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Abstract: Techniques for the verification of structural invariants in graph transfor-
mation systems typically rely on the derivation of negative application conditions
that are attached to graph transformation rules in order to avoid the runtime occur-
rence of forbidden structural patterns in the system model. In this paper, we propose
a practical approach for this derivation process, which produces the required neg-
ative application conditions by applying higher order graph transformation on the
rule specifications themselves. Additionally, we integrate filtering criteria into these
higher order constructs to avoid, already at an early stage, the unnecessary construc-
tion of invalid and redundant negative application conditions.

Keywords: higher order graph transformation, static analysis, verification

1 Introduction

Graph transformation (GT) [Roz97] as a declarative technique to specify the rule-based manip-
ulation of system models has been successfully employed in many practical, real-world applica-
tions [Hec98] including scenarios from the security domain [KMPO02], where the formal nature
of graph transformation plays an important role.

Role-based access control (RBAC) [SCFY96] is undoubtedly such a well-known security sce-
nario, in which graph transformation can be applied as suggested in [KMPO02]. In this setup,
an access control policy is defined (i) by modeling authorization settings (e.g., users, roles, and
permissions) in the system as graphs, and (ii) by specifying their modifications declaratively
by graph transformation rules, whose application actually performs these changes on the graph-
based authorization model.

An additional important and challenging task in an RBAC scenario is to ensure that a specified
access control policy is always enforced. This can be supported by automated GT verification
techniques [HW95], which requires (global) negative constraints representing forbidden struc-
tures that are never allowed to occur in any authorization settings.

While runtime verification techniques for graph transformation can efficiently detect the oc-
currences of these forbidden patterns by monitoring and reacting accordingly, this approach is
unsatisfactory, if the policy is to be statically enforced in a proven and certified manner, e.g., in
an auditing process carried out by the security team of a company or by external auditors. In
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such a case, static analysis techniques [HW95], which are used to derive information required
to extend the left-hand side (LHS) of the graph transformation rules at design time by attaching
new negative application conditions (NAC) [HHT96], are more appropriate. The attached NACs,
generated from the given negative constraints, avoid rule applications at runtime that would lead
from a policy compliant authorization setting to a policy violating one.

The design-time production of graph transformation rules with a NAC-enriched left-hand side
is carried out by a sophisticated algorithm [HW95] in the following three steps. (1) Each sub-
graph of each negative constraint is glued to the right-hand side (RHS) of the GT rules (in a
type-conform manner) as a postcondition NAC. This forbids a situation where the negative con-
straint is violated after the rule application. (2) The postcondition NAC is back-propagated to
the LHS as a regular (precondition) NAC by reverting the modifications specified by the GT rule.
(3) Finally, the set of GT rules with (precondition) NACs is filtered to discard redundant NACs,
where the negative constraint is already violated before the rule application.

Although the original algorithm [HWO95] and its conceptual derivatives [EEHP04] present
many interesting theoretical considerations, the implementation of such a technique either re-
mains an open issue, or requires additional logic or category theory based libraries.

In this paper, we propose a practical approach, which can be implemented by any existing
graph transformation tool that considers rule specifications as regular models, to produce graph
transformation rules with negative application conditions. The proposed technique derives higher
order graph transformation rules from the negative constraints, and applies these higher order
constructs to the original GT rule specifications to attach appropriate NACs. Additionally, we
identify filtering conditions at an early stage and integrate them into the higher order rules to be
able to avoid the construction of redundant (precondition) NACs.

The remainder of the paper is structured as follows: Section 2 introduces basic modeling and
graph transformation concepts. The general precondition NAC derivation process is sketched in
Sec. 3, while Sec. 4 presents our algorithm using higher order transformations to construct these
application conditions. Related work is discussed in Sec. 5, and Sec. 6 concludes our paper.

2 Modeling and Graph Transformation Concepts

This section introduces the basic concepts of metamodels, models and graph transformation.

Graphs and Graph Morphisms. A graph G = (Vi,Eg,sc,t) consists of a set of vertices Vg
and edges Eg, and two functions sg,t; : Eg — Vi, which map edges to their source and target
vertices, respectively. A fotal graph morphism f from graph G to H is a pair of total functions
fv : Vo — Vi, fe : Eg — Eg that map vertices and edges in a structure preserving manner, i.e.,
fvosg=sgo fgand fyotg =ty o fr. A graph morphism f is injective, if both fy and fr is are
injective functions. A partial graph morphism f from G to H is a total graph morphism from
some subgraph of G.

Metamodels and Models. A metamodel defines the core concepts of a domain, while a
model describes an actual system. Formally, a metamodel MM is a graph, whose vertices and
edges are classes and associations, respectively. A model M typed by the metamodel MM is also
a graph, whose vertices and edges (referred to as objects and links) can be mapped to classes
and associations, respectively, by a total graph morphism type : M — MM. A typed (graph)
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morphism f: M — M’ from model M to M’ that are both typed by metamodel MM is a graph
morphism, which preserves type information, i.e., typeo f =type'.

Example. A simplified role-based access control (RBAC) scenario inspired by [KMP02] is
used throughout the paper as a running example. Figure 1a shows the RBAC metamodel, which
consists of the classes user (U), role (R), permission (P), and the static separation of duty relation
(SSOD). The association roles defines the roles belonging to a user and the association permis-
sions specifies the permissions assigned to a role. The association exRoles connects the SSOD
relation to roles that can only be granted exclusively. Figure 1c shows an RBAC model, which
contains users anne and bob having the roles financeManager and travelManager, respectively.
These roles can be granted exclusively, expressed by the SSOD relation ex. The permissions ac-
counting and booking are assigned to the roles financeManager and travelManager, respectively.

I
B
exRoles I I
lju roles R Permissions’—|P )l I ‘ 1R H ex: SSOD H 2: R |

1R 1

______________________________ T

|f| anne: U ’—)| financeManager: R ’—)| accounting: PTI |f| anne: U ’—)| financeManager: R ’—)| accounting: P
| 1N |
Ik| bob: U ’—)| travelManager: R ’—)| booking: P I ) Ik| bob: U ’—)| travelManager: R ’—)| booking: P I )

(c) Consistent RBAC model (d) Inconsistent RBAC model
(LT T T T T N (R — N
I I I I
SEAEN N
| ’ u: U ‘ ’ rR ‘ | | ’ u: U rR ‘ |
— - — — —_ — — ~ ~— e — — —_ —_ = ~

(e) assignUserToRole GT-rule

Figure 1: The role-based access control application scenario

Patterns, Negative Constraints and Model Consistency. A pattern P is a graph typed by a
metamodel MM. A pattern P matches a model M if there exists a total injective typed morphism
m : P — M called match morphism. The subgraph m(P) C M is called match of P in M.

A negative constraint NC is a pattern to declaratively define forbidden subgraphs in a model.
A model M is consistent with respect to a negative constraint NC, if NC does not match M. For
simplicity, we will call a model just consistent if it is clear which constraints are meant.

Example. Figure 1b shows a negative constraint that forbids a user to have two exclusive
roles. The model depicted in Figure 1c is consistent, as neither anne, nor bob has two exclusive
roles. In contrast, the model in Figure 1d is inconsistent, as anne has both the financeManager
and the travelManager roles, which are exclusive according to the SSOD relation ex.

Graph Transformation Rules and Their Application. A graph transformation rule r =
(N9 4 L— R — N") consists of a left hand side (LHS) pattern L and a right hand side (RHS)
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pattern R and the (possibly empty) sets of pre- and postcondition negative application conditions
(NACs) V¥ and N*. The LHS and the RHS are related by the typed partial morphism r: L — R.
The pre- and postcondition NACs N € N and N> € N> are related to L and R by typed total
injective morphisms n“: L — N¥and n” : R — N".

A rule r = (N? < L — R — N") is applicable to a model M iff (i) there exists a match
m: L — M of the LHS pattern L of r in M, and (ii) the precondition NACs N € N'¥ are satisfied.
A precondition NAC N¢ is satisfied if the current match m(L) cannot be extended to m**(N<) in
M, ie,dm*™ :N°—M: m=m"*on".

A ruler = (N<«+ L— R— N") is applied at a match m in model M to obtain the modified
model M’ (denoted by M rem ), by constructing the pushout of the match morphism m : L — M
and morphism r : L — R of rule r defined (informally) as follows: (i) Remove the vertices and
edges m(L) C M identified by the match m that are not present in the RHS pattern R. (ii) Add the
vertices and edges to M that are part of the RHS pattern R, but not present in the LHS pattern L.
The vertices and edges that occur in L and R are preserved. Dangling edges in M’ are deleted. The
violation of a postcondition NAC N> € N> indicates that the derived model M’ is inconsistent. !

Example. Figure le shows the GT-rule assignUserToRole that assigns a user u to a role r by
adding a new roles link. Morphisms r, n“, and n” are implicitly specified in all the figures of the
running example by matching vertex labels. The result of applying the GT-rule assignUserTo-
Role to user anne and role travelManager in the model of Figure 1c is depicted in Figure 1d.

Consistency Preservation. A rule r is consistency preserving, if for any arbitrary model M
and all possible applications M = M’ of rule r holds: If M is consistent then M’ is also consistent.
A set of rules R is consistency preserving if all rules r € R are consistency preserving.

The idea of consistency preservation is that if a set of rules is consistency preserving and the
start graph is consistent, then consistency is preserved for all models derivable by a sequence of
rule applications, as none of the rules will transform a consistent to an inconsistent model.

3 Building Consistency Preserving Graph Transformation Rules

This section recapitulates the static analysis technique proposed in [HW95], which extends graph
transformation rules with precondition NACs to produce consistency preserving GT-rules. The
construction of precondition NACs can be carried out in the following three steps:

1. Constructing postcondition NACs. For each non-empty subgraph of a negative constraint
that is also a subgraph of the RHS pattern of a GT-rule, a postcondition NAC is constructed
by gluing the negative constraint and the RHS together along the common subgraph. The
postcondition NACs represent all those situations where the negative constraint is violated
after the rule application.

2. Back-propagating postcondition NACs into precondition NACs. Each postcondition NAC
constructed in the previous step is back-propagated to the LHS pattern as a precondition NAC
by reverting the modifications specified by the GT-rule. The precondition NACs can prevent
the GT-rule from transforming a consistent model into an inconsistent one.

3. Filtering precondition NACs. Redundant or invalid precondition NACs are discarded in

! Note that in real applications postcondition NACs are of little use as they cannot prevent the derivation of inconsis-
tent models. However, they are used as an intermediate step for the construction of precondition NACs.
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the following two cases. (i) If the complete negative constraint appears in the precondition
NAC, then such a construct could block rule application only on inconsistent models, which
can never be created by applying consistency preserving rules on a consistent initial model.
Consequently, such a precondition NAC can be considered redundant (assuming a consistent
initial model and a set of consistency preserving rules is used). (ii) If an edge in the post-
condition NAC that originates exclusively from the negative constraint is adjacent to a node
that is deleted by the back-propagation, then a (structurally) invalid precondition NAC with
dangling edges is produced.
As [HWO95] states, the filtering conditions for precondition NACs in Step 3 can also be for-
mulated on the corresponding postcondition NACs, consequently, an adapted filtering step can
already be carried out directly after Step 1 in the previous process. Therefore, in the rest of the
paper, we only consider the first two phases of this alternative approach, namely, the construc-
tion (Sec. 3.1) and filtering (Sec. 3.2) of postcondition NACs.

3.1 Construction of Postcondition NACs

A non-empty graph GL is a gluing graph of a RHS pattern R and a neg-
ative constraint NC if it is a subgraph of both R and NC, i.e., there exists
at least a pair of total injective typed morphisms R +L GL -4 NC.

The postcondition NAC patterns N* € N* of R and NC can be con- n © g
structed as pushouts (1) over morphisms R L GL -5 NC for all gluing
graphs GL of R and NC, and all total injective typed morphisms ¢ and g.

Example. The postcondition NACs derived from the negative con-
straint NoExclusiveRoles (Fig. 1b) and the RHS of rule AssignUserToRole (Fig. 1e) are shown
in Figure 2. Vertices and edges are drawn solid if they belong to the RHS. Dashed vertices and
edges denote the elements of the negative constraint NoExclusiveRoles. The gluing graph is
drawn bold.

NP> TNC

———————————————————————————————————————————————

f \/ \f N \f \ 1]

|I uul:U H rrl:R I||I uul:U H rnr2:R | I uul:U H rR ‘|II u,ul:U m iR I“I uul:U m nr2:R I||| uwy H nrl:R I I| uwy H nr2:R I |

Y - | AN Y | [—een ="

: (L Il ,' . o L

: . “ :

|: ; s Ny I it | I e el

; ; y o y i ; - - :

2R kiexssopill mRr kdexssopilll R Kecssoply 2k il 2R kdexssop iR tiecssop!|) R T
. it : it : i hi - Tt : : LT [

______ P et Mttt A ittt teintgpleieilltolletetintet” | feleiyietetuied fiedyieieiyietety | eteleipietiffpieieigieiet SN leletytetetyt /) S ittt 92

g 1 v I
||E uLU lbex SSOD:HE uLU | lexsSOD!|
! : !

Figure 2: Postcondition NACs from neg. const. noExclusiveRoles and rule assignUserToRole

3.2 Filter Conditions for Postcondition NACs

The back-propagation of postcondition NACs into redundant or invalid precondition NACs can
be avoided if the filtering is carried out on the postcondition NACs right after their construction
in Step 1. A postcondition NAC N* of the RHS pattern R of rule r and the negative constraint
NC, is discarded if either of the following conditions is fulfilled:
(1) Preserving Condition. All elements of the gluing graph GL are preserved by the reverse ap-
plication of rule r that would yield a precondition NAC that contains the complete negative
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constraint NC. Formally, Yvg,, € Vg, v € Vi @ r(ve) = q(veL), and Vegr € Egr, Jer. €
EL . r(eL) = C[(EGL).

(ii) Dangling Edge Condition. There exists an edge e in that part of the postcondition NAC N*,
which originates only from the negative constraint NC (formally, e € Ey» \ n(R)), whose
source sy-(e) or target 7y~ (e) vertex would be deleted by the reverse application of rule r,
making e a dangling edge in the precondition NAC (formally, v € (Vg \ ry(VL)) : sn=(e) =
1 (v) V iy (&) = (1)

Let the dangling point graph DP consist of all vertices v € Vi whose image gy (Vpp) C Ve
in the negative constraint is source or target of an edge that is not in the gluing graph (formally,

Vpp = {V cVar | de € Enc \gE(EGL) : SNc(e) =gv (V) \/th(e) = gv(V)}).

Lemma 1 A postcondition NAC N* constructed by the pushout (1) over morphisms R L
GL %5 NC for gluing graph GL fulfills the dangling edge condition iff the image q(DP) C R
contains at least one vertex that is deleted during the reverse application of rule r.

Proof. “=": As the dangling edge condition is fulfilled, there exists a vertex v € Vg \ ry(Vy)
s.t. there exists e € Eys \ nz(R) with sy=(e) = nj,(v) Vin-(e) = ny,(v). As N” is constructed
by pushout (1) there exists an edge ¢ € Eyc such that pg(e’) = e and with a source or target
vertex v € Vi such that py (V') = nj,(v). Hence, there exists a vertex v/ € Vg, with gy (v') =V/
and gy (V') = v that is in Vpp, as from the pushout (1) and the injectivity of g follows that ¢’ €
Enc\ 8e(EGL).-

“«<": There exists a vertex v € Vpp C Vi, whose image gy (v) € Vg \ ry(Vy) is deleted by
the reverse rule application. From v € Vpp, we can conclude that there exists an edge e € Eyc \
ge(Eqr) such that syc(e) = gv (v) Vine(e) = gy (v). From the injectivity of ¢ we know that there
exists an edge ¢’ € Ey- s.t. ¢ = pg(e) whose source or target vertex v' = gy onj,(v). From
pushout (1) and the injectivity of g follows that ¢’ must be in Ex» \ n};(R), as e has no preimage
in GL. Thus, the dangling edge condition is fulfilled. O

Example. All but the first two postcondition NACs shown in Figure 2 are discarded due to
the preserving condition, as the gluing graph does not contain the edge between user u and role
r that is deleted by the reverse application.

4 Deriving Postcondition NACs by Higher Order Transformation

In this section, we present an approach for the automated construction of postcondition NACs
using higher order (HO) graph transformation, i.e., transformations that can be applied on graph
transformation rules. Our technique first constructs higher order transformation rules (HO-rules)
either from the subgraphs of the negative constraints or from the GT-rules, and then these de-
rived HO-rules are applied to the original GT-rules to produce exactly those postcondition NACs
that violate either the preserving or the dangling edge condition. Consequently, postcondition
NAC S that would result later in redundant or invalid precondition NACs are not produced in our
approach. Moreover, as a result of this early filtering, the approach is basically suitable (i.e.,
with minor changes) to directly construct precondition NACs, which is not discussed here due to
space limitations.
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Although the rest of this section deals with theoretical topics presenting the approach and
proving its correctness, it should be highly emphasized that HO-rules can be easily specified in a
graph transformation tool (like eMoflon [ALPS11]), in which GT-rules are represented as regular
models. These HO-rules can be applied by the existing machinery facilitating the construction
and the filtering of postcondition NACs.

4.1 Higher Order Transformation

A higher order (HO) transformation is a transformation applied on graph transformation (GT)
rule specifications. Higher order transformation is now introduced analogously to the concepts
of graph transformation.

Higher Order Morphism (HO-morphism) and Higher Order Pattern (HO-Pattern). A

n nd/

HO-morphism f : r — r’ that relates the GT-rules r = (N< ELLRY NP)and ¥ = (NY
L' SRS A )isatuple f = (fy<, f1, fz,fx=) consisting of the typed graph morphisms f; : L —
L' and fg : R — R/, and the sets fy- and fy» of typed graph morphism of the form fy< : N*— N¥
and fy» : N> — N/, respectively. Morphisms f; and fx relate the LHS and RHS patterns of
the GT-rules r and r’ such that fgor = r' o f;. The morphisms fy< € fy< and fy- € fy- relate
the pre- and postcondition NACs of r and r’ such that fy<on®=n"o f; and fy» on” = n" o fx
for all fy< € fy< and fy- € fy-. A HO-morphism f is total (injective) if all graph morphisms in
{fn<, fL, fr,En> } are total (injective). A HO-morphism f is partial if at least one graph morphism
in {fy<, f1, fr,fn> } is partial.

A HO-pattern P = (N < L — R — N™) can be matched to a rule r if there exist a total
injective HO-morphism 71 : P — r.

Higher Order Transformation Rules (HO-rules) and Their Application. A HO-rule t =
(N? <« L — R — N) consists of the left and right hand HO-patterns L and R and optionally a
higher order pre- and postcondition NAC, defined by the HO-patterns N and N*. The HO-LHS
and RHS patterns are related by the partial HO-morphism 7 : L — R, while the higher order pre-
and postcondition NACs are related to L and R by HO-morphisms A< : L — N<and 42> : R — N”.

A HO-rule # is applicable to a GT-rule r iff (i) there exists a HO-match s : L — r of the
HO-LHS pattern L in GT-rule r that (ii) cannot be extended to /#** : N — r s.t. /it = i* o A°.

A HO-rule t is applied at HO-match /7 in GT-rule r to obtain the modified rule r’ (denoted by

r 2y ) by constructing the pushout of the HO-match 7 : L. — r and HO-morphism 7 : L. — R
of HO-rule ¥, while dangling edges are deleted.

Example. Figure 3 shows a HO-rule (RHS pattern copying HO-rule) with a HO-LHS pattern
L and a HO-RHS pattern R. The HO-rule is applicable to the assignUserToRole GT-rule, as
there exists a HO-match 7 that maps the user u and the role r, as well as the edge from LHS
HO-pattern to the RHS pattern of the GT-rule. The rule is applied at match 7z by constructing
the pushout of the HO-match 7 and the HO-morphism 7, i.e., by adding the elements present in
the HO-RHS pattern R but not in the HO-LHS pattern L (no elements are deleted by the HO-
rule). The result is the modified GT-rule assignUserToRole’ (shown in the bottom right corner of
Figure 3) equipped with a postcondition NAC that is identical to its RHS.
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Figure 3: Higher Order Transformation Rule Application

4.2 Derivation of Higher Order Rules

The process of constructing the postcondition NACs is carried out by the following three kinds
of HO-rules: (I) The filter criterion checking HO-rules determine the gluing graph and ensure
the violation of the preserving and the dangling edge constraints. (II) The RHS pattern copy-
ing HO-rules add a postcondition NAC identical to the RHS pattern of the GT-rule. (III) The
constraint gluing HO-rules glue the negative constraint to the postcondition NAC (created by the
RHS pattern copying rule) along the gluing graph identified by the filter criterion checking rule.

(I + III) Deriving filter criterion checking and constraint gluing HO-rules from negative
constraints. For each negative constraint NC, all its subgraphs GL* C NC are derived as gluing
graph candidates. Note that gluing graph candidates GL* are not necessarily subgraphs of the
RHS pattern. Consequently, there exists an injective typed morphism g : GL* — NC, but there
need not be an injective mapping ¢ : GL* — R.

for each GL* C NC:

(sGL* #GL

Tch rgl

T - - - - - - - - - )= e ~
| L |, IR | (L ) | B e |
| 0 «—DpPHes Gr=—s g | = | 9 «—DpPH2s gr=——s ¢ | [0 < ¢ HGL—>(’L|—>UA% 0 —> GLE=ENG,
— e — — ——— — e — — — —— L S —

n, ~

U S ‘Y La Lo Li

| N¢ I

10— crids ar—s o || L (T ; oo , RN , "

o : )

oE e TS L2 R RN PRI N L R e

f‘ZO________ e e e
f Ve, (R R
|$H0ﬁRﬁwj_)|®Hm_)lc_)le|

for eachr:

Figure 4: Derivation and application of HO-rules for constructing the postcondition NACs

For each gluing graph candidate GL* C NC, a filter criterion checking HO-rule f'th* is derived
(top left corner of Figure 4), which consists of a HO-LHS, a HO-RHS and HO-precondition NAC

id|pp

patterns L = R = (0 + DP %" GL* — 0) and N* = (0 + GL* 4 6L — 0), respectively. The
HO-LHS L ensures that a filter criterion checking HO-rule f'th* is only applicable to GT-rule r
if the gluing graph GL* is contained in its RHS and the dangling points DP C GL* are preserved
during reverse rule application to prevent the occurrence of dangling edges (see dangling edge
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Figure 5: HO-rule Derivation and Application Example

condition and Lemma 1). The HO-precondition NAC N< prevents the application of HO-rule
f'cGhL* if all elements identified by the gluing graph are preserved by the reverse application of
GT-rule r, which is fulfilled as they appear on the LHS and RHS of GT-rule r (see preserving
condition). Morphism id|pp is the identity morphism of GL* restricted to DP, i.e. id|pp(v) = v
for all vertices v € DP.

For each gluing graph candidate GL* C NC, a constraint gluing HO-rule f'glU is derived (top

right corner of Figure 4), which consists of the HO-RHS and HO-postcondition NAC patterns

R=(0+0— GL* “4 GL*) and N* = (0 + 0 — GL* g NC), respectively.
(IT) Deriving RHS pattern copying HO-rules from GT-rules. For each GT-rule r, a RHS
pattern copying HO-rule tf, is derived (bottom of Figure 4), which consists of HO-LHS and

HO-RHS patterns L= (0 <~ 0 — R — 0) and R= (0 < 0 — R “4 R), respectively.

Example.The top part of Fig. 5 presents the filter criterion checking and the constraint gluing
HO-rules that were derived from the gluing graph candidate and the negative constraint noExclu-
siveRoles depicted in the grey box at the bottom left corner. The RHS pattern copying HO-rule
derived from the GT-rule assignUserToRole is shown at the bottom of Figure 5.

4.3 Application of Higher Order Rules

For each pair of a gluing graph candidate GL* and a GT-rule r, the following steps are carried
out (as shown in Figure 4) to construct postcondition NACs from the GT-rules:
(1) The applicability of the filter criterion checking HO-rule f'cGhL* to GT-rule r is checked by

looking for a HO-match 7 of DP —— GL* in the GT-rule r that cannot be extended to
GL* — GL* in r such that #** o 5, = i. This ensures that the gluing graph candidate is
really a gluing graph of the RHS pattern of GT-rule r and the postcondition NAC, and it
will not be discarded due to violation of the dangling edge or preserving condition (shown
later in the proof of Theorem 1).

For each HO-match # identified in the previous step, to which f‘gf* is applicable :
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(2) The RHS pattern copying HO-rule £f, is applied to GT-rule r, which copies the RHS
pattern of rule r as a postcondition NAC into the produced rule r’.

(3) The constraint gluing HO-rule f'gGlL* is applied to the GT-rule r’, which glues the negative
constraint to the postcondition NAC created in step (2) along the gluing graph identified
in step (1). This is achieved by choosing typed morphism components wg and wy» of the
HO-match W such that wg(GL*) = ugr(GL*) and wy-(GL*) C v}»(R), where ug(GL") is
the part of the RHS pattern of GT-rule r’ identified by match ug(GL*) in step (1), and
vy (R) identifies the elements of the postcondition NAC created in step (2).

Example. The filter criterion checking HO-rule 7., (top left corner of Fig. 5) is applicable to
the GT-rule assignUserToRole (in the middle) as there exists a match for the HO-LHS pattern
of 7, in the GT-rule (mapping u1 and r1 to u and r, respectively), but no match for the HO-
precondition NAC N<. Consequently, the RHS pattern copying HO-rule adds a copy of the RHS
pattern as postcondition NAC to the assignUserToRole GT-rule. Finally, the constraint gluing
HO-rule is applied adding the elements in the negative constraint but not in the gluing graph.

Correctness of the approach. The overall correctness of the approach (including the filtering
conditions on and the back-propagation of postcondition NACs) has been shown in [HW95].
Hence, we limit ourselves to argue that our higher order transformation constructs postcondition
NAC:s as described in Sec. 3.1, and produces neither redundant nor invalid postcondition NACs.

It is easy to see that the application of the RHS pattern copying and the constraint gluing HO-
rules constructs the correct postcondition NAC if the gluing graph has already been identified.
Thus, it is enough to prove that the filter criterion checking HO-rule determines the gluing graph
correctly and ensures that neither redundant nor invalid postcondition NACs will be produced.

Theorem 1 A filter criterion checking HO-rule is applicable iff (i) the gluing graph candidate
is really a gluing graph of the GT-rule and the negative constraint, and the postcondition NAC
(going to be constructed for the gluing graph) will be preserved as it fulfills (ii) neither the
preserving condition, (iii) nor the dangling edge condition.

Proof. The HO-rule t¢, is applicable to a GT rule r iff a HO-match morphism i exists that
cannot be extended to the HO-match 72**(N<) of the HO-precondition NAC.

(i) As @ = (ur,ug) is total and injective, its typed morphism component ug : GL* — R is also
total and injective. This means that the gluing graph candidate GL* is a subgraph of the
RHS pattern R of GT-rule r and, therefore, a gluing graph of R and NC iff ug exists.

(ii) The gluing graph identified by ug(GL*) appears completely in both the LHS and the RHS
pattern of GT-rule r iff HO-precondition NAC is violated. Consequently, the preserving
condition is fulfilled iff the HO-precondition NAC N is violated.

(iii) From Lemma 1 follows that the dangling edge condition is not fulfilled iff the image of
the dangling point graph in the RHS is preserved during reverse application of the GT-rule.
The vertices v € Vpp are preserved during the reverse application iff they are in the LHS
and RHS pattern of GT-rule r, which is ensured iff there exists a HO-match & = (ur,ug)
with morphism uy, : DP — L and ug : GL* — R.

O
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5 Related Work

Static Analysis of Graph Transformation Systems. In the context of graph transformation, the
notion of patterns to express global constraints was first proposed in [HW95] and extended in
[EEPTO06] to the more general framework of high-level replacement systems. Both approaches
propose a mathematical construction method for application conditions from constraints founded
in the abstract frameworks of category theory. Although they provide the formal foundations, a
direct implementation of the approaches is only feasible for transformation tools that are built
on top of libraries for categorical constructions, as for example AGG [Tae00]. In contrast, our
construction procedure can be implemented using any existing graph transformation tool that
considers rule specifications as regular models.

A similar idea, namely to reformulate the constructive approach to a domain supported by
standard technologies, is presented in [BBG*06]. The authors propose a translation of patterns
and constraints into logic formulas performing the computations symbolically using binary deci-
sion diagram based solvers. While this requires a complex translation into the logic domain and
an additional solver, our approach uses the GT-engine, which already exists in GT-tools.

Higher-Order Transformation. The majority of higher order transformation approaches do
not address static verification. For example, [VP04] proposes a special kind higher order trans-
formation rules (called metarules) to transform generic rewrite rules to model level rules that can
be carried out by the transformation engine. In [VP04] it is shown that under suitable assumption
the rules for metamodel refractoring can also be used to adapt transformation rules to preserve
compatibility with the refactorings.

The approach of [BGLO08] uses higher order graph transformation to translate negative con-
straints into postcondition NACs. Instead of creating the postcondition NACs for all possible
gluing graphs, only the maximal gluing graphs are considered. This avoids the construction of
postcondition NACs that are subsumed by others. In contrast to our approach, the challenges
regarding a practical implementation are not considered. It is also not discussed how to avoid the
construction of redundant and invalid postcondition NACs using higher order transformations,
which is crucial for using the approach in real world applications.

6 Conclusion

In this paper, we proposed an approach to produce negative application conditions at compile
time by applying higher order graph transformation on rule specifications to prevent the runtime
occurrence of forbidden patterns. We integrated filtering criteria into the higher order constructs
to avoid the unnecessary construction of invalid and redundant negative application conditions
and presented formal arguments for the correctness of this technique.

As GT-rules are represented as regular models in many state-of-the-art graph transformation
tools, higher order transformations can be carried out easily by the already available transforma-
tion machinery of these tools, which can be considered as a clear advantage over a handcrafted
implementation.

As the validity of the negative application conditions is checked before their construction, only
minor extensions are required to use the approach to directly construct precondition NACs. That
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is, simply modifying the presented algorithm such that it creates the same negative application
condition but now as precondition NAC, and adding an extra step that applies an additional HO-
rule to add (and remove) the elements in the previously created precondition NAC as specified
by reverse application of the GT-rule. Although, this is not discussed in the paper (due to space
limitations), it is included in our graph transformation tool eMoflon [ALPS11]. Additionally,
we will also support positive (if then) application conditions, as well as application condition
including attributes and inheritance in an upcoming release.

A further task is to investigate how to use higher order transformation for static analysis of
higher order transformation. For instance, the precondition NAC in the filter criterion checking
HO-rule can be derived using a higher order negative constraint.
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