
Electronic Communications of the EASST
Volume 59 (2013)

Special Issue of the
First Workshop on Patterns Promotion

and Anti-patterns Prevention
(PPAP 2013)

Experimenting the Influence of Numerical Thresholds on
Model-based Detection and Refactoring of

Performance Antipatterns

Davide Arcelli, Vittorio Cortellessa, Catia Trubiani

30 pages

Guest Editors: Aminata Sabané, Wei Wu
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Experimenting the Influence of Numerical Thresholds on
Model-based Detection and Refactoring of

Performance Antipatterns

Davide Arcelli1, Vittorio Cortellessa2, Catia Trubiani3

1 davide.arcelli@univaq.it
2 vittorio.cortellessa@univaq.it

3 catia.trubiani@univaq.it
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica (DISIM)

Università degli Studi dell’Aquila
L’Aquila, Italy

Abstract: Performance antipatterns are well-known bad design practices that lead
to software products suffering from poor performance. A number of performance
antipatterns has been defined and classified and refactoring actions have also been
suggested to remove them. In the last few years, we have dedicated some effort
to the detection and refactoring of performance antipatterns in software models.
A specific characteristic of performance antipatterns is that they contain numerical
parameters that may represent thresholds referring to either performance indices
(e.g., a device utilization) or design features (e.g., number of interface operations of
a software component). In this paper, we analyze the influence of such thresholds on
the capability of detecting and refactoring performance antipatterns. In particular,
(i) we analyze how a set of detected antipatterns may change while varying the
threshold values and (ii) we discuss the influence of thresholds on the complexity of
refactoring actions. With the help of a leading example, we quantify the influence
using precision and recall metrics.

Keywords: Software Performance Antipatterns, Detection, Refactoring, Numerical
thresholds.

1 Introduction

In the software development domain, there is a high interest in the early validation of perfor-
mance requirements because it avoids late and expensive fixes to consolidated software artifacts.
Model-based approaches, pioneered under the name of Software Performance Engineering (SPE)
by Smith [Smi07], aim at producing performance models early in the development cycle and us-
ing quantitative results from model solutions to refactor the design with the purpose of meeting
performance requirements [WFP07].

Nevertheless, the problem of interpreting the performance analysis results is still quite critical.
A large gap in fact exists between the representation of performance analysis results and the feed-
back expected by software designers. In fact, the former usually contains numbers (e.g., mean
response time, throughput variance, etc.), whereas the latter should embed design alternatives

1 / 30 Volume 59 (2013)

mailto:davide.arcelli@univaq.it
mailto:vittorio.cortellessa@univaq.it
mailto:catia.trubiani@univaq.it

Influence of Numerical Thresholds on Performance Antipatterns

useful to overcome performance problems (e.g., split a software component in two components
and re-deploy one of them). The results interpretation is today exclusively based on the analysts’
experience and therefore it suffers of lack of automation.

(Annotated)
Software Model

Model2Model
Transformation

1

Model
Solution

2

Performance Analysis
Results Interpretation and

Feedback Generation

3

Performance Model

Performance Indices

Antipatterns
Specifications
(parametrized)

Antipatterns
Specifications
(executable)

Thresholds
Binding

Performance
Antipatterns

Detection

Performance
Antipatterns
Refactoring

Occurrences
of Detected
Antipatterns

Refactored (Annotated)
Software Model

Figure 1: Model-based software performance analysis process.

Figure 1 illustrates a model-based software performance analysis process. It includes three
main operational steps: (1) the Model2Model Transformation step takes as input an annotated1

software model and generates a performance model [CMI11]; (2) the Model Solution step takes
as input a performance model and produces a set of performance indices [LKGS84]; (3) the
Performance Analysis Results Interpretation and Feedback Generation macro step takes as input
both the software model and the performance indices to detect possible performance problems2

and it provides a refactored (annotated) software model where problems have been removed. In
particular, the refactored model is obtained with a semantics-preserving transformation that aims
at improving the quality of the original software model. In other words, the functional aspects of
this latter model remain unaltered after the transformation. For example, the interaction between

1 Software model annotations support the performance analysis by specifying parameters like workload, resource
demands, etc. [Obj09].
2 A performance problem is an unfulfilled requirement, e.g., the estimated response time of a service is higher than
the required one.

Proc. PPAP 2013 2 / 30

ECEASST

two components might be refactored to improve performance by sending fewer messages with
larger data per message.

Few approaches have been recently introduced for this macro step [Xu12, MKBR10] (see
more details in Section 2) as have been working on the detection and refactoring of performance
antipatterns [CDE+10, TK11, CDDT12]. Performance antipatterns [SW03] are well-known bad
design practices that lead to software products suffering from poor performance and they include
solutions in terms of refactoring actions.

The macro step of Figure 1 has been detailed with the two main steps that we have envisaged
in our approach, which are performance antipatterns detection and refactoring. A further prelim-
inary step has been made explicit in Figure 1, i.e., the thresholds binding and it represents the
focus of this paper.

In fact, a specific characteristic of performance antipatterns is that they contain numerical pa-
rameters that represent thresholds referring to either performance indices (e.g., high, low device
utilization) or design features (e.g., many interface operations, excessive message traffic). The
thresholds binding step takes as input parametrized antipatterns specifications, determines the
numerical values for antipattern thresholds and gives as output executable antipatterns specifica-
tions3.

The goal of this paper is to analyze the influence of such thresholds on the capability of detect-
ing and refactoring performance antipatterns. In particular, (i) we analyze how a set of detected
antipatterns may change while varying the threshold values and (ii) we discuss the influence of
thresholds on the complexity of refactoring actions. The thresholds influence is also quantified
with precision and recall metrics.

To complete the description of Figure 1, we remark that the whole process may be iterated
several times to find the model that best fits the performance requirements. In fact, several
antipattern occurrences may be detected in a software model, and several refactoring actions
may be available for solving each antipattern. Hence, at each iteration the antipattern-based
refactoring actions are aimed at building new (refactored) software models that undergo the same
process.

The remainder of the paper is organized as follows. Section 2 presents related work. Section
3 provides some background on the thresholds introduced for the specification of performance
antipatterns. Section 4 presents an illustrative example where performance antipatterns have
been detected and refactored while considering fixed thresholds. Section 5 provides a sensitivity
analysis on the values of thresholds. Section 6 discusses the emerging issues derived from our
experimentation. Section 7 concludes the paper by outlining the most challenging research topics
in this area.

2 Related work

Several approaches have been recently introduced to specify and detect code smells and an-
tipatterns [MPN+12, KPGA12, RRPK12, YM12, PZ12]. They range from manual approaches,
based on inspection techniques [TSFB99], to metric-based heuristics [Mar04, OKAG10], using

3 “Executable” means that these resulting specifications can be used in the detection step to browse the software
model.

3 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

rules and thresholds on various metrics [MGDM10] or Bayesian Belief Networks [KVGS11]. In
complement, our approach intends to work at the design level and it can be applied early in the
software life-cycle.

A small number of methodologies [MGDM10, KVGS11] were introduced to formalize the
concepts and properties of code smells at a high-level of abstraction, whereas no formalization
had been yet provided for the performance antipatterns specified in [SW03].

Very few model-based approaches for the macro step of Figure 1 exist and, in [AC13], we
compared the approaches working either on software or performance sides. On the software side,
in [MKBR10], meta-heuristic search techniques are used for improving different non-functional
properties of component-based software systems: evolutionary algorithms search the architec-
tural design space for optimal trade-offs. The main limitation of such approach is that it is quite
time-consuming because the design space may be huge. On the performance side, in [Xu12],
performance problems are identified before the implementation of a software system, but they
are based only on bottlenecks (e.g., the “One-Lane Bridge” antipattern) and long paths. The
main limitation of such approach is that it only applies to Layered Queueing Network perfor-
mance models, hence its portability to other notations is yet to be proven and it may be quite
complex.

In the area of software design quality improvement, several search-based refactoring tech-
niques have been proposed. In [SSB06], a search-based approach for refactoring the class struc-
ture of a software system is proposed, but it is limited to a restricted set of refactorings. In
[HT07], search-based techniques are used to automatically discover useful refactorings aimed
at improving the quality of software systems. Authors use the concept of Pareto optimality to
search-based refactoring, hence multiple fitness functions lead to different Pareto optimal refac-
torings. In [OC08], multiple weighted metrics are combined into a single fitness function that
is based on well-known measures of coupling between components. All these search-based ap-
proaches share the same limitation, i.e., the search space may be huge, so the search process may
be time-consuming.

3 Thresholds in performance antipattern specification/representa-
tion

Performance antipatterns have been originally defined in natural language [SW03]. Hence, we
first tackled the problem of providing a more formal representation by introducing first-order
logic rules that express a set of system properties under which an antipattern occurs [CDT12].
More recently, we undertook the problem of removing performance antipatterns detected in soft-
ware models by introducing a role-based approach that allows to formalize the refactoring em-
bedded into performance antipattern definitions [ACT12].

Our formalization of antipatterns [CDT12] reflects our interpretation of their informal textual
definitions. Other feasible interpretations of antipatterns can be provided. This unavoidable gap,
that recurs in any formalization task, requires a wider investigation to consolidate the antipatterns
definitions and is left for future work.

Performance antipatterns are very complex (as compared to other software patterns) because
they are founded on different characteristics of software systems, spanning from static through

Proc. PPAP 2013 4 / 30

ECEASST

behavioral to deployment. They additionally include parameters related to design features and
performance indices. In fact, antipattern parameters are related to design characteristics (e.g.,
many usage dependencies, excessive message traffic) and–or to performance results (e.g., high,
low utilization), hence thresholds must be introduced.

Because we cannot avoid thresholds in antipatterns definition, detection and refactoring ac-
tivities are heavily affected by the multiplicity and the estimation accuracy of thresholds an
antipattern requires.

Table 1 contains a list of performance antipatterns [SW03]. Each row represents a specific
antipattern that is characterized by four attributes: antipattern type, name, and number of de-
sign/performance thresholds. We have partitioned antipatterns in two different types [CDT12]:
the ones detectable by single values of performance indices (such as mean, max, or min values),
named Single-value performance antipatterns, and the ones requiring the trend (or evolution)
of performance indices in time, named Multiple-values performance antipatterns. Due to these
characteristics, performance indices needed to detect the latter type of antipatterns must be ob-
tained via simulation or monitoring.

Table 1: Overview of antipatterns thresholds.
Antipatterns Thresholds

Types Names Design Performance

Single-value

Blob 2 2
Extensive Processing 2 2
Empty Semi Trucks 2 1
Excessive Dynamic Allocation 2 1
“Pipe and Filter” Architectures 1 2
Circuitous Treasure Hunt 1 1
Tower of Babel 1 1
Concurrent Processing Systems 0 5
One-Lane Bridge 0 1

Multiple-values
The Ramp 0 2
Traffic Jam 0 1
More is Less 0 0

From Table 1, we observe that: (i) some antipatterns include both design and performance
thresholds such as Blob, Extensive Processing, etc.; (ii) some antipatterns only include perfor-
mance thresholds, such as Concurrent Processing Systems, One-Lane Bridge, etc.; (iii) there
is one antipattern (i.e., the More is Less) without thresholds because it relies on configuration
parameters (database and web connections, etc.) that are detected by run-time software analysis.

The binding of thresholds to concrete numerical values (e.g., 0.8 may denote high utilization
for a hardware resource) is a crucial point of any formalization, because it affects the number of
false positives and true negatives that may occur.

Different sources of information can be used to support the binding of thresholds, such as: (i)
the system requirements; (ii) the domain experts knowledge; (iii) the evaluation of the system
under analysis. In our previous work [CDT12], we provided some heuristics to calculate these
thresholds.

In the following, we present examples of the Blob, Concurrent Processing Systems (CPS), and
Traffic Jam (TJ) performance antipatterns [SW03], i.e., shaded entries of Table 1.

5 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

Blob - A Blob occurs when a component requires a lot of information from other ones, it gen-
erates excessive message traffic that lead to over utilize the device on which it is deployed or the
network involved in the communication. The logic-based formula of the Blob antipattern has
been defined in [CDT12] and reported in Equation (1), where swE and S represent the set of all
software components and services, respectively.

∃swEx,swEy ∈ swE,S ∈ S |
(FnumClientConnects(swEx)≥ T hmaxConnects

∨FnumSupplierConnects(swEx)≥ T hmaxConnects)

∧(FnumMsgs(swEx,swEy,S)≥ T hmaxMsgs

∨FnumMsgs(swEy,swEx,S)≥ T hmaxMsgs)

∧(FmaxHwUtil(Pxy,all)≥ T hmaxHwUtil

∨FmaxNetUtil(PswEx ,PswEy)≥ T hmaxNetUtil) (1)

Table 2 reports the functions involved in the Blob specification. The first column of the Table
shows the function signatures and the second column provides their descriptions.

Table 2: Functions specification for the Blob antipattern.
Functions Descriptions

int FnumClientConnects (Soft-
wareEntityInstance swEx)

It counts the multiplicity of the re-
lationships where swEx assumes the
client role.

int FnumSupplierConnects (Soft-
wareEntityInstance swEx)

It counts the multiplicity of the rela-
tionships where swEx assumes the sup-
plier role.

int FnumMsgs (SoftwareEn-
tityInstance swEx, Softwa-
reEntityInstance swEy, Ser-
vice S)

It counts the number of messages sent
from swEx to swEy in a service S.

float FmaxHwUtil (ProcessNo-
de pnx, type T)

It provides the maximum utilization
among the hardware devices of a cer-
tain type T = {cpu, disk, all} hosted
by the processing node pnx.

float FmaxNetUtil (ProcessNo-
de pnx, ProcessNode pny)

It provides the maximum utilization
among the network links joining the
processing nodes pnx and pny.

Table 3 reports the thresholds involved in the Blob specification [CDT12]: two thresholds
(T hmaxConnects, T hmaxMsgs) refer to design features, whereas the other ones (T hmaxHwUtil , T hmaxNetUtil)
are related to performance indices.

Heuristics for Blob thresholds can be defined as follows [CDT12]. T hmaxConnects can be es-
timated as the average number of connections per component, by considering the entire set of
software components in the software system, plus the corresponding variance. In a similar way,
T hmaxMsgs can be estimated as the average number of sent messages per software component,
plus the corresponding variance. T hmaxHwUtil can be estimated as the average value of utilization
per hardware device, plus the corresponding variance. Similarly, T hmaxNetUtil can be estimated
as the average value of utilization per network link, plus the corresponding variance.

Proc. PPAP 2013 6 / 30

ECEASST

Table 3: Thresholds specification for the Blob antipattern.
Thresholds Descriptions

Design

T hmaxConnects
Maximum bound for the number of
connections in which a component
is involved

T hmaxMsgs

Maximum bound for the number of
messages sent by a component in a
service

Performance
T hmaxHwUtil

Maximum bound for the hardware
device utilization

T hmaxNetUtil
Maximum bound for the network
link utilization

CPS - A CPS occurs when processes cannot make effective use of available hardware nodes
because of a non-balanced assignment of tasks to devices. Some hardware nodes are over-utilized
and some others are under-utilized. CPS occurrences are denoted with (hwNode1, hwNode2),
where hwNode1 is the over-utilized hardware node and hwNode2 is the under-utilized one. The
logic-based formula of the CPS antipattern has been defined in [CDT12] and reported in Equation
(2), where P represents the set of all the hardware nodes.

∃Px,Py ∈ P |
FmaxQL(Px)≥ T hmaxQL

∧[(FmaxHwUtil(Px,cpu)≥ T hmaxCpuUtil

∧FmaxHwUtil(Py,cpu)< T hminCpuUtil)

∨(FmaxHwUtil(Px,disk)≥ T hmaxDiskUtil

∧(FmaxHwUtil(Py,disk)< T hminDiskUtil))] (2)

Table 4 reports the functions involved in the CPS specification. The first column of the Table
shows the function signatures and the second column provides their descriptions.

Table 4: Functions specification for the CPS antipattern.
Functions Descriptions

float FmaxQL (ProcessNode
pnx)

It provides the maximum queue length
among the hardware devices hosted by
the processing node pnx.

int FmaxHwUtil (ProcessNode
pnx, type T)

It provides the maximum utilization
among the hardware devices of a cer-
tain type T = {cpu, disk, all} hosted
by the processing node pnx.

Table 5 reports the thresholds involved in the CPS specification [CDT12]: all the five thresh-
olds (T hmaxQL, T hmaxCpuUtil , T hminCpuUtil , T hmaxDiskUtil , and T hminDiskUtil) are related to perfor-
mance indices.

Heuristics for CPS thresholds can be defined as follows [CDT12]. T hmaxQL can be estimated
as the average value of queue length per hardware device, plus the corresponding variance.
T hmaxCpuUtil can be estimated as the average value of utilization per processing device, plus
the corresponding variance; in a similar way, T hminCpuUtil can be estimated as the average value

7 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

Table 5: Thresholds specification for the Concurrent Processing Systems antipattern.
Thresholds Descriptions

Performance

T hmaxQL
Maximum bound for the hardware
device queue length

T hmaxCpuUtil
Maximum bound for the processing
device utilization

T hminCpuUtil
Minimum bound for the processing
device utilization

T hmaxDiskUtil
Maximum bound for the disk de-
vice utilization

T hmaxDiskUtil
Maximum bound for the disk de-
vice utilization

of utilization per processing device, minus the corresponding variance. T hmaxDiskUtil can be
estimated as the average value of utilization per disk device, plus the corresponding variance;
similarly, T hminDiskUtil can be estimated as the average value of utilization per disk device, minus
the corresponding variance.

TJ - A TJ occurs when one problem causes a backlog of jobs that results in a wide variability in
response time, which persists long after the problem has disappeared. The logic-based formula of
the TJ antipattern has been defined in [CDT12] and reported in Equation (3), where O represents
the set of all operation instances.

∃OpI ∈O |
∑1≤t≤k |(FRT (OpI, t)−FRT (OpI, t−1))|

k−1
< T hOpRtVar

∧|FRT (OpI,k)−FRT (OpI,k−1)|> T hOpRtVar

∧∑k≤t≤n |(FRT (OpI, t)−FRT (OpI, t−1))|
n− k

< T hOpRtVar
(3)

Table 6 reports the functions involved in the TJ specification. The first column of the Table
shows the function signatures and the second column provides their descriptions.

Table 6: Functions specification for the TJ antipattern.
Functions Descriptions

float FRT (OperationInstance
OpI, timeInterval t)

It provides the estimated response time
of the operation instance OpI at the
time interval t

Table 7 reports the threshold involved in the TJ specification [CDT12]: T hOpRtVar is related to
performance indices.

The binding of some thresholds is intrinsically more difficult than others. For example, both
the Traffic Jam and The Ramp antipatterns refer to thresholds representing the maximum feasible
slope of the response time (or throughput) observed in consecutive time slots. Such values are not
easy to bind. Adaptive heuristics can be introduced to iteratively obtain more accurate threshold
boundaries. For example, in case of The Ramp and Traffic Jam antipatterns, such heuristics may

Proc. PPAP 2013 8 / 30

ECEASST

Table 7: Threshold specification for the Traffic Jam antipattern.
Thresholds Descriptions

Performance T hOpRtVar

Maximum bound for the variabil-
ity in response times of operations
across simulation intervals

exploit historical data (obtained by previous performance analysis) to accurately tune the slope
used as boundary for the increase of response time and the decrease of throughput.

4 Detection and refactoring of antipatterns: fixed thresholds

In this section, we present the example leading our experimentation. In particular, we first de-
scribe the (Annotated) E-Commerce System (ECS) software model and the performance indices
obtained from its analysis. We then perform a preliminary antipatterns detection/refatoring step
with fixed thresholds values.

4.1 An illustrative Example: ECS model

ECS is a web-based system that manages business data related to books and movies. Figure 2
shows the UML [Obj05] Use Case Diagram: a Guest may invoke the BrowseCatalog service,
whereas a Customer may invoke two services, i.e., Login and MakePurchase.

Figure 2: Use Case Diagram.

Software model annotations support performance analysis. In fact, in Figure 2, we observe
that MARTE [Obj09] annotations have been added to specify the system workload. In particular,
(i) a closed workload has been defined for the MakePurchase service, for which the number of
users is set to 150 with an average thinking time of 15 seconds and (ii) an open workload has
been defined for the BrowseCatalog service, for which the average arrival rate is set to 5,000
requests per second.

We assume to have a multi-view annotated software model, composed by Static, Dynamic and
Deployment Views. Many modeling languages today (such as UML [Obj05], Palladio [BKR09],

9 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

Æmilia [BDC02]) allow to model different views of a software system to achieve a clear separa-
tion of concerns. For software analysis, a (possibly restricted) set of views is usually considered,
where each view is properly annotated with parameters involved in the analysis process. The ap-
proaches in [BDIS04] represent a broad summary on the usage of multiple views in performance
analysis.

Figure 3: (Annotated) Static View.

Several software components have been defined and connected in the Static View (see the
UML Component Diagram in Figure 3). MARTE annotations have been added to specify the
host demand required by components operations. For example, in Figure 3, we observe that the
login operation provided by the Database component requires 5 and 8 work units for cpu and
disk devices, respectively.

Among all system services, we focus here on: (i) MakePurchase, which is triggered whenever
a customer wants to purchase a book or a movie, after authentication (see the UML Sequence
Diagram in Figure 4); (ii) BrowseCatalog, which is triggered whenever a guest wants to browse
book or movie catalogues (see the UML Sequence Diagram in Figure 5). MARTE annotations
have been added to specify the message size of components communications. For example, in
Figure 4, we observe that the BooksController communicates with the BooksCatalog by means
of a message (getBookAvailability) whose size is equal to 1.5 KB.

The Deployment View (see the UML Deployment Diagram in Figure 6) shows the ECS allo-
cation of software components on hardware nodes. Service requests from customers and guests
(client-side) pass through the Internet and all the nodes in the server-side are connected by means
of a 100 Mb/s LAN (as specified by MARTE annotations). Finally, for the sake of simplicity, we
assume that both the client-side and the server-side are equipped with nodes having one central
processing unit (cpu) and one disk and that all the processing and disk devices have the same
characteristics.

Proc. PPAP 2013 10 / 30

ECEASST

(a) (Annotated) Dynamic View - Login

(b) (Annotated) Dynamic View - MakePurchase

Figure 4: (Annotated) Dynamic View: Login and MakePurchase services.

11 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

Figure 5: (Annotated) Dynamic View: BrowseCatalog service.

Figure 6: (Annotated) Deployment View.

Proc. PPAP 2013 12 / 30

ECEASST

We assume that performance requirements have been defined on the MakePurchase and Browse-
Catalog services: (i) the average response time of the MakePurchase service must not exceed
1.83 seconds; (ii) the average response time of the BrowseCatalog service must not exceed 5
seconds. Both requirements must be fulfilled under a workload of 150 customers.

A.I Performance Annotations

Table 8 reports the average service demands (expressed in seconds) for the MakePurchase
service. We have supposed an average thinking time of 15 seconds (see Figure 2) for each
customer.

Table 8: MakePurchase service demands.
Node D(MakePurchase) [sec]

CustomerNode 15
WebServerNode 0.015

BooksDispatcherNode 0.008
MoviesDispatcherNode 0.062

BooksControlNode 0.1
MoviesControlNode 0.105

DatabaseNode 0.09

Table 9 reports the average service demands (expressed in seconds) for the BrowseCatalog
service. We have supposed an average arrival rate of 5,000 requests/second (see Figure 2).

Table 9: BrowseCatalog service demands.
Node D(BrowseCatalog) [sec]

WebServerNode 0.06
BooksDispatcherNode 0.032
MoviesDispatcherNode 0.248

BooksControlNode 0.4
MoviesControlNode 0.42

DatabaseNode 0.36

A.II Performance Analysis

The performance analysis has been conducted by transforming the software model into a
Queueing Network (QN) model [CM02] and by solving the latter with two techniques [Jai91]:
(i) Mean Value Analysis for Single-value antipatterns and (ii) Simulation for Multiple-value an-
tipatterns. Both solution techniques are supported by Java Modeling Tools (JMT) [CS11].

Table 10 shows the resulting performance indices for the ECS software model. In particular,
the average response times (RT), utilizations (U), and queue length (QL) of hardware nodes are
reported as well as the average response times of MakePurchase and BrowseCatalog services.
The utilization of a hardware node is estimated as the maximum value overall of its cpu and disks
devices [CDT12]. Hence, the column DEVICE TYPE of Table 10 contains cpu or disk whether
the node utilization is determined by its cpu or disk, respectively.

As illustrated in Table 10, the considered requirements are violated because, under a workload
of 150 users purchasing a product and browsing catalogues, the mean time elapsed in the server-

13 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

Table 10: Initial performance analysis results for the MakePurchase and BrowseCatalog services.

RT U QL DEVICE
[sec] [%] [customers] TYPE

MakePurchase 17.16 - 150 -

BrowseCatalog 14.37 - 150 -

CustomerNode 15 - 131.1 -
WebServerNode 0.017 13.11 0.15 cpu

BooksDispatcherNode 0.009 6.99 0.07 cpu
MoviesDispatcherNode 0.134 54.19 1.17 cpu

BooksControlNode 0.672 87.4 5.88 cpu
MoviesControlNode 0.934 91.77 8.16 cpu

DatabaseNode 0.396 78.66 3.46 disk

side for each request (i.e., the average response time at the server-side) is larger than the stated
requirement. In particular, the MakePurchase service has an average response time of 17.16 - 15
= 2.16 seconds, which is larger than the defined requirement of 1.83 seconds; the BrowseCatalog
service has an average response time of 14.37 - 5 = 9.37 seconds, which is larger than the defined
requirement of 5 seconds.

B. Antipatterns Detection and Refactoring

Before performing the preliminary antipatterns detection/solution step, we define the follow-
ing refactoring actions used in our experimentation, which build upon our previous work on
performance antipatterns removal [ACT12]:

- redeploy(Component c, Node n): this action moves the identified component c to the node n.
Such a refactoring action is aimed at improving the utilization of the node where the component
c was deployed.

- split(Component c, Integer i, Node[] n): this action equally distributes (modulo i) the con-
nections of the component c between the latter and several new components that are uniformly
deployed on the set of nodes n. Such a refactoring action is aimed at reducing the number of
connections of c in an efficient way.

- mirror(Component c, Integer i, Node[] n): this action creates i copies (mirrors) of the c
component. Mirrors are uniformly deployed on the set of nodes n. This means that the incoming
workload is equally distributed between the component c and its mirrors.

- replace(Component c, Float f , Service s): this action replaces the component c with a new
component having a resource demand for the service s equal to f ∗ r(c, s), where r(c, s) is the
resource demand of c for s, and f is a scale factor in the interval]0,1[.

The application of refactoring actions can be limited by pre-existing (functional or non-func-
tional) requirements. Examples of functional requirements are legacy ones that disable compo-
nents to be split and redeployed. Examples of non-functional requirements are security issues
that do not allow the redeployment of software components due to the critical information they
manage. For the sake of automation, such requirements should be pre-defined so that the whole
process can take into account them and preventively excluding infeasible refactoring actions.

For the sake of simplicity, in the following detection/refactoring step, we separately focus on
the Blob, CPS, and the TJ antipatterns.

Proc. PPAP 2013 14 / 30

ECEASST

Blob - Table 11 reports some thresholds involved in the Blob antipattern specification.

Table 11: Thresholds binding for the Blob antipattern.
Threshold Value

T hmaxConnects 5
T hmaxHwUtil 90%

With these numerical values, one occurrence of Blob is detected, i.e., the MoviesController
component. The MoviesCatalog component is not a Blob because it has a number of connections
lower than T hmaxConnects (i.e., 5). Furthermore, although the BooksController component has a
number of connections larger than T hmaxConnects, the utilization of the node where it is deployed
(i.e., BooksControlNode, whose utilization is 87.4%) is not larger than the T hmaxHwUtil threshold
(i.e., 90%). For similar reasons, BooksCatalog and Database components are not Blobs.

As refactoring action for the MoviesController Blob, we applied

redeploy(MoviesController, MoviesDispatcherNode)

This refactoring leads to a response time of 1.98 seconds, which still does not satisfies the
requirement (1.83 seconds). Hence, the preliminary Blob detection is not effective with respect
to the requirement of MakePurchase response time, maybe due to the fact that more significant
antipatterns occur in the system.

CPS - Table 12 reports some thresholds involved in the CPS antipattern specification.

Table 12: Thresholds binding for the Concurrent Processing Systems antipattern.
Threshold Value
T hmaxQL 8

T hmaxCpuUtil 90%
T hminCpuUtil 50%

With these numerical values, two occurrences of CPS are detected, i.e., (MoviesControlNode,
BooksDispatcherNode) and (MoviesControlNode, WebServerNode) pairs of hardware nodes.

In case of (MoviesControlNode, BooksDispatcherNode) occurrence, we applied

redeploy(getCriticalComponent(MoviesControlNode), BooksDispatcherNode)

where getCriticalComponent(Node n) returns the most critical component, i.e., the one having
the highest resource demand among all the components deployed on n, and in particular:

getCriticalComponent(Node n) =

MoviesController

if n = MoviesControlNode

BooksController

if n = BooksControlNode

15 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

This refactoring leads to a response time of 1.66 seconds, which satisfies the requirement (1.83
seconds).

Similarly, in case of (MoviesControlNode, WebServerNode) occurrence, we applied

redeploy(getCriticalComponent(MoviesControlNode), WebServerNode)

This refactoring leads to a response time of 1.67 seconds, which satisfies the requirement (1.83
seconds).

Hence, both the refactoring actions applied to remove the CPS antipattern are beneficial for
fulfilling the requirement of 1.83 seconds defined on the MakePurchase response time.

TJ - Table 13 reports some thresholds involved in the TJ antipattern specification. With this
numerical value one occurrence of TJ is detected, i.e., the BrowseCatalog service.

Table 13: Thresholds binding for the Traffic Jam antipattern.
Threshold Value
T hOpRtVar 0.25

Figure 7a illustrates an excerpt of the response time (observed during simulation) of the
BrowseCatalog service, where we highlight the TJ antipattern occurrence. On the x-axis the
simulation time is reported and on the y-axis the response time of the service is depicted. The
trend of the average response time for the BrowseCatalog service is shown. We obtained this
trend by dividing the simulation time in intervals of 50 seconds and, for each interval, we calcu-
lated the average response time of the observed completions. Hence, we drew the average trend
by considering the calculated average response time as constant in the referring interval to obtain
the piecewise linear function, i.e., the solid line of Figure 7a. The average trend is observed
after 150 seconds because the initial simulation values may be misleading due to the setting of
simulation seeds.

We observe several intervals with the occurrence of the TJ antipattern, i.e., [150,200], [300,350],
[600,650], [900,950]. For example, in the interval [900,950] we observe that the BrowseCatalog
service shows the following features: (a) it has a quite stable value of its response time along pre-
vious observation time slots up to 950 seconds of simulation time; (b) it has an increasing value
of response time in the intervals [900,950] and [950,1000] (in fact a peak is shown: RT(Browse-
Catalog, 900) = 9.14 seconds and RT(BrowseCatalog, 950) = 9.46 seconds by giving raise to a
gap of 0.32 seconds that is larger than the T hOpRtVar threshold value set to 0.25 seconds); and
(c) it has a quite stable value of its response time after 1000 seconds of simulation time (in fact
RT(BrowseCatalog, 1000) = 9.53 seconds).

As refactoring action for the unique TJ occurrence, we applied

replace(getCriticalComponent(n), 0.25, BrowseCatalog)

for each node n in the deployment view. The replacement is enabled by different implementa-
tions of the same components that, however, may require other amounts of resource demands.
The replacement of software components may incur different component costs, thus inducing a
quality trade-off issue. For the sake of simplicity, we do not consider this issue here.

Proc. PPAP 2013 16 / 30

ECEASST

Figure 7b illustrates the performance improvement that we observe for the response time of
the BrowseCatalog service, i.e., for the average trend in the different time slots. Similarly to
Figure 7a, the average trend is observed after 150 seconds. We find that the maximum slope is
achieved for the interval [450,500] of simulation time where there is a difference of 0.12 seconds
in the response time of the BrowseCatalog service, i.e., lower than the T hOpRtVar threshold value
(see Table 13). The average response time is 2.34 seconds, and the requirement (5 seconds) is
satisfied.

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

R
T

 -
 b

ro
w

se
C

at
al

og
 (

se
c)

simulation time (sec)

average trend

(a) Traffic Jam antipattern occurrence.

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

R
T

 -
 b

ro
w

se
C

at
al

og
 (

se
c)

simulation time (sec)

average trend

(b) Performance improvement due to the Traffic Jam antipattern solution.

Figure 7: ECS- a deeper analysis for the response time of the BrowseCatalog service.

17 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

5 Detection and refactoring of antipatterns: sensitivity analysis vs.
thresholds

In this section, we show the impact of thresholds on the capability of detecting and refactoring
performance antipatterns. For this goal, we perform antipattern detection and refactoring on the
ECS introduced in the previous section, while varying the numerical values of several thresholds.
We quantify the threshold variations with the support of precision and recall metrics.

5.1 Precision and Recall for the performance

Precision and recall are well-known metrics aimed at quantifying the effectiveness of a technique
for pattern recognition or information retrieval [FB92]. In simple terms, high recall means that
the technique has returned most of the relevant results, while high precision means that it has
returned substantially more relevant results than irrelevant ones.

In the area of pattern/antipattern detection, these metrics have been very useful to compare dif-
ferent techniques in quantitative terms [MGDM10]. When analyzing the results of pattern/anti-
pattern detection, a pattern/antipattern occurrence can be classified into one of four categories:
true-positive (T P: correctly found), false-positive (FP: incorrectly found), true-negative (T N:
correctly unfound), and false-negative (FN: incorrectly unfound). Two common metrics of
measuring the accuracy of detection results are then precision and recall. Precision is the ratio
of correctly found to all found occurrences and equals to T P/(T P+FP). Recall is the ratio of
correctly found to all correct occurrences and equals to T P/(T P+FN).

To apply these metrics in the context of performance antipatterns, we first must refine the
concepts of true and false positives in such intrinsically stochastic context. In fact, even if a
performance antipattern represents a bad design practice that may adversely affect the system
performance, the removal of an antipattern does not certainly lead to improve the system perfor-
mance because refactoring actions, applied to remove it, might introduce performance problems
somewhere else in the system, and these problems emerge only after solving the refactored per-
formance model.

In this paper, we associate the recall metrics to the detection activity and the precision metrics
to the refactoring activity, as follows. The recall is defined as the ratio between the number
of detected performance antipatterns and the number of existing performance antipatterns. We
define the latter quantity as the number of all performance antipatterns that can be detected while
varying the antipattern thresholds within predefined ranges.

As mentioned above, to distinguish between true and false positives, we should first observe
the effect of an antipattern removal on the system performance. Therefore, the precision is de-
fined as the ratio between the number of detected performance antipatterns that actually improve
the system performance once removed and the number of detected performance antipatterns.

When analyzing the results of performance antipatterns detection and refactoring, a perfor-
mance antipattern occurrence can be classified into one of four categories: true-positive (T P:
correctly found, i.e., the detected antipatterns whose refactoring is beneficial), false-positive
(FP: incorrectly found, i.e., the detected antipatterns whose refactoring is not beneficial), true-
negative (T N: correctly unfound, i.e., the undetected antipatterns whose refactoring is not ben-
eficial) and false-negative (FN: incorrectly unfound, i.e., the undetected antipatterns whose

Proc. PPAP 2013 18 / 30

ECEASST

refactoring is beneficial). Because the detection process provides different results depending
on thresholds binding, we proceed with the following definitions. Recall is the ratio between
all the occurrences found with thresholds binding and all found occurrences while varying the
antipattern thresholds, thus it equals to (T P+FP)/(T P+FP+T N+FN). Hence, a recall score
of 4/5 means that 4 occurrences were detected over 5 occurrences that are found while varying
the antipattern thresholds within predefined ranges. Precision is the ratio of correctly found to
all found occurrences and equals T P/(T P+FP). Hence, a precision score of 2/4 means that 2
found occurrences were beneficial for the system performance.

In the next section we show the application of these metrics to the ECS example.

5.2 Precision and Recall Applied to ECS

In this section, we present the experimentation that we conducted while varying thresholds of
Blob and CPS antipatterns, first separately and then in an aggregate way. We report the influence
of these variations on precision and recall metrics. We do not consider the TJ antipattern because
our ECS does not present multiple TJ occurrences, thus precision and recall would be trivial for
this case.

B.I Impact of Blob Thresholds

Regarding the Blob antipattern, we varied T hmaxConnects, initially set to 5, in the interval [4, 6]
and T hmaxHwUtil , initially set to 90%, in the interval [85%, 95%]. Such variations lead 4 Blob
occurrences to emerge in the ECS, that are MoviesController, MoviesCatalog, BooksController,
and BooksCatalog.

Table 14 summarizes the set of detected Blob occurrences while varying the considered thresh-
olds and reports the recall for each variation. The first column (i.e., #) identifies the variation.
The column From shows the initial value for each considered threshold whereas the column To
shows the value that the threshold assumes after the variation has been applied. The “−” symbol
in the To column indicates that no variation has been made for the corresponding threshold value.

Table 14: Blob thresholds variations vs. detection vs. recall.
Variation

Detected Blobs Recall# T hmaxConnects T hmaxHwUtil
From To From To

1 5 6 90% - {} 0/4
2 5 - 90% 95% {} 0/4
3 5 4 90% - {MoviesController, MoviesCatalog} 2/4
4 5 - 90% 85% {MoviesController, BooksController} 2/4

5 5 4 90% 85% {MoviesController, MoviesCatalog, 4/4BooksController, BooksCatalog}

By increasing T hmaxConnects from 5 to 6 and–or T hmaxHwUtil from 90% to 95% no Blobs are
detected and the recall is obviously 0. These thresholds represent upper bounds and it is useless
to explore further variations in this direction. On the contrary, while decreasing thresholds,
we observe that the number of detected antipatterns (thus the recall too) increases. In fact, by

19 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

decreasing one of them (i.e., T hmaxConnects from 5 to 4 or T hmaxHwUtil from 90% to 85%) a new
Blob occurrence is detected in addition to the MoviesController component, resulting in a recall
of 0.5. By decreasing both T hmaxConnects from 5 to 4 and T hmaxHwUtil from 90% to 85% (variation
#5), three new Blob occurrences in the system are detected, resulting in a recall of 1.

For each Blob occurrence blob, we applied the redeploy and split refactoring actions as it
follows:

− redeploy(blob, hwNode);
− split(blob, ceiling(getNumConnects(blob)/T hmaxConnects), {hwNode});

where ceiling(Float f) returns the smallest integer not less than f , getNumConnects(Component c)
returns the number of connections of the component c, and

hwNode =

MoviesDispatcherNode

if blob = {MoviesController,MoviesCatalog}
BooksDispatcherNode

if blob = {BooksController,BooksCatalog}

Table 15 summarizes the response times for the MakePurchase service while varying Blob
thresholds in the most significative ways (i.e., #3, #4, and #5) and applying the redeploy and
split refactoring actions. The table also reports corresponding precisions. In the remainder of
the paper, shaded entries in tables represent beneficial refactorings, i.e., the ones that result in a
response time lower or equal than 1.83 seconds.

Table 15: Blob thresholds variations vs. refactoring vs. precision.

Average response time after Blob refactorings PrecisionMoviesController MoviesCatalog BooksController BooksCatalog

3 redeploy split redeploy split - - 2/21.98 1.83 4.47 1.66

4 redeploy split - redeploy split - 1/21.98 1.83 1.84 1.91

5 redeploy split redeploy split redeploy split redeploy split 2/41.98 1.83 4.47 1.66 1.84 1.91 1.86 1.85

Let us now focus on each row of Table 15.
#3: After redeploying MoviesCatalog, an average response time of 4.47 seconds is obtained.

This is the worst case because the resource demand of MoviesCatalog is too heavy for Dis-
patcherMoviesNode that already hosts MoviesDispatcher and UserController. This results in a
saturation of DispatcherMoviesNode in the refactored model and the requirement on the MakePur-
chase service is not fulfilled.

By splitting MoviesCatalog, an average response time of 1.66 seconds is obtained. This re-
sponse time represents an improvement compared to the one deriving from splitting MoviesCon-
troller and is due to the different resource demand of the involved components. Moreover, we
can guarantee that the components involved in the splitting action have a number of connections
lower than the modified T hmaxConnects threshold (i.e., 4). In fact, in the refactored model, they

Proc. PPAP 2013 20 / 30

ECEASST

only have 2 connections and this falsifies the clause related to the number of connections in the
Blob antipattern definition. Hence, the Blob occurrence identified by MoviesCatalog is removed
and the requirement on the MakePurchase service (1.83 seconds) is fulfilled.

The precision of variation #3 is equal to 1 because, for each detected antipattern, it exists at
least a refactoring action that removes the antipattern and satisfies the requirement, i.e., the split
refactoring action.

#4: After redeploying BooksController, an average response time of 1.84 seconds is obtained.
This response time represents an improvement with respect to the one deriving from the first
redeployment action but it is not sufficient for satisfying the requirement. Anyhow, we cannot
guarantee that all the nodes involved in the redeployment action have an utilization lower than the
modified T hmaxHwUtil threshold (i.e., 85%). Hence, we need a further performance analysis step
on the refactored model to verify if the corresponding clause in the Blob antipattern definition
has been falsified.

By splitting BooksController, an average response time of 1.91 seconds is obtained. As in the
case of MoviesCatalog splitting, we can guarantee that each component involved in the splitting
action has a number of connections lower than the original T hmaxConnects threshold (i.e., 5). In
fact, in the refactored model, they have at most 3 connections and this number falsifies the
clause related to the number of connections in the Blob antipattern definition. Hence, the Blob
occurrence identified by MoviesCatalog is removed but the requirement on the MakePurchase
service (1.83 seconds) is not fulfilled.

The precision of variation #4 is equal to 0.5, because only for 1 of 2 detected antipatterns there
exists at least a refactoring action that removes the antipattern and satisfies the requirement, i.e.,
the split refactoring action applied to the antipattern identified by MoviesController.

#5: After redeploying BooksCatalog, an average response time of 1.86 seconds is obtained and
we need a further performance analysis step on the refactored model to verify if the clause con-
cerning T hmaxHwUtil in the Blob antipattern definition has been falsified. By splitting BooksCat-
alog, the average response time is 1.85 seconds and we can guarantee the Blob removal by
falsifying the clause related to T hmaxNumConnects in the Blob antipattern definition. However, both
these refactoring actions are not sufficient to satisfy the requirement on the response time of
MakePurchase (1.83 seconds).

The precision of variation #5 is equal to 0.5, because only for 2 of 4 detected antipatterns there
exists at least a refactoring action that removes the antipattern and satisfies the requirement,
i.e., the split refactoring action applied to the antipatterns identified by MoviesController and
MoviesCatalog.

It is interesting to note that the best precision is achieved by variation #3, that is the one
having the lowest recall (together with variation #4) among the variations. Variation #3 detects
exactly the two Blobs whose removal leads to a response time that satisfies the requirement for
the MakePurchase service (1.83 seconds). As opposite, the best recall is achieved by variation
#5, i.e., the one having the lowest precision (together with variation #4). Variation #4 detects all
the four Blob occurrences in the ECS; because only two occurrences can be removed satisfying
the requirement for the MakePurchase service, variation #4 has the lowest precision.

21 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

B.II Impact of Concurrent Processing Systems Thresholds

Regarding the CPS antipattern, we varied T hmaxQL, initially set to 8, in the interval [5, 9],
T hmaxCpuUtil in the interval [85%, 95%] starting from 90%, and T hminCpuUtil in the interval [5%,
55%] starting from 50%. Such variations lead 5 CPS occurrences to emerge in the ECS4, that
are (MCN, BDN), (MCN, WSN), (MCN, MDN), (BCN, BDN), and (BCN, WSN).

Table 16 summarizes the set of detected CPS occurrences while varying the considered thresh-
olds and reports the recall for each variation.

Table 16: CPS thresholds variations vs. detection vs. recall.
Variation

Detected CPS Recall# T hmaxQL T hminCpuUtil T hmaxCpuUtil
From To From To From To

1 8 9 50% - 90% - {} 0/5
2 8 - 50% - 90% 95% {} 0/5
3 8 - 50% 5% 90% - {} 0/5

4 8 - 50% 55% 90% -
{(MCN, BDN),

3/5(MCN, WSN),
(MCN, MDN)}

5 8 5 50% - 90% 85%

{(MCN, BDN),

4/5(MCN, WSN),
(BCN, BDN),
(BCN, WSN)}

6 8 5 50% 55% 90% 85%

{(MCN, BDN),

5/5
(MCN, WSN),
(MCN, MDN),
(BCN, BDN),
(BCN, WSN)}

By increasing T hmaxQL from 8 to 9 and–or T hmaxCpuUtil from 90% to 95%, no CPS are detected
and the recall is obviously 0. These thresholds represent upper bounds and it is useless to explore
further variations in this direction. Similarly, by decreasing T hminCpuUtil from 50% to 5%, no
CPS are detected, thus the recall is 0. This latter threshold represents a lower bound, hence it is
again useless to explore further variations.

On the contrary, while decreasing upper bound thresholds and–or increasing the lower bound
threshold, we observe that the number of detected antipatterns (thus the recall too) increases. In
fact, by increasing T hminCpuUtil from 50% to 55% (i.e., variation #4), a new CPS occurrence, i.e.,
(MCN, MDN), is detected in addition to the ones detected during the first antipatterns detection
step, resulting in a recall of 3/5.

Furthermore, by decreasing one or both of them (i.e., T hmaxQL from 8 to 5 and–or T hmaxCpuUtil
from 90% to 85%), new CPS occurrences are detected. In particular, we observe that: (i) by
decreasing T hmaxQL from 8 to 5 and T hmaxCpuUtil from 90% to 85% (i.e., variation #5), two
new CPS occurrences, i.e., (BCN, BDN) and (BCN, WSN), are detected in addition to the ones
detected during the first detection step and the recall is 4/5; (ii) by decreasing T hmaxCpuUtil from

4 For the sake of the readability, we use acronyms to name nodes involved in CPS occurrences: MCN for MoviesCon-
trolNode, MDN for MoviesDispatcherNode, BCN for BooksControlNode, BDN for BooksDispatcherNode, and WSN
for WebServerNode.

Proc. PPAP 2013 22 / 30

ECEASST

90% to 85% and by increasing T hminCpuUtil from 50% to 55% (i.e., variation #6) at the same
time, all the five CPS occurrences are detected, resulting in a recall of 1.

For each CPS occurrence (hwNode1,hwNode2), we applied the mirror and redeploy refac-
toring actions as follows:

− mirror(getCriticalComponent(hwNode1), 2, {hwNode2});
− redeploy(getCriticalComponent(hwNode1), hwNode2);

where getCriticalComponent(Node n) is the previously defined function.
Table 17 summarizes the response times for the MakePurchase service while varying CPS

thresholds in the most significative ways (i.e., #4, #5, and #6) and applying the redeploy and
mirror refactoring actions as described. The table also reports corresponding precisions.

Table 17: CPS thresholds variations vs. refactoring vs. precision.

Average response time after CPS refactorings Preci-
(MCN, BDN) (MCN, WSN) (MCN, MDN) (BCN, BDN) (BCN, WSN) sion

4 mirror redeploy mirror redeploy mirror redeploy - - 3/31.66 1.61 1.67 1.64 1.82 2.96

5 mirror redeploy mirror redeploy - mirror redeploy mirror redeploy 2/41.66 1.61 1.67 1.64 1.86 1.84 1.87 1.85

6 mirror redeploy mirror redeploy mirror redeploy mirror redeploy mirror redeploy 3/51.66 1.61 1.67 1.64 1.82 2.96 1.86 1.84 1.87 1.85

Both the mirror and the redeploy refactoring actions lead to the fulfillment of the requirement
on the MakePurchase service, if applied to the (MCN, BDN) or (MCN, WSN) CPS occurrences.
On the contrary, neither of the two applicable refactoring actions fullfill the requirement, if ap-
plied to (BCN, BDN) or (BCN, WSN). Regarding the (MCN, MDN) occurrence, only the mirror
refactoring action is beneficial for the requirement, whereas the redeploy one leads to an average
response time of 2.96 seconds, due to the resource demand of the MoviesController component
that cannot be handled by MoviesDispatcherNode.

As previously stated, we need a further performance analysis step on the refactored model
to verify if the clauses related to T hminCpuUtil and T hmaxCpuUtil in the CPS antipattern definition
have been falsified after each refactoring.

In Table 17, we observe that the precision of variation #4 is equal to 1, because for each
detected CPS occurrence there exists at least a refactoring action that removes the antipattern
and satisfies the requirement for the MakePurchase service. Variation #5 has a precision equal
to 0.5, because 2 of the 4 detected CPS occurrences can be removed, satisfying the requirement.
Finally, although variation #6 detects all the 5 CPS occurrences in the ECS, only 3 of them are
solvable in a beneficial way with respect to the requirement.

It is worth to notice that, similarly to the Blob occurrences, the best precision is achieved
by the variation with the lowest recall, i.e., variation #4. Variation #4 detects exactly the three
CPS whose removal leads to a response time that satisfies the requirement for the MakePurchase
service (1.83 seconds). As opposite, although variation #6 detects the latter CPS occurrences, it
also detects the remaining two ones whose removal does not satisfies the requirement, reducing
precision.

23 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

B.III Aggregating Thresholds

In this section, we aggregate thresholds for the Blob and CPS antipatterns, because both the
T hmaxHwUtil of the Blob and the T hmaxCpuUtil of the CPS represent upper bounds for the utilization
of hardware devices and they vary in the same interval of values (i.e., [85%, 95%]). Hence, we
can unify T hmaxCpuUtil to T hmaxHwUtil and vary the new set of aggregated thresholds as we varied
thresholds by considering one antipattern at a time.

We remind that the ECS contains 4 Blob occurrences, i.e., MoviesController, MoviesCatalog,
BooksController, and BooksCatalog, and 5 CPS occurrences, i.e., (MCN, BDN), (MCN, WSN),
(MCN, MDN), (BCN, BDN), and (BCN, WSN).

Table 18 summarizes the set of detected Blob and CPS occurrences while varying the new set
of thresholds and reports the recall for each variation.

Table 18: Blob and CPS thresholds variations vs. aggregated detection vs. aggregated recall.
Variation

Detected Blobs Detected CPS Recall# T hmaxNumConnects T hmaxQL T hminCpuUtil T hmaxHwUtil
From To From To From To From To

1 5 6 8 - 50% - 90% - {} {} 0/9
2 5 - 8 9 50% - 90% - {} {} 0/9
3 5 - 8 - 50% 5% 90% - {} {} 0/9
4 5 - 8 - 50% - 90% 95% {} {} 0/9

5 5 4 8 - 50% - 90% - {MoviesController, {} 2/9MoviesCatalog}

6 5 - 8 - 50% - 90% 85% {MoviesController, {} 2/9BooksController}

7 5 - 8 - 50% 55% 90% - {}
{(MCN, BDN),

3/9(MCN, WSN),
(MCN, MDN)}

8 5 4 8 - 50% - 90% 85%

{MoviesController,

{} 4/9MoviesCatalog,
BooksController,
BooksCatalog}

9 5 4 8 - 50% 55% 90% -
{(MCN, BDN),

5/9{MoviesController, (MCN, WSN),
MoviesCatalog} (MCN, MDN)}

10 5 - 8 5 50% - 90% 85%

{(MCN, BDN),

6/9{MoviesController, (MCN, WSN),
BooksController} (BCN, BDN),

(BCN, WSN)}

11 5 - 8 5 50% 55% 90% 85%

{(MCN, BDN),

7/9
(MCN, WSN),

{MoviesController, (MCN, MDN),
BooksController} (BCN, BDN),

(BCN, WSN)}

12 5 4 8 5 50% - 90% 85%

{MoviesController, {(MCN, BDN),

8/9MoviesCatalog, (MCN, WSN),
BooksController, (BCN, BDN),
BooksCatalog} (BCN, WSN)}

13 5 4 8 5 50% 55% 90% 85%

{(MCN, BDN),

9/9
{MoviesController, (MCN, WSN),

MoviesCatalog, (MCN, MDN),
BooksController, (BCN, BDN),
BooksCatalog} (BCN, WSN)}

Proc. PPAP 2013 24 / 30

ECEASST

Table 19 summarizes response times for the MakePurchase service while varying Blob-CPS
thresholds in the most significative ways (i.e., from #5 to #13) and applying the mirror, redeploy,
and split refactoring actions as previously described5. For each antipattern occurrence, the table
only reports the most beneficial refactoring actions between the three applicable ones. The table
also reports corresponding precisions.

Table 19: Blob and CPS thresholds variations vs. refactoring vs. precision.

#
Average response time after Blob-CPS refactorings

PrecisionBlobs CPS

MCo MCa BCo BCa (MCN, (MCN, (MCN, (BCN, (BCN,
BDN) WSN) MDN) BDN) WSN)

5 split split - - - - - - - 2/21.83 1.66

6 split - redeploy - - - - - - 1/21.83 1.84

7 - - - - redeploy redeploy mirror - - 3/31.61 1.64 1.82

8 split split redeploy split - - - - - 2/41.83 1.66 1.84 1.85

9 split split - - redeploy redeploy mirror - - 5/51.83 1.66 1.61 1.64 1.82

10 split - redeploy - redeploy redeploy - redeploy redeploy 3/61.83 1.84 1.61 1.64 1.84 1.85

11 split - redeploy - redeploy redeploy mirror redeploy redeploy 4/71.83 1.84 1.61 1.64 1.82 1.84 1.85

12 split split redeploy split redeploy redeploy redeploy redeploy - 4/81.83 1.66 1.84 1.85 1.61 1.64 1.84 1.85

13 split split redeploy split redeploy redeploy mirror redeploy redeploy 5/91.83 1.66 1.84 1.85 1.61 1.64 1.82 1.84 1.85

The precision of variations #5, #7, and #9, is equal to 1, because for each detected CPS
occurrence there exists at least a refactoring action that removes the antipattern occurrence and
satisfies the requirement. The variation with the highest precision among the ones that detect at
least one occurrence of both the Blob an the CPS antipatterns, i.e., variation #9, is also the one
with the lowest recall, i.e., 5/9, because that variation detects exactly the only two Blobs and
the only three CPS whose removal leads to a response time that satisfies the requirement for the
MakePurchase service (1.83 seconds). Variations from #10 to #13 have a precision in the interval
[0.5, 4/7], because for all detected CPS occurrences there does not exists a refactoring action that
removes the antipattern occurrence and satisfies the requirement for the MakePurchase service.

6 Discussion

Several observations regarding the antipattern detection and refactoring derive from our experi-
mentation.

Thresholds vs. antipatterns removal - If a refactoring action refers to a threshold related
to a design feature (e.g., number of connections), we can ensure that its application leads to

5 For the sake of table readability, we use acronyms to name components involved in Blob occurrences: MCo for
MoviesController, MCa for MoviesCatalog, BCo for BooksController, and BCa for BooksCatalog.

25 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

the removal of the antipattern occurrence. On the other hand, if a refactoring action refers to
a threshold related to a performance index (e.g., hardware nodes utilization or throughput, ser-
vice response time, etc.), we cannot ensure that its application leads to the actual removal of the
antipattern occurrence. A further performance analysis step for the refactored model is needed.
For example, in Table 15 (see variation #5), we have shown that the refactoring action refer-
ring to a threshold related to a performance index (i.e., redeploy) worsen (4.47 seconds) the
MakePurchase response time, hence the antipattern is not actually removed. On the contrary, the
refactoring action referring to a threshold related to a design feature (i.e., split) improves (1.66
seconds) the MakePurchase response time and the antipattern is actually removed.

Because the specification of some antipatterns only contains thresholds related to performance
indices, we have experienced that it is more difficult to refactor such antipatterns rather than the
ones referring also to design features.

Furthermore, the value of thresholds related to design features (e.g., number of connections)
influences the refactoring actions to put in place to remove an antipattern. For example, T hmaxConnects

refers to the maximum number of connections for software components, thus its value induces
the split refactoring action to generate a specific number of new components that can be deployed
according to different deployment strategies.

Recall vs. precision - In our experimentation, we found that the highest precision is achieved
with thresholds values leading to the lowest recall (i.e., variation #3 in Tables 14 and 15, vari-
ation #4 in Tables 16 and 17, and variation #9 in Tables 18 and 19). This precision is due to
the set of detected antipatterns that may contain occurrences whose removal is not helpful for
requirement(s) fulfillment. For example, in Tables 16 and 17, we observe that: (i) variation #9
detects five of nine occurrences (recall = 5/9) that satisfy the requirement (precision = 1); (ii)
variation #13 detects all the nine occurrences (higher recall, equal to 1), but the new ones are not
beneficial (lower precision, equal to 5/9).

Restrictions in refactoring applicability - The application of refactorings can be restricted by
functional or non-functional requirements. Example of functional requirements may be legacy
components that might restrict the set of applicable refactoring actions. In our example, let us
suppose that MoviesController cannot be refactored because it is a legacy component, then the
split action on that component cannot be applied anymore and we can only apply the redeploy
action, that does not result in a requirement fulfillment. Example of non-functional requirements
may be budget limitations that do not allow to adopt an antipattern solution due to its extremely
high cost. Many other examples can be provided of requirements that (implicitly or explicitly)
may affect the antipattern solution activity.

7 Conclusion

In this paper, we have analyzed the influence of numerical thresholds on the capability and effec-
tiveness of detecting and refactoring performance antipatterns. In particular, we have defined the
recall and precision of detection rules and refactoring actions respectively and we have applied
them to a case study in the e-commerce domain.

It is certainly of great interest to extend the experiment reported here to other performance an-
tipatterns. More complex examples shall be considered and domain-specific and system-specific

Proc. PPAP 2013 26 / 30

ECEASST

characteristics could be also exploited for this goal, because they may have an impact on thresh-
old values.

We also intend to introduce confidence values that may be associated to antipattern occur-
rences to quantify the probability that numerical threshold values support the actual antipattern
presence. Furthermore, some fuzziness can be introduced for the evaluation of the threshold
values [Mar04, OKAG10, SCK02] thus to make antipattern detection rules more flexible.

Acknowledgements: This work has been partially supported by the European Office of Aero-
space Research and Development (EOARD), Grant/Cooperative Agreement (Award no. FA8655-
11-1-3055), and by the VISION European Research Council Starting Grant (ERC-240555).

Bibliography

[AC13] D. Arcelli, V. Cortellessa. Software model refactoring based on performance anal-
ysis: better working on software or performance side? In Buhnova et al. (eds.),
FESCA. EPTCS 108, pp. 33–47. 2013.

[ACT12] D. Arcelli, V. Cortellessa, C. Trubiani. Antipattern-based model refactoring for soft-
ware performance improvement. In ACM SIGSOFT International Conference on
Quality of Software Architectures (QoSA). Pp. 33–42. 2012.

[BDC02] M. Bernardo, L. Donatiello, P. Ciancarini. Stochastic Process Algebra: From an Al-
gebraic Formalism to an Architectural Description Language. In Performance Eval-
uation of Complex Systems: Techniques and Tools, Tutorial Lectures, Performance.
Pp. 236–260. 2002.

[BDIS04] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni. Model-Based Performance Pre-
diction in Software Development: A Survey. IEEE Trans. Software Eng. 30(5):295–
310, 2004.

[BKR09] S. Becker, H. Koziolek, R. Reussner. The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1):3–22, 2009.

[CDDT12] V. Cortellessa, M. De Sanctis, A. Di Marco, C. Trubiani. Enabling Performance
Antipatterns to arise from an ADL-based Software Architecture. In Joint Confer-
ence on Software Architecture and European Conference on Software Architecture,
WICSA/ECSA. 2012.

[CDE+10] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, C. Trubiani. Digging into
UML models to remove performance antipatterns. In ICSE Workshop Quovadis.
Pp. 9–16. 2010.

[CDT12] V. Cortellessa, A. Di Marco, C. Trubiani. An approach for modeling and detecting
Software Performance Antipatterns based on first-order logics. Journal of Software
and Systems Modeling, 2012. DOI: 10.1007/s10270-012-0246-z.

27 / 30 Volume 59 (2013)

Influence of Numerical Thresholds on Performance Antipatterns

[CM02] V. Cortellessa, R. Mirandola. PRIMA-UML: a performance validation incremental
methodology on early UML diagrams. Sci. Comput. Program. 44(1):101–129, 2002.

[CMI11] V. Cortellessa, A. D. Marco, P. Inverardi. Model-Based Software Performance Anal-
ysis. Springer, 2011.

[CS11] G. Casale, G. Serazzi. Quantitative system evaluation with Java modeling tools. In
Proceedings of the 2nd ACM/SPEC International Conference on Performance engi-
neering. ICPE ’11, pp. 449–454. ACM, New York, NY, USA, 2011.
doi:10.1145/1958746.1958813
http://doi.acm.org/10.1145/1958746.1958813

[FB92] W. B. Frakes, R. Baeza-Yates (eds.). Information retrieval: data structures and al-
gorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[HT07] M. Harman, L. Tratt. Pareto optimal search based refactoring at the design level. In
Proceedings of the 9th annual conference on Genetic and evolutionary computation.
GECCO ’07, pp. 1106–1113. ACM, New York, NY, USA, 2007.
doi:10.1145/1276958.1277176
http://doi.acm.org/10.1145/1276958.1277176

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. SIGMETRICS Perfor-
mance Evaluation Review 19(2):5–11, 1991.
doi:http://doi.acm.org/10.1145/122564.1045495

[KPGA12] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol. An exploratory study of
the impact of antipatterns on class change- and fault-proneness. Empirical Software
Engineering 17(3):243–275, 2012.

[KVGS11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, H. A. Sahraoui. BDTEX: A GQM-based
Bayesian approach for the detection of antipatterns. Journal of Systems and Software
84(4):559–572, 2011.

[LKGS84] E. Lazowska, J. Kahorjan, G. S. Graham, K. Sevcik. Quantitative System Perfor-
mance: Computer System Analysis Using Queueing Network Models. Prentice-Hall,
Inc., 1984.

[Mar04] R. Marinescu. Detection Strategies: Metrics-Based Rules for Detecting Design
Flaws. In International Conference on Software Maintenance (ICSM). Pp. 350–359.
2004.

[MGDM10] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L. Meur. DECOR: A Method for the
Specification and Detection of Code and Design Smells. IEEE Trans. Software Eng.
36(1):20–36, 2010.

Proc. PPAP 2013 28 / 30

http://dx.doi.org/10.1145/1958746.1958813
http://doi.acm.org/10.1145/1958746.1958813
http://dx.doi.org/10.1145/1276958.1277176
http://doi.acm.org/10.1145/1276958.1277176
http://dx.doi.org/http://doi.acm.org/10.1145/122564.1045495

ECEASST

[MKBR10] A. Martens, H. Koziolek, S. Becker, R. Reussner. Automatically improve software
architecture models for performance, reliability, and cost using evolutionary algo-
rithms. In WOSP/SIPEW International Conference on Performance Engineering.
Pp. 105–116. 2010.

[MPN+12] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc, B. Baudry, J.-M.
Jézéquel. Specification and Detection of SOA Antipatterns. In International Confer-
ence on Service-Oriented Computing (ICSOC). Pp. 1–16. 2012.

[Obj05] Object Management Group (OMG). UML 2.0 Superstructure Specification. 2005.
OMG Document formal/05-07-04.

[Obj09] Object Management Group (OMG). UML Profile for MARTE. 2009. OMG Docu-
ment formal/08-06-09.

[OC08] M. O’Keeffe, M. ı́ Cinnéide. Search-based refactoring for software maintenance. J.
Syst. Softw. 81(4):502–516, Apr. 2008.
doi:10.1016/j.jss.2007.06.003
http://dx.doi.org/10.1016/j.jss.2007.06.003

[OKAG10] R. Oliveto, F. Khomh, G. Antoniol, Y.-G. Guéhéneuc. Numerical Signatures of An-
tipatterns: An Approach Based on B-Splines. In European Conference on Software
Maintenance and Reengineering (CSMR). Pp. 248–251. 2010.

[PZ12] R. Peters, A. Zaidman. Evaluating the Lifespan of Code Smells using Software
Repository Mining. In European Conference on Software Maintenance and Reengi-
neering (CSMR). Pp. 411–416. 2012.

[RRPK12] D. Romano, P. Raila, M. Pinzger, F. Khomh. Analyzing the Impact of Antipatterns
on Change-Proneness Using Fine-Grained Source Code Changes. In Working Con-
ference on Reverse Engineering (WCRE). Pp. 437–446. 2012.

[SCK02] S. S. So, S. D. Cha, Y. R. Kwon. Empirical evaluation of a fuzzy logic-based soft-
ware quality prediction model. Fuzzy Sets Syst. 127(2):199–208, Apr. 2002.
doi:10.1016/S0165-0114(01)00128-2
http://dx.doi.org/10.1016/S0165-0114(01)00128-2

[Smi07] C. U. Smith. Introduction to Software Performance Engineering: Origins and Out-
standing Problems. In Bernardo and Hillston (eds.), SFM. Lecture Notes in Com-
puter Science 4486, pp. 395–428. Springer, 2007.

[SSB06] O. Seng, J. Stammel, D. Burkhart. Search-based determination of refactorings for
improving the class structure of object-oriented systems. In Proceedings of the
8th annual conference on Genetic and evolutionary computation. GECCO ’06,
pp. 1909–1916. ACM, New York, NY, USA, 2006.
doi:10.1145/1143997.1144315
http://doi.acm.org/10.1145/1143997.1144315

29 / 30 Volume 59 (2013)

http://dx.doi.org/10.1016/j.jss.2007.06.003
http://dx.doi.org/10.1016/j.jss.2007.06.003
http://dx.doi.org/10.1016/S0165-0114(01)00128-2
http://dx.doi.org/10.1016/S0165-0114(01)00128-2
http://dx.doi.org/10.1145/1143997.1144315
http://doi.acm.org/10.1145/1143997.1144315

Influence of Numerical Thresholds on Performance Antipatterns

[SW03] C. U. Smith, L. G. Williams. More New Software Antipatterns: Even More Ways to
Shoot Yourself in the Foot. In International Computer Measurement Group Confer-
ence. Pp. 717–725. 2003.

[TK11] C. Trubiani, A. Koziolek. Detection and solution of software performance antipat-
terns in palladio architectural models. In International Conference on Performance
Engineering (ICPE). Pp. 19–30. 2011.

[TSFB99] G. Travassos, F. Shull, M. Fredericks, V. R. Basili. Detecting defects in object-
oriented designs: using reading techniques to increase software quality. In ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and ap-
plications. Pp. 47–56. 1999.

[WFP07] C. M. Woodside, G. Franks, D. C. Petriu. The Future of Software Performance En-
gineering. In Briand and Wolf (eds.), FOSE. Pp. 171–187. 2007.

[Xu12] J. Xu. Rule-based automatic software performance diagnosis and improvement. Per-
form. Eval. 69(11):525–550, 2012.

[YM12] A. F. Yamashita, L. Moonen. Do code smells reflect important maintainability as-
pects? In International Conference on Software Maintenance (ICSM). Pp. 306–315.
2012.

Proc. PPAP 2013 30 / 30

	Introduction
	Related work
	Thresholds in performance antipattern specification/representation
	Detection and refactoring of antipatterns: fixed thresholds
	An illustrative Example: ECS model

	Detection and refactoring of antipatterns: sensitivity analysis vs. thresholds
	Precision and Recall for the performance
	Precision and Recall Applied to ECS

	Discussion
	Conclusion

