rules combine the metrics and are used to find
code fragments that exceed some thresholds.

Design Pattern Definition and Detection The first book on “design patterns” in object-oriented
development was written in 1996 by Gamma et al. [GHJV94]. Since this book, several work-
shops and conferences have emerged to propose new patterns. Many papers have been published
studying the use, impact of patterns. The study presented in this paper relies on design patterns
detection approach proposed in [GA08]. However several other approaches have been proposed
in the past. For example, one of the first papers about detecting design patterns was written
by Kramer et al. [KP96] in 1996. They introduced an approach detecting design information
directly from C++ header files. This information is stored in a repository. The design patterns
are expressed as PROLOG rules which are used to query the repository with the extracted in-
formation. Their work focused on detecting five structural design patterns: Adapter, Bridge,
Composite, Decorator, and Proxy. Recently, an approach based on similarity scoring has also
been proposed [TCSH06], which provides an efficient means to compute the similarity between
the graph of a design motif and the graph of a system to identify classes participating to a design
motif. Iacob [Iac11] presented a method that aims at identifying proven solutions to recurring
design problems through design workshops and systems analysis. Indeed, during a design work-
shop, a team of 3-5 designers is asked to design a system and the design issues they address

3 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

are collected. Moreover, a set of systems are analysed in order to identify in what measure the
design issues discussed during the workshops are considered in the implementation of existing
solutions. Candidates for being documented as design patterns are the most recurring design
issues in both the workshops and the systems analysis.

Anti-patterns and Design Patterns Static Relationships analysis There are few papers an-
alyzing the relationships among anti-patterns and design patterns. Vokac [Vok04] analyzed the
corrective maintenance of a large commercial program, comparing the defect rates of classes
participating in design motifs against those that did not. He found that the Observer and Single-
ton motifs are correlated with larger classes; classes playing roles in Factory Method were more
compact, less coupled, and less defect prone than other classes; and, no clear tendency exists for
Template Method. Their approach showed correlation between some design patterns and smells
like LargeClass but do not report an exhaustive investigation of possible correlations between
these patterns and anti-patterns. Pietrzak and Walter [PW06] defined and analysed the different
relationships that exist among smells and provide tips about how they could be exploited to alle-
viate the detection of anti-patterns. The authors performed an experiment to show that the use of
knowledge about identified smells in Jakarta Tomcat code supports the detection process. They
found examples of several smell dependencies, including aggregate relationships. The certainty
factor for those relations in that code suggests the existence of correlation among the dependent
smells and applicability of this approach to anti-patterns detection. Rather than focusing on the
relationships among code smells and anti-patterns, our study focuses on analysing anti-patterns
relationships with design patterns.

Yamashita et al. [YM13] reported that the interactions between code smells affect main-
tenance. They investigated the interactions amongst 12 code smells and analyzed how those
interactions relate to maintenance problems. They revealed how smells that were co-located in
the same artifact interacted with each other, and affected maintainability. Indeed, they found that
code smell interactions occurred across coupled artifacts, with comparable negative effects as
same-artifact co-location.

Anti-patterns and Design Patterns Evolution and Impact Bieman et al. [BSW+03] ex-
plored whether the relative stability of design pattern classes compared to other classes were
being empirically realized. The authors showed that large classes were found to be the most
change-prone and that pattern-based classes were more change-prone. Vokac [Vok04] found sig-
nificant differences in the fault-proneness of different design patterns in a study of a large C++
industrial system. In the same direction, Gatrell et al. [GCH09] showed that pattern-based
classes are more change-prone than non-pattern classes.

On the other hand, Olbrich et al. [OCBZ09] analysed the historical data of Lucene and Xerces
over several years and concluded that Blob classes and classes subjected to Shotgun Surgery
have a higher change frequency than other classes; with Blob classes featuring more changes.
Similarly, Chatzigeorgiou and Manakos [CM10] studied the evolution of Long Method through-
out successive versions of two open-source systems and concluded that a significant percentage
of these smells are introduced during the addition of new methods to the system. They also
found that this anti-pattern persists in systems and that their removal is often a side effect of

Proc. PPAP 2013 4 / 26

ECEASST

adaptive maintenance rather than the result of targeted refactoring activities. Using Azureus
and Eclipse, Khomh et al. [KPGA12] investigated the impact of code smells on the change-
proneness of classes and showed that in general, the likelihood for classes with code smells to
change is very high. Khomh et al. [KPGA12] also investigated the relation between the presence
of anti-patterns and the change- and fault-proneness of classes. They detected 13 anti-patterns
from 54 releases of ArgoUML, Eclipse, Mylyn, and Rhino, and analyzed the likelihood that a
class with an anti-pattern will change in the future, in particular to fix a fault. They concluded
that classes participating in anti-patterns are significantly more likely to be subject to changes
and to be involved in fault-fixing changes than other classes.

Khomh et al. [KPGA12] also investigated the kind of changes experienced by classes with
anti-patterns. Their study focused on two types of changes: structural and non-structural changes.
Structural changes are changes that would alter a class interface while non-structural changes are
changes to method bodies. They concluded that structural changes are more likely to occur in
classes participating in anti-patterns.

Deligiannis et al. [DSRS03] proposed the first quantitative study of the impact of anti-patterns
on software development and maintenance activities. They performed a controlled experiment
with 20 students on two systems. The experiment aimed to understand the impact of Blob classes
on the understandability and maintainability of systems. The results of their study suggest that
Blob classes affect the evolution of design structures and the subjects’ use of inheritance. How-
ever, Deligiannis et al. did not assess the impact of anti-patterns static relationships on subjects’
understandability and ability to perform the tasks successfully.

Yamashita and Moonen [YM12] investigated the extent to which code smells reflect factors
affecting software maintainability and observed that using code smells definitions alone, devel-
opers cannot fully evaluate the overall maintainability of a software system. They conclude on
the need to combine different analysis approaches in order to achieve more complete and accu-
rate evaluations of the overall maintainability of a software system.

Taba et al. [SN13] argue that anti-patterns can tell developers whether a design choice is
“poor” or not. They explored the use of anti-patterns for fault prediction, and strive to improve
the accuracy of fault prediction models by proposing various metrics based on anti-patterns.
They considered the history of anti-patterns in files from their inception into the system. They
observed that files participating in anti-patterns have higher fault density than other files and
that their proposed anti-pattern-based metrics can provide additional explanatory power over
traditional metrics and improve fault prediction models. They suggest that developers use their
proposed metrics to better improve fault prediction models and better focus testing activities and
the allocation of support resources.

We share with all the above authors the idea that anti-patterns detection is a powerful mech-
anism to assess code quality, in particular indicating whether the existence of anti-patterns and
the growth of their relationships makes the source code more difficult to maintain.

Summary: These previous works raised the awareness of the community towards the impact
of anti-patterns and design patterns on software development and maintenance activities. In
this paper, we build on these previous works and analyze the existence and evolution of anti-
patterns static relationships with design patterns. We aim to understand if the negative effects
of anti-patterns can transit to other classes through static dependencies and if design patterns
can mitigate these negative effects. We also analyze the evolution and impact of relationships

5 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

between anti-patterns and design patterns in terms of fault proneness and change proneness.

3 Approach

This section describes the steps of our data collection process. We use two previous approaches
DECOR[MGDL10] to detect anti-patterns, and DeMIMA[GA08] to detect design patterns.

3.1 Step 1: Detecting Anti-patterns

We use the Defect DEtection for CORrection Approach DECOR[MGDL10] to specify and de-
tect anti-patterns. DECOR is based on a thorough domain analysis of anti-patterns defined in
the literature, and provides a domain-specific language to specify code smells and anti-patterns
and methods to detect their occurrences automatically. It can be applied on any object-oriented
system through the use of the PADL [GA08] meta-model and POM framework. PADL is a
meta-model to describe object-oriented systems [GA08]. POM is a PADL-based framework that
implements more than 60 metrics.

Indeed, Decor proposes a domain-specific language to specify and generate automatically
design defect detection algorithms. A domain-specific language offers greater flexibility than
ad hoc algorithms because the domain experts, the software engineers, can specify and mod-
ify manually the detection rules using high-level abstractions, taking into account the context,
environment, and characteristics of the analysed systems. Moreover, the language allows speci-
fying defect detection algorithms at a high-level of abstraction using key concepts found in their
text-based descriptions, not in the underlying ad hoc detection framework, as in previous work.

Moha et al. [MGDL10] reported that DECOR current anti-patterns’ detection algorithms
achieve 100% recall and have a precision greater than 31% in the worst case, with an average
precision greater than 60%.

3.2 Step 2: Detecting Design Patterns

We use the Design Motif Identification Multilayered Approach (DeMIMA)[GA08] to specify
and detect design patterns. DeMIMA ensures traceability between motifs and source code by
first identifying idioms related to binary class relationships to obtain an idiomatic model of the
source code and then, by using this model, it can identify design motifs and generate a de-
sign model of the system. Indeed, DeMIMA makes it possible to recover two kinds of design
choices from source code: idioms pertaining to the relationships among classes and design mo-
tifs characterizing the organization of the classes. DeMIMA depends on a set of definitions for
unidirectional binary class relationships. The formalizations define the relationships in terms
of four language-independent properties that are derivable from static and dynamic analyses of
systems: exclusivity, type of message receiver, lifetime, and multiplicity. DeMIMA keeps track
of data and links to identify and ensure the traceability of these relationships. DeMIMA also
uses explanation-based constraint programming to identify microarchitectures similar to design
motifs. This technique makes it possible to identify microarchitectures similar to a model of a
design motif without having to describe all possible variants explicitly. We also use DeMIMA to
detect motifs’s relationships. In fact, DeMIMA distinguishes use, association, aggregation, and

Proc. PPAP 2013 6 / 26

ECEASST

composition relationships because such relationships exist in most notations used to model sys-
tems, for example, in UML. Gueheneuc and Antoniol [GA08] reported that DeMIMA can detect
design patterns with a recall of 100% and a precision greater than 34%. While, for the detection
of relationships among classes, the DeMIMA approach ensures 100% recall and precision.

3.3 Step 3: Analysing Motifs Static Relationships

Table 1 summarizes anti-patterns considered in this paper. To perform the empirical study, we
choose to analyse the relationships of the well known anti-patterns and six design patterns be-
longing to three categories: creational patterns (Factory method and Prototype), structural pat-
terns (Composite and Decorator), and behavioral patterns (Command and Observer). Thus, we
choose these motifs because they are representative of problems with data, complexity, size, and
the features provided by classes. We choose, also, these motifs because they have been used and
analysed in previous work [MGDL10] and [KPGA12]. Definitions and specifications are outside
of the scope of this paper and are available in [GHJV94] and [KPGA12].

We assume that a design pattern P has a static relationships with the anti-pattern A if at least
one class belonging to P has a use, association, aggregation, or composition relationships with
one class belonging to A.

3.4 Step 4: Analysing the Evolution of Motifs and their Static Relationships

Our analysis goes as follows: we detect all static relationships between anti-patterns and design
patterns in the first studied version of a system. Then, we investigate whether these relationships
persist in the following versions. We hold that a relationship will be ignored by our approach if
the classes playing roles in anti-patterns in the first studied version are restructured and corrected
and, thus, they do not belong to anti-patterns any more in the next versions.

To analyse the evolution of static relationships between anti-patterns and design patterns, we
need to detect class renamings, class changes, and fault fixing. If we considered only class name
to identify classes in different versions, then a same class in two different versions is considered
as two different classes if it is renamed. To overcome this issue, we use the structure-based and
text-based similarities to identify class renamings in programs.

Concretely, we use previous approaches: ADvISE [HGHG12] and Macocha [JGHA11].
ADvISE identifies class renamings using structure-based and text-based metrics, to assess the

similarities between original and renamed classes, as follows:

3.4.1 Structure-based and Text-based Similarities

The structure-based similarity (StrS), between a candidate renamed class CA and a target class
CB, is defined as the percentage of their common methods, attribute types, and relationships. We
compute the text similarity, between a candidate renamed class CA and each of the target classes
CBi i ∈ [1,n], using a Camel similarity (CamelS), and the Normalized Levenshtein Edit Distance
(ND). The CamelS similarity between CA and CB represents the percentage of their common

7 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

tokens. The Normalized Edit Distance (ND) between CA and CB is defined as:

ND(CA,CB) =
Levenshtein(CA,CB)

sum(length(CA), length(CB))
∈ [0,1]

Let S(CA) (respectively S(CB)) be the set of methods, attributes, and relationships of CA (re-
spectively CB). The structure-based and the text-based similarities of CA and CB are computed
by comparing S(CA) to S(CB) using the Jaccard index of similarity [RV96]. In fact, when we
compare the similarities of a candidate renamed class CA to many target classes {CB1 , ...,CBn},
we first compare their structure-based similarity StrS. We select the set of target classes having
the highest StrS value. Then, we compute their textual similarities (ND and CamelS).

Finally, we combine ND and CamelS to compare the text similarity between names of the
candidate class and the target class, because ND and CamelS assess to two different aspects of
string comparison: ND is concerned with the difference between strings but cannot tell if they
have something in common, while CamelS focuses on their common tokens but cannot tell how
different they are. ADvISE reports the S(CB) with the highest CamelS and the lowest ND scores
as the class renamed from S(CA). The score combined of ND and CamelS is equal to:

S = CamelS
ND

We also use Macocha [JGHA11] to identify the set of changes performed on each class by
mining version-control systems as follow:

3.4.2 Analysing the Change Proneness and the Fault Proneness

We explore whether classes belonging to an anti-pattern and related to a design pattern are less
change prone than other anti-pattern classes.

Indeed, Macocha mines version-control systems (CVS and SVN), to detect changes commit-
ted in each class. A commit contains several attributes: the changed class names, the dates
of changes, the name of the developer who committed the changes. Macocha takes as input a
CVS/SVN change log and creates a profile that describes the evolution of each class.

First, using Fisher’s exact test [She07] and Odds ratios (OR), we investigate whether static re-
lationships between anti-pattern and design pattern are significantly correlated to a higher class’s
change-proneness. We present more details about this investigation in Section 4.

Second, we compute the fault-proneness of a class by relating fault reports and commits to
the class. Indeed, fault fixing changes are documented in textual reports that describe different
kinds of problems in a program. We parse the SVN/CVS change logs of our subject systems and
apply the heuristics by Sliwersky et al. [SZZ05] to identify fault fix locations. We parse commit
log messages using a Perl script and extract bug IDs and specific keywords, such as “fixed” or
“crash” to identify fault fixing commits. From each fault fixing commit, we extract the list of
files that were changed to fix the fault. This list of files tells us which classes where changed to
fix the faults.

4 Study Definition and Design

The goal of our study is to analyse the existence, the evolution and the impact of the static
relationships between anti-patterns and design patterns in software systems. The quality focus is

Proc. PPAP 2013 8 / 26

ECEASST

ArgoUML JFreeChart XercesJ
of classes 3,325 1,615 1,191
of AntiSingleton 3 38 24
of Blob 100 49 12
of CDSP 51 3 6
of ComplexClass 158 52 7
of LongMethod 336 75 7
of LongParameterList 281 76 4
of MessageChains 162 59 8
of RefusedParentBequest 123 5 7
of SpaghettiCode 1 2 6
of SpeculativeGenerality 22 3 29
of SwissArmyKnife 13 26 29

Table 1: Descriptive statistics of the object systems (CDSP: ClassDataShouldBePrivate)

related to the quality of systems and to the evolution of classes participating in anti-patterns. The
perspective is detecting the impact of relationships between anti-patterns and design patterns on
class change-proneness and fault-proneness. The context of our experiment is three open-source
Java programs: ArgoUML, JFreeChart, and XercesJ.

4.1 System Under Analysis

We apply our approach on three Java systems: ArgoUML1, JFreeChart2, and XercesJ3. These
systems can be classified as large, medium, and small systems, respectively. We use these sys-
tems because they are open source, have been used in previous work, are of different domains,
span several years and versions, and have between hundreds and thousands of classes. Table 1
summarises some statistics about these systems.

ArgoUML is an UML diagramming system written in Java and released under the open-source
BSD License. For anti-patterns dependencies analysis, we extracted a total number of 4480
snapshots from release 0.26 to release 0.34, in the time interval between September 27th, 2008
and December 15th, 2011.

JFreeChart is a Java open-source framework to create charts. For macro co-change analy-
sis, we considered an interval of observation ranging from June 15th, 2007 (release 1.0.6) to
November 20th, 2009 (release 1.0.13 ALPHA). In such interval we extracted 2010 snapshots.

XercesJ is a collection of software libraries for parsing, validating, serialising, and manipu-
lating XML. It is developed in Java and managed by the Apache Foundation. For anti-patterns
dependencies analysis, we extracted a total number of 159196 snapshots from release 1.0.4 to
release 2.9.0, in the time interval between October 14th, 2003 and November 23th, 2006.

1 http://argouml.tigris.org/
2 http://www.jfree.org/
3 http://xerces.apache.org/xerces-j/

9 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

4.2 Research Questions

We break down our study into three steps: first, we perform a preliminary study to verify the
existence of relationships between anti-pattern and design pattern classes. Next, we study the
evolution of these relationships. Finally, we analyse the fault proneness and the change proneness
of classes containing anti-patterns and related to design patterns:

• RQ1: Are there static relationships between anti-patterns and design patterns?

• RQ2: Are the static relationships between anti-patterns and design patterns casual?

• RQ3: Do static relationships between anti-patterns and design patterns impact change
proneness and fault proneness?

In the first question, we check if static relationships between anti-patterns classes and classes
playing roles in design patterns exists. RQ1: is a preliminary study and its results present an
initial evidence for the other research questions.

In the second question, we verify if these relationships are persistent during the evolution of
the software systems.

The third research question is designed to check whether classes participating in such relation-
ships are more change-prone and fault prone than other anti-pattern and design patterns classes.

To answer the third research question, we test the following null hypotheses:

• H10 : The proportion of classes changed at least once between two releases is not different
between anti-pattern classes participating or not in a static relationship with at least one
design pattern.

• H20 : the proportion of classes undergoing at least one fault-fixing change between two
releases does not differ between anti-pattern classes participating or not in a static rela-
tionship with at least one design pattern.

If we reject the null hypothesis H10 , we explain the rejection as:

• H11 : The proportion of classes changed at least once between two releases is different
between anti-pattern classes participating or not in static relationship with at least one
design pattern.

If we reject the null hypothesis H20 , we explain the rejection as:

• H21 : The proportions of faults carried by anti-patterns classes which have static relation-
ships with design patterns and faults carried by other anti-pattern classes are not the same.

Then, we check whether anti-patterns have effects transitive via static dependencies, i.e. we
are attempting to compare the fault proneness and change proneness across the following groups
of classes: (1) classes belonging to a design pattern and related to an anti-pattern and (2) classes
belonging to a design pattern and not related to an anti-pattern.

We test the following two null hypotheses:

Proc. PPAP 2013 10 / 26

ECEASST

• H30 : The proportion of classes changed at least once between two releases is not different
between design pattern classes participating or not in a static relationship with at least one
anti-pattern.

• H40 : the proportion of classes undergoing at least one fault-fixing change between two
releases does not differ between design pattern classes participating or not in a static rela-
tionship with at least one anti-pattern.

If we reject the null hypothesis H30 , we explain the rejection as:

• H31 : The proportion of classes changed at least once between two releases is different
between design pattern classes participating or not in static relationship with at least one
anti-pattern.

If we reject the null hypothesis H40 , we explain the rejection as:

• H41 : The proportions of faults carried by anti-patterns classes which have static relation-
ships with design patterns and faults carried by other anti-pattern classes are not the same.

4.3 Analysis Method

The analysis reported in Section 5 have been performed using the R statistical environment4. We
use the contingency tables to assess the direction of the difference of fault proneness and change
proneness across different group of classes. In statistics, a contingency table is a table in a
matrix format that displays the frequency distribution of the variables. We use Fisher’s exact test
[She07], to check whether the difference is significative between anti-pattern classes having static
relationships with design patterns and other anti-pattern classes in term of change proneness
and fault proneness. Fisher’s exact test is a statistical significance test used in the analysis of
contingency tables. Although in practice it is employed when sample sizes are small, it is valid
for all sample sizes. The test is useful for categorical data that result from classifying objects
in two different ways. It is used to examine the significance of the association (contingency)
between the two classifications. We also compute the Odds ratio [She07] that indicates the
likelihood for an event to occur. The Odds ratio (OR) is defined as the ratio of the odds p of an
event occurring in one sample, e.g. the odds that anti-patterns having static relationships with
design patterns are identified as fault-prone, to the odds q of the same event occurring in the
other sample, i.e. the odds that the rest of anti-pattern classes are identified as fault-prone. An
odds ratio greater than 1 indicates that the event (i.e. a fault) is more likely in the first sample
(i.e. anti-patterns having static relationships with design patterns), while an odds ratio less than
1 indicates that it is more likely in the second sample. The Odds ratio is calculated as follows:
OR = p/(1−p)

q/(1−q) .

4 http://www.r-project.org

11 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

5 Study Results

We now present the results of our empirical study. We use data collected from the three programs
and some external sources (e.g. bug reports) to answer our three research questions and to discuss
typical examples of our findings as follows:

RQ1: Are there static relationships between anti-patterns and design patterns?

Yes Table 2 shows that, for the majority of anti-patterns, we detect static relationships with
design patterns. On the one hand, we notice that different anti-patterns can have different pro-
portions of static relationships with design patterns. This observation is not surprising because
these systems have been developed in three unrelated contexts, under different processes. Thus,
they have different complexities and different usages of design motifs. Consequently, they have
different number of static relationships among their design motifs. On the second hand, the de-
sign pattern that has the most relationships with anti-patterns is the Command design pattern.
For example, we noted that 50% of static relationships among SpeculativeGenerality and design
patterns in ArgoUML, are with the Command design pattern. In XercesJ, we observe that 41%
of relationships among ClassDataShouldBePrivate was with the Command design pattern.

No clear tendency exists for ComplexClass and RefusedParentBequest. For example, Com-
plexClasses have static relationships with six analysed design patterns with equivalent propor-
tions in ArgoUML, JFreeChart, and XercesJ.

But.. In the three systems, if a class participates in a design pattern, it does not have a rela-
tionship with the SpaghettiCode anti-pattern, as shown in Table 2. In fact, in all three systems,
we do not detect any class playing a role in a SpaghettiCode and having static dependencies
(use, association, aggregation, and composition relationships) with one of the six design patterns
(Command, Composite, Decorator, FactoryMethod, Prototype, and Observer). We discuss these
observations in details in 6.

Relevance Design patterns are naturally geared to improve adaptability and maintainability.
Each design pattern aims to make specific changes easier [JY01]. For example, in XercesJ, the
class org.apache.xerces.validators.common.XMLValidator is an excessively
complex class interface. The developer attempts to provide for all possible uses of this class.
In her attempt, she adds a large number of interface signatures to meet all possible needs. The
developer may not have a clear abstraction or purpose for org.apache.xerces.vali-
dators.common.XMLValidator, which is represented by the lack of focus in its inter-
face. Thus, we claim that this class belongs to a SwissArmyKnife anti-pattern. This anti-
pattern is problematic because the complicated interface is difficult for other developers to un-
derstand and obscures how the class is intended to be used, even in simple cases. Other con-
sequences of this complexity include the difficulties of debugging, documentation, and main-
tenance. We detect that this class has a use-relationship with the class org.apache.xer-
ces.validators.dtd.DTDImporter, which belongs to the Command design pattern.
Using Command classes makes it easier to delegate method calls without knowing the owner

Proc. PPAP 2013 12 / 26

ECEASST

Table 2: Proportion of the relationships between anti-patterns and design patterns, in each first
version of our analysed systems (SR: Static relationship among anti-patterns and design patterns)

Anti-patterns Systems # of SR
AntiSingleton ArgoUml 68

JFreeChart 92
XercesJ 83

Blob ArgoUml 161
JFreeChart 72
XercesJ 42

ClassDataShouldBePrivate ArgoUml 83
JFreeChart 31
XercesJ 44

ComplexClass ArgoUml 182
JFreeChart 84
XercesJ 66

LongMethod ArgoUml 212
JFreeChart 290
XercesJ 142

LongParameterList ArgoUml 290
JFreeChart 188
XercesJ 204

MessageChains ArgoUml 192
JFreeChart 94
XercesJ 77

RefusedParentBequest ArgoUml 146
JFreeChart 72
XercesJ 48

SpaghettiCode ArgoUml 0
JFreeChart 0
XercesJ 0

SpeculativeGenerality ArgoUml 20
JFreeChart 34
XercesJ 67

SwissArmyKnife ArgoUml 35
JFreeChart 84
XercesJ 86

13 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

of the method or the method parameters. Thus, developer can correct org.apache.xer-
ces.validators.common.XMLValidator, by using the related Command pattern, to
represent and encapsulate all the information needed to call a method at a later time. This infor-
mation includes the method name, the object that owns the method, and values for the method
parameters. Thus, by using the relationships of an anti-pattern with a specific design pattern, we
explain how developers maintained the anti-pattern classes while reducing its influence on the
system. An external information from the changelog file support this idea (see Section 6).

In conclusion, we observed as an initial evidence, that the majority of anti-pattern analysed
share static relationships with some design patterns.

RQ2: Are the static relationships between anti-patterns and design patterns ca-
sual?

No In RQ2, we observed that static relationships between anti-patterns and designs patterns
exist in all versions of our analysed systems. Figure 1 illustrates that static relationships are con-
tinuously growing. Indeed, each new version contains more design patterns, more anti-patterns
(which was observed in previous work in [ACC+07] and in [KPGA12]) and also contains more
static relationships between these motifs.

But. we observe that even if the static relationships continue to exist between anti-patterns
and design patterns (detected in the first version), the classes playing roles in anti-patterns are
refactored, restructured and fixed in future versions. Anti-patterns are removed from the majority
of anti-patterns classes that had a static relationship with a design pattern.

Figure 2 illustrates that, in the three analysed systems, static relationships detected in the first
version disappear with the realization of each new release, following refactoring operations and
maintenance tasks. This fact does not mean that such static relationships are casual. First, a class
that belong to an anti-pattern X in the release S could appear as a part of an anti-pattern Y in the
next release.

As a concrete example, we observe that the class .DocumentTypeImpl.java was de-
tected in the version 1.0.4 of XercesJ as Blob class. In the next version, this class was changed
and detected as a part of another anti-pattern, LongParameterList.

Second, the fact that these dependencies have short life-spans can explain the main motive of
introducing such relationships by the developers. Indeed, in cases where the anti-pattern class is
corrected (i.e., the class is not part of an anti-pattern anymore), this may suggest that developers
use design patterns as ’temporary fix’ for the negative impact of the anti-patterns, and later on
refactoring such anti-patterns to remove design smells.

Thus, future work includes conducting an empirical study to analyse the evolution of anti-
pattern classes across the different release of each system to explain how an anti-pattern class
could evolve to be a ”normal” class or to belong to another anti-pattern.

Indeed, classes participating in anti-patterns are more subject to changes impacting their struc-
ture and, thus, possibly their states (i.e. the anti-pattern can be removed). This observation con-
firm, also, previous results reported in [KPGA12]. In fact, while studying the relation between
kinds of anti-patterns and change- and fault-proneness, Khomh et al. also studied the kinds of
changes impacting classes participating in anti-patterns. They reported that structural changes

Proc. PPAP 2013 14 / 26

ECEASST

Figure 1: Evolution of the number of static relationships between anti-patterns and designs pat-
terns.

15 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

Figure 2: The persistence of static relationships detected in the first software version between
anti-patterns and designs patterns.

occur more often on classes participating to anti-patterns than other changes.

Relevance The development and maintenance of a system include repairing anti-pattern classes.
Indeed, A common perception of maintenance is that it merely involves fixing defects as anti-
patterns.

We detected that changes performed on anti-pattern classes are usually motivated by the re-
moval of code smells using some good recognized solution such as design patterns. For example,
we detect seven LongMethod anti-patterns in the first analysed version of XercesJ. These anti-
patterns were corrected in following versions through refactoring of the source code using design
patterns such as Strategy pattern which encapsulates alternative strategies, or approaches, in sep-
arate classes so that each implements a common operation. Developers also used such design
pattern to transform LongMethod anti-patterns into a new form that behaves the same as before
but that no longer “smells”. In fact, for a long routine, one or more smaller subroutines can
be extracted, encapsulated separately from the validating object without code duplication. For
duplicated routines, the duplication can be removed and replaced with one shared function.

There are two general categories of benefits of using design patterns to fix anti-pattern classes
during program evolution: (1) improving the maintainability because the source code become
easier to read and to understand, and (2) improve the extensibility because it is easier to extend
defective classes if developers use recognizable design patterns which provide some flexibility
where none may have existed before.

We conclude that static relationships between anti-patterns and designs patterns exist in all
versions of our analysed systems, but they are temporary.

Proc. PPAP 2013 16 / 26

ECEASST

Table 3: Change-proneness Odd ratios of the Fisher’s exact test for anti-pattern classes related to
design patterns

ArgoUML JFreeChart XercesJ
Version OR Version OR Version OR
0.26 5.16 1.0.6 4.66 1.0.4 5.49
0.26.2 2.48 1.0.7 2.3 1.1.0 4.2
0.28 2.12 1.0.8 1.64 1.2.1 4.38
0.28.1 0.86 1.0.9 2.86 1.2.3 2.86
0.30 1.44 1.0.10 1.88 1.3.0 3.4
0.30.1 1.94 1.0.11 1.62 1.4.0 3.26
0.32 1.63 1.0.12 6.48 2.0.0 2.44
0.34 2.86 1.0.13 3.28 2.9.0 2.86

RQ3: Do static relationships between anti-patterns and design patterns impact
change proneness and fault proneness?

Table 3 summarises ORs obtained when testing H10 . Each row shows, for each system, a version
number and the ORs of classes (1) participating in at least one anti-pattern, (2) having static
relationship with a design pattern, and (3) exhibiting at least one change before the next version.
Table 4 summarises ORs obtained when testing H20 . Each row shows, for each system, a version
number and the ORs of classes (1) participating in at least one anti-pattern, (2) having static
relationship with a design pattern, and (3) exhibiting at least one fault before the next version.

Table 5 summarises ORs obtained when testing H30 . Each row shows, for each system, a
version number and the ORs of classes (1) participating in at least one design pattern, (2) having
static relationship with an anti-pattern, and (3) exhibiting at least one change before the next
version. Table 6 summarises ORs obtained when testing H40 . Each row shows, for each system,
a version number and the ORs of classes (1) participating in at least one design pattern, (2)
having static relationship with an anti-pattern, and (3) exhibiting at least one fault before the
next version.

In all releases, except ArgoUML 28.1, the Fisher’s exact test indicates a significant difference
of proportions of changes among classes participating and not participating in a relationships
between anti-patterns and design patterns. Odds ratios vary across systems and, within each
system, across versions. While in few cases, ORs are close to 1 (i.e. the odds is even that a class
participating in a static relationship between an anti-pattern and a design patterns changes or
not), in some pairs of systems/versions, such as ArgoUML 0.26, JFreeChart 1.0.12, or XercesJ
1.0.4, ORs are greater than 5. Overall, ORs for ArgoUML are lower than those of other systems,
by one or two orders of magnitude. The odd ratios of classes participating in static relationships
between anti-patterns and design patterns are, in most cases, higher than those of other classes
with anti-patterns and design pattern.

We therefore conclude that, in most cases, there is a relation between the involvement in a
static relationships between anti-pattern and design patterns, and change-proneness: a greater
proportion of classes participating in these relationships change with respect to other anti-pattern

17 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

Table 4: Fault-proneness odd ratios of the Fisher’s exact test for anti-pattern classes related to
design patterns

ArgoUML JFreeChart XercesJ
Version OR Version OR Version OR
0.26 0.42 1.0.6 0.49 1.0.4 0.56
0.26.2 0.89 1.0.7 0.63 1.1.0 0.49
0.28 0.67 1.0.8 0.96 1.2.1 0.46
0.28.1 0.94 1.0.9 0.69 1.2.3 0.48
0.30 0.23 1.0.10 0.43 1.3.0 0.39
0.30.1 0.44 1.0.11 0.29 1.4.0 0.52
0.32 0.29 1.0.12 0.37 2.0.0 0.90
0.34 0.76 1.0.13 0.46 2.9.0 0.44

or design patterns classes. The rejection of H10 and H10 , and the ORs provide a posteriori con-
crete evidence of the impact of static relationships between anti-patterns and design patterns
on change-proneness. In fact, we observe that classes involved in relationships between anti-
pattern and design patterns are more change prone. We believe that this observation is an effect
of change propagated through these motifs and that blends in perfectly with previous results on
motif evolution stated (1) that anti-pattern classes are in general more change prone than other
classes [KPGA12] and (2) that design patterns are in general more change prone than other
classes [GCH09].

For fault proneness, in all systems, Fishers exact test indicates that class participating in re-
lationships between anti-patterns and design patterns are less fault-prone than other anti-pattern
classes, but more fault-prone than other design pattern classes. Odds ratios vary again across
systems and, within each system, across versions. We notice that in few cases, ORs are close
to 1. However, in most cases, the odd ratios of classes participating in relationships between
design patterns and anti-patterns are lower than other anti-pattern classes and higher than other
design pattern classes. The rejection of HRQ20 and HRQ40 ,and the ORs provide a posteriori con-
crete evidence of the impact of static relationships between anti-patterns and design patterns on
fault-proneness.

Results suggest that being involved in a static relationship between design pattern and anti-
pattern has an impact on the possibility of occurring faults and change in the class.

6 Discussion

This section discusses the results reported in Section 5 as well as the threats to their validity.

6.1 Observations

From Table 2, we note that many anti-patterns in ArgoUML, JFreechart, and XercesJ have rela-
tionships with design patterns. To the best of our knowledge, we are the first to report these re-
lationships, thanks to our use of state-of-the-art detection algorithms, which detects occurrences

Proc. PPAP 2013 18 / 26

ECEASST

Table 5: Change-proneness odd ratios of the Fisher’s exact test for design pattern classes related
to anti-patterns

ArgoUML JFreeChart XercesJ
Version OR Version OR Version OR
0.26 3.22 1.0.6 2.12 1.0.4 2.83
0.26.2 3.40 1.0.7 2.18 1.1.0 3.5
0.28 3.18 1.0.8 2.14 1.2.1 2.6
0.28.1 2.61 1.0.9 1.96 1.2.3 2.46
0.30 3.02 1.0.10 1.38 1.3.0 3.2
0.30.1 2.69 1.0.11 1.42 1.4.0 1.99
0.32 1.87 1.0.12 3.23 2.0.0 1.86
0.34 2.36 1.0.13 1.89 2.9.0 1.25

Table 6: Fault-proneness odd ratios of the Fisher’s exact test for design pattern classes related to
anti-patterns

ArgoUML JFreeChart XercesJ
Version OR Version OR Version OR
0.26 2.21 1.0.6 1.06 1.0.4 1.46
0.26.2 1.63 1.0.7 1.82 1.1.0 1.02
0.28 1.46 1.0.8 1.19 1.2.1 2.79
0.28.1 2.03 1.0.9 1.11 1.2.3 1.59
0.30 1.56 1.0.10 1.84 1.3.0 1.47
0.30.1 1.89 1.0.11 2.06 1.4.0 1.69
0.32 1.77 1.0.12 2.12 2.0.0 1.88
0.34 2.36 1.0.13 2.59 2.9.0 1.63

of 11 anti-patterns and six design patterns. Moreover, we do not consider that an anti-pattern is
necessarily the result of a “bad” implementation or design choice; only the concerned develop-
ers can make such a judgement. We do not exclude that, in a particular context, an anti-pattern
can be practical ways to implement or design a (part of a) class. For example, automatically-
generated parsers are often very large and complex classes. Only developers can evaluate their
impact according to the context: it can be perfectly sensible to have these large and complex
classes if they come from a well-defined grammar.

We observe, also, that the number of static relationships among anti-pattern classes and design
patterns classes increases over time, following the increase of the complexity of each new ver-
sion, although classes playing roles in these relationships are maintained, fixed and refactored.

6.2 Potential Explanations

The majority of static relationships among anti-patterns and design patterns comes from the
Command pattern. This design pattern is implemented as a motif in which an object is used

19 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

to present and encapsulate all the information needed to call a method at a later time. Thus,
developers use this design pattern, possibly unintentionally, when there is a proliferation of sim-
ilar methods and the user-interface code becomes difficult to maintain. This characteristic can
explain, predominately, the static relationships of this design pattern with the following anti-
patterns:

• ClassDataShouldBePrivate because commands must access the data of other objects to
function, and developers may have used public instance variables to allow this access;

• LongMethod and LongParameterList because commands must access the functionalities
provided by other classes, which typically can perform lots of processing, in long methods
and-or with long parameter lists;

• SpeculativeGenerality because classes in relation to commands may have been engineered
with extension in mind, but the command does not use it.

SpaghettiCodes have no static relationships (use, association, aggregation, and composition)
with design patterns. This observation is not surprising because a SpaghettiCode is revealed by
classes with no structure, declaring long methods with no parameters, and using global variables
for processing. A SpaghettiCode does not take the advantage of object-orientation mechanisms:
polymorphism and inheritance. Many object methods have no parameters, and utilize class or
global variables for processing. Thus, a SpaghettiCode is difficult to reuse and to maintain, and
when it is, it is often through cloning. In many cases, however, code is never considered for
reuse. The findings of our analysis indicate that no relation is detected between the different
occurrence of SpaghettiCode anti-pattern and design patterns. However, it could be possible
that they have no relations because they constitute DeadCode. Dead code means unnecessary,
inoperative code that can be removed. It is a code in the program which can never be executed
or a code that is executed but has no effect on the output of a program [KRS94]. Dead code
analysis can be performed using live variable analysis, a form of static code analysis and data
flow analysis [CGK98]. However, in large programming projects, it is sometimes difficult to
recognize and eliminate dead code [DP98].

Lanza et al. [LD02] presented an evolution matrix to display the evolution of the files of a
program. The authors presented a categorisation of files based on the visualisation of different
versions of a file. They reported that an idle file does not change over several versions and that
can be explained by the fact that such file can present a dead code or a good design. Thus, we
decide to use this observation by mining version-control systems (Concurrent Versions System
named CVS5 and Apache Subversion System named SVN6), to identify, for example, which
SpaghettiCode class were never changed after their introduction in the analyzed systems. We
noted for example, that in ArgoUML, more than 80% of classes were maintained three times at
most. On the other hand, less than 1% of classes were maintained 50 times at least. Based on
change analysis, it is neither possible to conclude that SpaghettiCode classes have no relations
with design patterns because they constitute DeadCode nor is the opposite true. Indeed, from

5 http://cvs.nongnu.org/
6 http://subversion.apache.org/

Proc. PPAP 2013 20 / 26

ECEASST

the results of this case study it is impossible to definitely exclude the possibility that there is
in fact no statistically relevant correlation between SpaghettiCode and DeadCode. However, it
could be true that the spaghetti code classes have no dependencies because of the lower number
of instances in the analysed systems (9 instances).

6.3 Outcome

On the one hand, the notion of static dependency can be used to assess the architecture of a
software system. In fact, we can assume that systems with more static relationships among de-
sign patterns and anti-patterns are more stable, since these relationships can be explained by
developers making use of recognized and stable solutions (design patterns) to refactor and cor-
rect anti-patterns. For example, by mining software version-control systems, we found that the
design pattern Command described in Section 5 and containing the class org.apache.xer-
ces.validators.dtd.DTDImporter was created by the developer jeffreyr on 2000-04-
04 15:38:39, to Factoring Validators code implemented in org.apache.xerces.vali-
dators.common.XMLValidator. From this result, we are working on combining static
dependency with other quality attributes to improve the assessment of the code quality.

On the other hand, in this paper we study correlations among collocated anti-patterns and
design patterns because there might be an interaction effect that could explain the existence of
such motifs. In fact, our results show that the presence of some anti-patterns (LongMethod,
LongParameterList, etc.) may increase the likelihood of the presence of a specific design pat-
tern (Command design pattern). While, the presence of spaghetti code do not have any direct
correlation with the presence of design patterns.

Moreover, it would be desirable to use anti-patterns and their static relationships, other than
metrics, to build more accurate/informative change- and fault-prediction methods. Last, but
not least, further investigation, devoted to mine change logs, mailing lists and issue reports, is
desirable to seek evidence of cause effect relationships between the presence of anti-patterns
static relationships, or the need to remove and refactor design defects, and the class change- and
fault-proneness.

6.4 Threats to Validity

We now discuss in details the threats to the validity of our results, following the guidelines
provided in [Yin02].

Internal validity, in our context, they are mainly due to errors introduced in measurements.
We are aware that the detection techniques used include some subjective understanding of the
definitions of anti-patterns and design patterns. However, as discussed, we are interested in
relating anti-patterns “as they are defined in DECOR” [MGDL10] with design patterns “as they
are defined in DeMIMA” [GA08]. For this reason, the precision of the anti-patterns and design
patterns detection is a concern that we agree to accept. However, threshold-based detection
techniques such as DECOR do not handle the uncertainty of the detection results and, therefore,
miss borderline classes, i.e., classes with characteristics of anti-patterns surfacing slightly above
or sinking slightly below the thresholds because of minor variations in the characteristics of these
classes. We also notice that Sylversky method relies on heuristics so it can presents errors when

21 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

extracting faults. However, this method has been used successfully in previous studies.
Reliability validity threats concern the possibility of replicating this study. We attempted here

to provide all the necessary details to replicate our study. Moreover, both ArgoUML, JFreeChart,
and XercesJ source code repositories are available. Finally, the data sets on which we computed
our statistics are available on the Web7.

Threats to external validity concern the possibility to generalise our observations. First, al-
though we performed our study on three different, real systems belonging to different domains
and with different sizes and histories, we cannot assert that our results and observations are gen-
eralisable to other systems and the facts that all the analysed systems are in Java and open-source
may reduce this generability. Second, we used particular, yet representative, sets of anti-patterns
and design patterns. Different anti-patterns and design patterns could have lead to different re-
sults, which are part of our future work.

7 Conclusions and Future Work

In this paper, we provide empirical evidence of the relationships between anti-patterns and design
patterns. We show that some anti-patterns are significantly more likely to have relationships
with design patterns than other. This study raises a question, within the limits of the threats to
its validity, about the conjecture in the literature that anti-patterns and design patterns have an
impact on system quality. We provide a basis for future research to understand more precisely the
causes and the consequences of the relationships between anti-patterns and design patterns, i.e.
if developers use design patterns to encapsulate anti-patterns. The advantages of knowing these
relations are (1) spotting how developers strive to maintain a system containing anti-patterns by
using design patterns and (2) detecting correlations among collocated anti-patterns and design
patterns to identify the causes of the co-existence of such motifs.

This empirical study provided, within the limits of its validity, evidence that classes partici-
pating in static relationships between anti-patterns and design patterns are more change-prone
and less fault-prone than classes not participating in such relationships. The study also provided
evidence to practitioners that they should pay attention to systems with a high number of classes
participating in such relationships, because these classes are more likely to be the subject of their
change efforts. More specifically, managers and developers can use these results to guide main-
tenance activities: for example, they can recommend their developers to use Command design
pattern as a temporary fix (when necessary) for some anti-patterns, since our results show that it
can reduce the fault-proneness of the anti-patterns.

Future work includes (i) replicating our study on other systems to assess the generality of our
results and (ii) analysing change propagation among anti-patterns and design patterns related by
static relationships.

We are also interested in studying the extend to which similar systems exhibit similar likeli-
hood of having anti-patterns, and how they relate to systems’ change-/fault-proneness. We also
plan to study the categorisation of classes as change-prone, error-prone, or none, and compute
Types I and II errors to assess whether anti-patterns perform better than complexity metrics.

7 http://www.ptidej.net/download/experiments/eceasst13/

Proc. PPAP 2013 22 / 26

ECEASST

Acknowledgements This work has been partly funded by a FQRNT Team grant, the Canada
Research Chair in Software Patterns and Patterns of Software, and the Tunisian Ministry of
Higher Education and Scientific Research.

Bibliography

[ACC+07] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, M. Di Penta. An empirical study
on the evolution of design patterns. In proceedings of ESEC-FSE ’07. Pp. 385–394.
ACM Press, New York, NY, USA, 2007.

[AKGA11] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol. An Empirical Study of the
Impact of Two Antipatterns, Blob and Spaghetti Code, on Program Comprehen-
sion. In Proceedings of the 15th European Conference on Software Maintenance
and Reengineering. Pp. 181–190. IEEE Computer Society, Washington, DC, USA,
2011.

[BMMM98] W. Brown, H. McCormick, T. Mowbray, R. Malveau. AntiPatterns: refactoring
software, architectures, and projects in crisis. Wiley Press, 1998.

[BSW+03] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, R. T. Alexander. Design Patterns
and Change Proneness: An Examination of Five Evolving Systems. In Proceedings
of the 9th International Symposium on Software Metrics. Pp. 40–50. IEEE Com-
puter Society, Washington, DC, USA, 2003.

[CGK98] Y.-F. Chen, E. R. Gansner, E. Koutsofios. A C++ Data Model Supporting Reacha-
bility Analysis and Dead Code Detection. IEEE Transaction Software Engineering
24(9):682–694, Sept. 1998.

[CM10] A. Chatzigeorgiou, A. Manakos. Investigating the Evolution of Bad Smells in
Object-Oriented Code. In Proceedings of the Seventh International Conference on
the Quality of Information and Communications Technology. Pp. 106–115. IEEE
Computer Society, Washington, DC, USA, 2010.

[DP98] F. Damiani, F. Prost. Detecting and Removing Dead-Code using Rank 2 Intersec-
tion. In Selected papers from the International Workshop on Types for Proofs and
Programs. Pp. 10–32. Springer-Verlag, London, UK, UK, 1998.

[DSRS03] I. Deligiannis, M. Shepperd, M. Roumeliotis, I. Stamelos. An empirical investiga-
tion of an object-oriented design heuristic for maintainability. Journal System Soft-
ware 65(2):127–139, Feb. 2003.

[EM02] E. V. Emden, L. Moonen. Java Quality Assurance by Detecting Code Smells. In in
Proceedings of the 9th Working Conference on Reverse Engineering. IEEE Com-
puter. Pp. 97–107. Society Press, 2002.

[GA04] Y.-G. Guéhéneuc, H. Albin-Amiot. Recovering Binary Class Relationships: Putting
Icing on the UML Cake. In Proceedings of the 19th Conference on Object-Oriented

23 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

Programming, Systems, Languages, and Applications (OOPSLA). Pp. 301–314.
ACM Press, 2004.

[GA08] Y.-G. Guéhéneuc, G. Antoniol. DeMIMA: A Multi-layered Framework for Design
Pattern Identification. Transactions on Software Engineering (TSE), pp. 667–684,
2008.

[GCH09] M. Gatrell, S. Counsell, T. Hall. Design Patterns and Change Proneness: A Replica-
tion Using Proprietary C sharp Software. Reverse Engineering, Working Conference
on, pp. 160–164, 2009.

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, first edition, 1994.

[HGHG12] S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, A. Giuliano. ADvISE: Architectural De-
cay In Software Evolution. In 16th European Conference on Software Maintenance
and Reengineering. Pp. 267–276. ACM, 2012.

[Iac11] C. Iacob. A design pattern mining method for interaction design. In Proceedings of
the 3rd ACM SIGCHI symposium on Engineering interactive computing systems.
EICS ’11, pp. 217–222. ACM, 2011.

[JGHA11] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, G. Antoniol. An Exploratory Study of Macro
Co-changes. In Working Conference on Reverse Engineering (WCRE). Pp. 325–334.
2011.

[JY01] D. Jain, H. J. Yang. OO Design Patterns, Design Structure, and Program Changes:
An Industrial Case Study. In Proceedings of the IEEE International Conference on
Software Maintenance. Pp. 580–590. IEEE Computer Society, 2001.

[KP96] C. Kramer, L. Prechelt. Design Recovery by Automated Search for Structural De-
sign Patterns in Object-Oriented Software. In Proceeding of the 3rd working con-
ference on reverse engineering. Pp. 208–215. IEEE Computer Society Press, 1996.

[KPGA12] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol. An exploratory study of
the impact of antipatterns on class change- and fault-proneness. Empirical Software
Engineering. 17(3):243–275, June 2012.

[KRS94] J. Knoop, O. Rüthing, B. Steffen. Partial dead code elimination. In Proceedings of
the ACM SIGPLAN 1994 conference on Programming language design and imple-
mentation. Pp. 147–158. ACM, 1994.

[LD02] M. Lanza, S. Ducasse. Understanding Software Evolution Using a Combination
of Software Visualization and Software Metrics. In In Proceedings of LMO 2002
(Langages et Modeles Objets). Pp. 135–149. Lavoisier, 2002.

[LM06] M. Lanza, R. Marinescu. Object-Oriented Metrics in Practice. Springer-Verlag,
2006.

Proc. PPAP 2013 24 / 26

ECEASST

[MGDL10] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. Le Meur. DECOR: A Method for the
Specification and Detection of Code and Design Smells. Transactions on Software
Engineering (TSE) 36(1):20–36, 2010.

[OCBZ09] S. Olbrich, D. S. Cruzes, V. Basili, N. Zazworka. The evolution and impact of code
smells: A case study of two open source systems. In Proceedings of the 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement. Pp. 390–
400. IEEE Computer Society, Washington, DC, USA, 2009.

[PW06] B. Pietrzak, B. Walter. Leveraging code smell detection with inter-smell relations.
Proceedings of the 7th International Conference on Extreme Programming and Ag-
ile Processes in Software Engineering, pp. 75–84, 2006.

[RDGM04] D. Ratiu, S. Ducasse, T. Gı̂rba, R. Marinescu. Using History Information to Improve
Design Flaws Detection. In Proceedings of the Eighth Euromicro Working Confer-
ence on Software Maintenance and Reengineering. Pp. 223–233. IEEE Computer
Society, 2004.

[Rie96] A. J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[RV96] R. Real, J. Vargas. The probabilistic basis of Jaccard’s index of similarity. System-
atic Biology 45(3):380–385, 1996.

[SCF12] D. Settas, A. Cerone, S. Fenz. Enhancing ontology-based antipattern detection using
Bayesian networks. Expert Systems with Applications, pp. 9041–9053, 2012.

[She07] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, 2007.

[SN13] A. E. H. Seyyed Ehsan Taba, Foutse Khomh Ying Zou, M. Nagappan. Predicting
Bugs Using Antipatterns. In Proceedings of the 29th IEEE International Conference
on Software Maintenance (ICSM). Pp. 122–131. IEEE Computer Society, Washing-
ton, DC, USA, 2013.

[SZZ05] J. Sliwerski, T. Zimmermann, A. Zeller. When do changes induce fixes? SIGSOFT
Software Engineering Notes, pp. 1–5, 2005.

[TCSH06] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. Halkidis. Design Pattern Detec-
tion Using Similarity Scoring. Transactions on Software Engineering 32(11):896–
909, 2006.

[Vok04] M. Vokac. Defect Frequency and Design Patterns: An Empirical Study of Industrial
Code. IEEE Tranaction Software Engineering 30(12):904–917, December 2004.

[Web95] B. F. Webster. Pitfalls of Object Oriented Development. M & T Books, first edition,
February 1995.

[Yin02] R. K. Yin. Case Study Research: Design and Methods - Third Edition. SAGE Pub-
lications, London, 2002.

25 / 26 Volume 59 (2013)

Analysing Anti-patterns Static Relationships with Design Patterns

[YM12] A. F. Yamashita, L. Moonen. Do code smells reflect important maintainability as-
pects? In Proceedings of the IEEE International Conference on Software Mainte-
nance. Pp. 306–315. IEEE Computer Society Press, Washington, DC, USA, 2012.

[YM13] A. Yamashita, L. Moonen. Exploring the impact of inter-smell relations on software
maintainability: an empirical study. In Proceedings of the International Conference
on Software Engineering. Pp. 682–691. IEEE Press, Piscataway, NJ, USA, 2013.

Proc. PPAP 2013 26 / 26

