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Abstract: Triple Graph Grammars (TGGs) are a graph-based and visual technique
for specifying bidirectional model transformation. TGGs can be used to transform
models from scratch (in the batch mode), but the real potential of TGGs lies in prop-
agating updates incrementally. Existing TGG tools differ considerably in their incre-
mental mode concerning underlying algorithms, user-oriented aspects, incremental
update capabilities, and formal properties. Indeed, the different foci, strengths, and
weaknesses of current TGG tools in the incremental mode are difficult to discern,
especially for non-developers. In this paper, we close this gap by (i) identifying a
set of criteria for a qualitative comparison of TGG tools in the incremental mode,
(i1) comparing three prominent incremental TGG tools with regard to these criteria,
and (iii) conducting a quantitative comparison by means of runtime measurements.

Keywords: Triple Graph Grammars, incremental update, comparison

1 Introduction and Motivation

Bidirectional model transformation is a viable means of ensuring consistency in a Model-Driven
Engineering (MDE) context and Triple Graph Grammars (TGGs) [Sch95] have been shown to
be a promising, graph-based, and visual bidirectional language with solid formal foundations.
A TGG specifies a consistency relation between source, target, and correspondence models in a
declarative and rule-based manner. Using a TGG specification, operational scenarios such as a
forward/backward transformation can be supported, e.g., to transform a source/target model to
a target/source model, which can either be created from scratch (referred to as batch mode) or,
more importantly, be incrementally updated to restore consistency (incremental mode).

There are currently multiple TGG tools that support incremental updates. The incremental
mode of these tools differ in user-oriented aspects, update capabilities, and the formal properties
of the underlying incremental algorithm. Existing publications on TGG approaches, however,
either explicitly exclude the incremental case [HLG" 13], or only focus on a single TGG tool
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[GHO9, LAVS12]. It is thus a challenging task for users (non-developers) to understand the
different foci, strengths, and weaknesses of the TGG tools that support incremental updates.

In this paper, we complement the existing survey of TGG tools [HLG " 13], which only han-
dled the batch mode, by: (i) presenting a set of criteria for comparing TGG tools in incremen-
tal mode and (ii) extending the qualitative and quantitative comparison of the three TGG tools
MoTE, eMoflon, and the TGG Interpreter based on these criteria. In contrast to the existing batch
comparison, our criteria are focused strictly on the incremental case, which is the real strength
of TGGs and truly exploits the explicit support for traceability links. A discussion of formal
properties and restrictions regarding incremental updates is also provided, as each incremental
TGG tool focuses on different aspects. Our results, therefore, serve as a guideline for choosing
the appropriate TGG tool for a specific update scenario.

To the best of our knowledge, the chosen tools for the comparison were the only incremental
TGG tools at the time when this paper was written. We encourage TGG researchers to extend our
comparison with new incremental TGG tools in the future. This work is a further step towards a
benchmark for testing and evaluating existing and new (incremental) TGG tools.

The paper is structured as follows: Section 2 compares our contribution to existing surveys,
while Sect. 3 introduces TGG fundamentals and our running example. Section 4 provides our cri-
teria for a qualitative assessment of incremental TGG tools. Subsequently, Sect. 5 presents three
incremental TGG tools and compares them qualitatively. Section 6 shows runtime measurements
for a quantitative comparison, while Sect. 7 concludes with a brief discussion of results.

2 Related Work

Czarnecki et al. [CHO6] propose a feature model for model transformation handling aspects such
as transformation rules, algorithms, directionality and, relevant for this paper, incrementality.
Stevens [Ste08] gives a comprehensive overview of bidirectional transformation languages and
gives a brief qualitative discussion. A comparative case study of model transformation by graph
transformation is provided by Taentzer et al. [TEG"05], comparing four different approaches
including a TGG-based tool. Finally, Kusel et al. [KEK " 13] provide a survey of incremental
approaches including, amongst others, two TGG representatives.

Of the surveys mentioned so far, [CHO6] covers bidirectionality and incrementality briefly, but
do not focus on these aspects. Although [Ste08, TEG"05] identify TGGs as being suitable for
incremental transformations, the main focus is not on incremental updates. While [KEK " 13]
focuses on incrementality and distinguishes TGGs as being bidirectional, individual strengths
and weaknesses of TGG tools are not handled due to the broad scope of the survey. Finally,
[KEK 13, Ste08, TEG'05] discuss and compare different model transformation approaches
qualitatively, but none of the surveys conducts a quantitative tool comparison.

Lauder et. al [LAVS12] present a TGG-based incremental algorithm, which is discussed and
compared qualitatively to other approaches. User-oriented criteria are, however, not considered
and a performance analysis of different tools is not given. Although a quantitative analysis is
provided in [GHO09], the results cannot be used directly for a comparison as only a single TGG-
based tool is considered in each case. The survey of TGG tools in [HLG " 13] compares TGG tool
qualitatively and quantitatively in the batch mode and excludes the incremental mode explicitly.
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An extension of this survey to incremental TGG approaches is identified as future work. In this
paper, we now fill this gap by handling the incremental case.

3 Foundations and Running Example

In this paper, we discuss incremental updates with different TGG tools using a consistency rela-
tion between class diagrams and database schemata. This application scenario, abbreviated as
CDDS, is popular in the model transformation community [BRSTO06] and is used in [HLG"13]
to compare TGG tools in batch mode.

TGGs [Sch95] describe how consistent pairs of source and target models are built up simul-
taneously together with a correspondence model between them. In an MDE context, all source
and target models conform to a given source and target metamodel, respectively. Analogously,
the correspondence model conforms to a correspondence metamodel which connects the source
and target metamodel. The triple of metamodels is referred to as a TGG schema.

The upper part of Fig. 1 depicts the TGG schema for our CDDS example. The structure of
class diagrams, consisting of classes and associations between them, is described by the source
metamodel on the left. The source and target class of an association is represented by the source
and rarget reference, respectively. Moreover, an inheritance relationship between two classes
is represented by the super reference. The target metamodel on the right describes the struc-
ture of database schemata, consisting of tables and columns. A column can reference other
columns to represent cross-references or self-references in database schemata. Note that class
diagrams and database schemata in our example have a similar structure consisting of entities
(classes and tables) and their features (associations and columns). An interesting difference,
however, is the super reference between two classes that does not have any counterpart in a
database schema. Finally, the correspondence metamodel in the middle defines three correspon-
dence types ClassDiagramToSchema, ClazzToTable, and AssociationToColumn, which relate
elements of a class diagram with those of a database schema in a straightforward manner.

Together with a TGG schema, a set of TGG rules describes how triples of source, correspon-
dence, and target models, denoted as Mg <— M¢c — Mr, can be produced simultaneously. A rule
r = (L,R) consists of context elements representing the precondition L, and created elements
representing the completion of the postcondition R. Based on a pattern matching process, a
TGG rule is applied by extending an occurrence (match) of L to R in a model triple. Figure 1
depicts the six TGG rules required for our CDDS scenario. In concrete syntax, we use green and
a ++ markup to distinguish created elements from black context elements.

Rule 1 does not require any precondition and creates a class diagram and a database schema
as well as a correspondence between them. Rule 72 requires the created elements in r1 as pre-
condition and creates a class and a related table with a primary key column. Rule 73 creates a
subclass of an existing class and relates this subclass to the same table as its super class. Note
that r3 does not create any tables but relates existing ones to new classes. As a consequence, all
classes in the same inheritance hierarchy are related to the same table.

The remaining rules r4 — r6 handle the creation of associations in class diagrams and columns
in database schemata: Rule 74 creates an association between two classes that are related to
different tables, and a column that represents the corresponding cross-reference between the
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Figure 1: TGG schema and TGG rules for the running example

tables. An association from a class to itself and a self-reference column in the related table are
created by rule r5. Finally, rule r6 creates an association between two classes that are related
to the same table (due to inheritance), together with a self-reference column in the table. Note
that the attribute constraints in each rule define attribute relationships between class diagram
and database schema elements. In our simplified variant of CDDS, associations are restricted to
having only a single target class (0/1 multiplicity), and only single inheritance is supported.

As TGG rules define the simultaneous production of model triples, operational forward and
backward rules have to be derived to allow for forward and backward transformations. A for-
ward rule does not create any elements in the source model, but translates existing ones (e.g., the
forward rule of r2 translates a class by creating a new table with a primary key as well as a cor-
respondence in between). This applies analogously to backward rules. An interesting backward
rule in our running example results from r3, which does not create any target elements. In this
case, the backward rule does not translate any elements and is ignored in a backward transfor-
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mation as it would be unclear how often such rules should be applied. As a result, the backward
transformation does not create multiple classes related to the same table. In other words, super
references in a class diagram are not reproducible from the related database schema.

The operational rules are applied by a governing control algorithm to either translate an input
model to a related output model from scratch, or to propagate modifications in one model to an-
other already existing and related model. Our tool comparison focuses on the latter case: Given
a consistent model triple Mg <— Mc — My and a model delta Ag that changes Mg to Mg, an incre-
mental update in the forward direction revokes (former) invalidated forward rule applications and
performs new ones so that a consistent triple Mg <— M. — M is produced. Incremental updates
in the backward direction operate analogously. We focus on updates only in one direction as
concurrent changes in both domains are currently not supported by any incremental TGG tool.

4 Comparison Criteria

In the following, three groups of criteria are defined and used for the ensuing qualitative com-
parison of incremental updates with different TGG tools. Our comparison criteria, in contrast to
those in existing surveys mentioned in Sect. 2, focus strictly on incremental updates. Although
the discussion is provided from a TGG point of view, our criteria reflect the general requirements
and challenges for incremental updates in MDE, regardless of the chosen approach.

4.1 User-oriented Aspects (U)

The first step when propagating changes in a model M to a related model M7 is change detec-
tion (Ul), i.e., determining Ag that changes M to Mg. Model changes can be detected “online”
meaning that any modification is recorded at runtime or “oflline” via a model diff that compares
two versions of a model and derives the modifications retrospectively. An incremental approach
should support both change detection mechanisms so the user can make a case-specific decision.

Another major aspect is plausibility (U2) regarding the results of the incremental update. In
addition to explicit correspondences between related models supported inherently by TGGs, an
incremental tool should provide suitable means to understand the actions performed during the
update. A debug mode and/or (persistent) information such as an update protocol might be
imaginable to address this issue. Although this introduces additional components to be managed
by the user, it is advantageous to analyse, if possible in advance, the effects of an update.

A tool might be forced to make certain decisions to resolve non-determinism or to apply
heuristics during incremental updates. Considering incremental updates in the backward direc-
tion of our running example, a self-reference column of a table can be translated with either r5
or r6, giving rise to a degree of freedom: r5 would create an association from a related class to
itself, whereas r6 would create an association between two classes related to this same table. In
the latter case, a further decision point arises from determining the direction of the association,
1.e., which class is the source (or target) of the created association. More interestingly, these
decision points in the backward direction are only relevant in the incremental mode as only a
previous forward transformation can lead to these circumstances (recall from Sect. 3 that a back-
ward transformation does not create multiple classes related to the same table). Therefore, user
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involvement (U3) is a desirable feature to qualitatively improve the update result. The preferred
choice during a non-deterministic update process can be determined by incorporating user inter-
action, configuration files, or similar guidance. Finally, user involvement should be avoided if it
does not impact the result of the incremental update.

4.2 Incremental Update Capabilities (C)

The class of update scenarios that a TGG tool can handle is strongly affected by its supported
change types (CI). In an MDE context, four different types of change operations are distin-
guished: creation, deletion, movement, and attribute modification. A fully-fledged tool should
be able to propagate all of these four change types. Nevertheless, although this is not ideal, a
moved or modified element can be considered as deleted and re-created. Thus, a tool must at least
support creations and deletions to fulfill the minimum requirements for incremental updates.
Finally, backtracking or look-ahead capabilities (C2) of the underlying algorithm are crucial
in many incremental update scenarios. Some TGG tools are able to make a choice between more
than one applicable rule to translate a model element. In general, this choice might lead to a
wrong decision, meaning that a translation step results in untranslated elements at the end of the
whole process. TGG tools that do not support backtracking, a look-ahead, or decision making,
cannot cope with update scenarios in which model changes require previous rule applications
to be revoked, even though the applied rule still matches. Such a case can be constructed using
our running example: Assume two classes have been translated by 72 in a forward transforma-
tion. Now a new super reference is added, and is to be propagated incrementally, i.e., a class
becomes the subclass of another. Although 72 still matches for both classes, the subclass must
now be translated differently (with 73 instead) as the TGG specification relates all classes in an
inheritance hierarchy to the same table. The application of r2 must be revoked, and backtracking
or a look-ahead is required to ensure that r3, and not r2, is applied to re-translate the subclass.
It is important to emphasize at this point that TGG tools usually make a compromise between
backtracking/look-ahead capabilities, performance, and guaranteeing formal properties.

4.3 Formal Properties (F)

Given a consistent model triple Mg <— M¢c — My and a model delta Ag that changes My to Mg,
there are certain properties every TGG tool should guarantee when repairing consistency by
changing Mr to M}, i.e., computing a valid Az in a forward update. The following definitions
are formulated only for the forward direction for presentation purposes, but apply analogously
for the backward direction
The three major properties for TGGs [KLKS10] are revised as follows for incremental updates:
Correctness (F1): The result of the incremental update, i.e., M§ <— M — M}, must be con-
sistent, i.e., a member of the language generated by the TGG.
Completeness (F2): If there exists a consistent triple Mg <— M. — M., the update must find it.
Efficiency (F3): The execution time of the incremental update must be polynomial in the size
of Ag and its affected elements, and not in the size of the model triple. In this context, the affected
elements of Ag are all elements that must be either deleted or re-translated to restore consistency.
Finally, we introduce a new property to require a minimal update in the following sense:
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Least change (F4): An incremental update must choose a Ay to restore consistency such that
there is no subset of Ar that would also restore consistency, i.e., the computed Ar does not
contain redundant modifications.

Least change is required to preserve information, which should not be affected by propagated
changes. This property subsumes hippocraticness' [Ste10] but does not handle the case where
totally different sets of modifications are possible. Formalizing a least change property for this
more general case is ongoing research and is left to future work.

5 Qualitative Assessment

In the following, an introduction and qualitative assessment of three TGG tools are given in
accordance to the identified comparison criteria. It should be mentioned at this point that all three
TGG tools are based on the Eclipse Modeling Framework (EMF) enabling a direct comparison.

5.1 MoTE

Each TGG rule in MoTE (www.mdelab.de/mote) creates a single new correspondence, which
depends on all context correspondences of the rule. All created elements in the rule are con-
nected to this new correspondence. The incremental algorithm [GH09] of MoTE exploits the
induced dependency tree of correspondences to determine elements affected by a modification.
Correspondences connected to modified elements are sorted in a queue and processed by syn-
chronization operations. A synchronization operation checks if the consistency of an affected
correspondence can be re-established solely by updating attribute values. In case of success, de-
pendent correspondence nodes are put into the queue as their consistency might now be affected
by the attribute changes. Such a direct attribute propagation is not applicable if the modifica-
tion deletes elements connected to the correspondence. In this case, repair operations are used
to replace missing source elements by newly created ones, adjusting correspondence and target
elements instead of applying a complete rule. A successful repair operation does not necessarily
belong to the same rule that created the correspondence in a former run, i.e., consistency can be
repaired by using another rule after modifications. If the repair process also fails, the algorithm
deletes all obsolete correspondence and target elements (revoking the previous rule application),
and re-translates all modified elements.

User-oriented Aspects: MoTE utilizes the notification mechanism of EMF to recognize
model modifications at runtime (UI). Offline derivation of modifications via a model diff is not
supported. An overview of the actions performed by an incremental update is neither provided
in advance nor a-posteriori (U2). The TGG implementation of MoTE is designed for fully au-
tomatized scenarios and requires functional behaviour, which guarantees that the algorithm will
always produce the same result. As a consequence, rule application and consistency restoration
does not involve any decision making (U3).

Incremental Update Capabilities: MoTE supports all four different change types (C1), prop-
agating attribute changes with synchronization operations, and moved elements with repair oper-
ations. TGG specifications in MoTE are required to be conflict-free, meaning that the algorithm

! In a TGG-context this means doing nothing when the delta to be propagated does not induce any inconsistencies.
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expects at most one rule for translating an element at any given time. This limitation implies that
the algorithm does not have to choose between applicable rules, and thus eliminates the need for
backtracking or a look-ahead for the batch transformation and incremental updates (C2).

Formal Properties: Currently, the correctness (F'1) and completeness (F2) of the incremental
algorithm in MoTE has not yet been proven formally. Nevertheless, experience from numerous
case studies indicates that these properties hold for the incremental algorithm by analogy with
the MoTE batch algorithm, formalized and proven to be correct and complete in [GHL10]. In
general, the runtime complexity of the algorithm depends on the size of modifications and their
effects (F3) as only the affected correspondences are processed. The increase in runtime in
case of large-scale EMF data structures is negligible. The concept of synchronize and repair
operations directly addresses hippocraticness and least change requirements (F4), even though
the repair process has its limitations (e.g., missing source elements can only be replaced by newly
created elements and not already existing ones, even though this might be possible).

Current and Future Focus: Important future work for MoTE is the formalization of its incre-
mental algorithm to guarantee the basic TGG formal properties (F1, F2, and F3), and perhaps,
at least to a certain extent, even (F4).

5.2 TGG Interpreter

The TGG Interpreter” directly interprets TGG rules without first deriving operational forward or
backward rules from them. The incremental algorithm [GPR11] takes a modified graph triple,
iterates over rule applications in the order in which they were applied and checks whether the
respective rule application is still valid. In case of an invalidated rule application, a repair is
attempted by updating attribute values of elements created by the rule. If the rule application
is still invalid, e.g., due to structural modifications, correspondence and target elements associ-
ated with the rule application are marked as deleted. Subsequently, the affected source elements
are re-translated by applying the same or another rule. While applying a rule to repair consis-
tency, correspondence and target elements marked for deletion are reused when possible. Such
a rule application (i) removes the deletion marks of reused elements, (ii) creates the remaining
elements, and (iii) enforces attribute constraints. In a final iteration, correspondence and target
elements that are still marked for deletion are finally destroyed.

User-oriented Aspects: As the TGG Interpreter processes a modified model triple directly, it
does not require any intermediate delta structure. This eliminates the need for a change detector
as all modifications, more precisely, all induced inconsistencies are handled (Ul). A debugger
enables the transformation designer to examine the rule applications visually (U2). This feature
is, however, not yet provided in the official release. Users can influence the process of reusing
elements via configuration files (U3). However, user interaction is not supported for choosing
between multiple applicable rules.

Incremental Update Capabilities: The concept of reusing deleted elements enables the han-
dling of movements and attribute value changes along with additions and deletions (C/). In gen-
eral, the TGG Interpreter does not impose strong restrictions such as conflict-freeness or func-
tional behaviour, but also does not provide any guarantees that wrong decisions can be avoided

2 http://www.cs.uni-paderborn.de/en/research-group/software-engineering/research/projects/tgg-interpreter.html
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in every case, i.e., neither backtracking nor a look-ahead is implemented (C2). A crucial con-
sequence for incremental updates is that the algorithm does not reconsider decision points from
former runs to revoke invalidated rule applications (as required for our running example).

Formal Properties: Although the TGG Interpreter has been successfully used in various case
studies, the correctness of the incremental algorithm is yet to be formally verified (F7). Due
to a lack of backtracking or look-ahead functionality, the incremental algorithm is not com-
plete (F2), i.e., it may fail to determine a correct sequence of rule applications to be revoked and
re-applied. As the complete sequence of rule applications is checked for inconsistencies induced
by modifications, an efficient incremental update is infeasible (#3). The runtime complexity of
the algorithm is linear in the size of the model triple and exponential in the size of the modified
and affected elements. Reuse of correspondence and target elements has, together with appro-
priate user configuration, the potential to retain as much information as possible. This addresses
hippocraticness and least change requirements adequately (F4).

Current and Future Focus: An integration of the debugger in the official release, as well as
an additional visualization plugin to highlight the results of an incremental update, are planned
to improve plausibility (U2) during and after an incremental update. Backtracking functionality
(C2) is also planned to avoid dead-ends when applying rules (F2).

5.3 eMoflon

eMoflon (www.emoflon.org) performs a precedence analysis [LAVS12] to extract translation de-
pendencies in a model. The incremental algorithm calculates a precedence graph that determines
(i) which elements are translated together in a rule application, and (ii) which elements serve as
context for a certain translation. This auxiliary information is extracted automatically by means
of a pattern matching process prior to the actual translations. The incremental algorithm traverses
all dependencies of every deleted/added element and computes the set of transitively affected el-
ements that must be re-translated as a consequence. Affected elements are either (potentially)
created together with deleted/created elements or (potentially) require deleted/created elements
as context. Using a translation protocol persisted from the previous transformation, all affected
elements in the correspondence and output domain are deleted, while affected elements in the in-
put domain are marked as to be re-translated. Starting from this intermediate graph triple, which
represents a valid intermediate step of the batch mode, the normal batch algorithm [KLKS10] is
used to re-translate all affected input elements. Finally, all auxiliary data, i.e., precedence graphs
and translation protocols must be updated to complete the process.

User-oriented Aspects: eMoflon provides a data structure to express model modifications
as deltas. This decouples change detection mechanisms from the actual incremental algorithm.
Both online notifications, as well as offline model diff algorithms can, therefore, be employed
to create the delta data structure required by the algorithm (U/). Integrated support is, however,
only provided for online change detection via EMF notifications as part of eMoflon in the official
release. Translation protocols are recorded and can be used to “replay” the update in a visual
integration environment (U2). Moreover, the computed precedence graphs provide a suitable
means for foreseeing the consequences of the modifications. User involvement is enabled in
cases where more than one rule is applicable (U3).

Incremental Update Capabilities: Currently, eMoflon supports only deletions and addi-
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tions (C1), i.e., attribute value changes and movements are interpreted as a combination of these
two basic change types. Precedence graphs correctly indicate which rule applications must be
revoked after modifications, irrespective of rule applicability (C2), as they provide a global view
of dependencies compiled from all TGG rules. Moreover, a Dangling Edge Condition (DEC)
[KLKS10] is used as a look-ahead to determine if an edge of a translated node would remain
untranslated after a rule application (this is sufficient to avoid the translation of subclasses with
r2 in our running example). The restriction on TGGs is, therefore, relaxed from conflict-freeness
to a local completeness criterion [KLLKS10], which basically requires that DEC, i.e., a (local)
look-ahead of one step on edges, is sufficient to avoid wrong decisions for the given TGG.
Formal Properties: The incremental algorithm has been shown in [LAVS12] to be cor-
rect (F1) and complete (F2). Although the computation and maintenance of auxiliary informa-
tion (precedence graphs and translation protocols) incurs a certain overhead, the core incremental
algorithm has been shown, again in [LAVS12], to be efficient (F3). The least change property is,
however, clearly not guaranteed as the algorithm deletes all correspondence and output elements
affected by modifications, without attempting to reuse them (F4). In general, hippocraticness is
also not guaranteed due to a missing consistency check at the beginning of the translation.
Current and Future Focus: An integrated change detection mechanism is currently under
development (UI). Support for attribute changes is planned to extend the incremental update
capabilities (C/). Finally, an optimization of the precedence analysis is in progress to further
reduce the overhead and improve the efficiency of the complete incremental update process (F3).

5.4 Comparative Discussion

Table 1 summarizes the qualitative comparison of MoTE, the TGG Interpreter, and eMoflon
based on the introduced criteria, where @ denotes “sufficient/good”, © “can be improved”, and O
“missing/inadequate”. A more detailed discussion of each criterion is provided in the following
to reveal differences between the three tools.

| UL |U2|U3|Cl|C2|Fl|F2|F3|F4|

MoTE DENCENCOEN BECREORERN BN
TGGInterpreter | @ | © | © | @ | O | ©O | O | O | @
eMoflon DEBORN BEOEN BN BN REOREe

Table 1: Summary of the Qualitative Comparison

Both online and offline changes are detected only by the TGG Interpreter (U1 ), whereas MoTE
and eMoflon detect only online changes via EMF notifications with an in-built change detection
solution. Thus, MoTE and eMoflon can be improved by extending the change detection mech-
anism to the offline case. The TGG Interpreter and eMoflon provide additional components to
understand the actions performed by the incremental update (U2). These components are, how-
ever, currently used primarily by the tool developers who have a deep insight into the respective
tool and must, therefore, be improved and simplified for end-users. eMoflon supports user in-
teraction for choosing between different applicable rules and involves the user consequently in
the decision points (U3), whereas the TGG Interpreter uses user-specific configurations to con-
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trol reusing deleted elements but does not provide support for user interaction when choosing
between applicable rules. MoTE handles only updates without any decision making so user
involvement is, therefore, completely missing.

MOoTE and the TGG Interpreter propagate all four change types (C/). eMoflon can propa-
gate additions and deletions, only fulfilling the minimum requirements for incremental updates.
Movements and attribute changes in eMoflon are expressed as a combination of deletions and
additions, giving rise to a point for improvement. eMoflon reconsiders decision points from
a former run (backtracking) or avoids wrong decisions (look-ahead) when propagating model
changes (C2), whereas MoTE and the TGG Interpreter do not have such a mechanism and han-
dle only conflict-free TGGs with neither automatic nor manual decision making.

A formal proof of correctness (F1) and completeness (F2) in the incremental mode currently
exists only for eMoflon. Correctness of the incremental algorithm in MoTE and the TGG Inter-
preter is examined in different case studies but must sill be proven on a formal basis. The same
also applies to completeness of MoTE, whereas the TGG Interpreter does not guarantee com-
pleteness. Of all three tools, MoTE is most streamlined for guaranteed efficiency (F3), which
is also reflected by our runtime measurement results in Sect. 6. Efficiency of eMoflon suffers
in practice from additional computation steps for auxiliary information and must be improved
at this point, whereas the TGG Interpreter does not provide any guarantee for efficiency. MoTE
and the TGG Interpreter attempt to fulfill least change requirements (F4) by repairing rule appli-
cations and reusing deleted elements. Reusing elements and repair operations do not necessarily
guarantee least change or hippocraticness, but provide a sufficient means to attain these proper-
ties in practical scenarios. eMoflon does not strive for least change and hippocraticness in any
way as it directly revokes all affected rule applications without any attempts at repair or reuse.

6 Quantitative Comparison

In order to have a common basis for runtime measurements that can be handled by all three TGG
tools, we consider only additions and deletions (current limitation of eMoflon), and simplify
our running example by removing the rules 3 and r6. The resulting TGG is conflict-free and
can be handled without a look-ahead or backtracking (current limitation of MoTE and the TGG
Interpreter). Starting with randomly generated, consistent pairs of class diagrams and database
schemata with 1000, 5000, and 10000 elements, the following modifications to the source models
were propagated incrementally to the corresponding target models: (i) adding 1, 10, 100, and
1000 elements, and (ii) deleting 1, 10, and 100 elements. Each update was executed 20 times on
Intel Xeon E5420 machine with 2.5 GHz, 32GB RAM, running Debian Linux 5.0.3, Oracle JDK
1.7.0_25, and Eclipse 4.2., and the average values for each tool were measured. Note that exactly
the same elements were modified in each benchmark run so that the execution times of all runs
and all tools are directly comparable. The results for additions and deletions are depicted to the
left and right of Fig. 2, respectively.

MOoTE is currently the only tool that exhibits strictly efficient behaviour, depending only on the
change sizes regardless of model sizes (e.g., approximately 11 ms for 1 added element regardless
of test model size). Although eMoflon is in a few cases faster than MoTE (e.g., 1 or 10 deleted
elements in 1000 elements), its incremental update time increases with the model sizes due to
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Figure 2: Runtime measurement results for incremental updates

the maintenance of auxiliary data structures (e.g., 0.1s to 3s for 100 deleted elements in different
model sizes). This overhead is especially noticeable for deletions as this is a costly operation
in EMF.? Finally, the update times of the TGG Interpreter is the longest in most cases (e.g., 64s
when adding 1000 elements to 10000 elements, whereas eMoflon takes 2.7s, and MoTE only
0.4s) and depends on the model sizes as well. Similar observations can be made for runtime
results in the backward direction.

7 Conclusion and Future Work

In this paper, we have provided a set of criteria to compare current and future TGG tools in incre-
mental mode. We have also given a qualitative assessment of three prominent TGG tools based
on these criteria, and complemented this with a quantitative comparison using runtime measure-
ments of the well-known class diagrams to database schemata transformation. Our results lead
to the following conclusions: For scenarios that can be appropriately handled with conflict-free
TGGs, MoTE enables fully automatic and efficient incremental updates. eMoflon is able to han-
dle TGGs that require a look-ahead and decision making with the current price of an overhead
and a certain coupling with model size due to auxiliary data structures. The strength and focus
of the TGG Interpreter lies in its information preservation capabilities and not in efficiency.

Our quantitative comparison is conducted on one small example to have a common and simple
measurement basis for the considered tools. Our measurements provide a first insight into the
performance of these tools. But the relevance of our results in a real-world application scenario
might still depend on the characteristics of the respective scenario. In future work, we there-
fore plan to support and participate in the establishment of a new benchmark [ACG*14] and an
example repository [CMSG13] in the bidirectional transformations (BX) community. Our aim
is to cover more qualitative and quantitative aspects of incremental updates, in particular with
TGGs, and to gain more representative results when comparing the performance of different
tools. Finally, we encourage TGG researchers to extend this qualitative and quantitative com-
parison with new incremental TGG tools such as EMorF (www.emorf.org) and Henshin-TGG
(http://www.eclipse.org/henshin/projects.php).

3 eMoflon is almost completely implemented with graph transformations (bootstrapped with itself), increasing its
dependency on EMF.
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