
Electronic Communications of the EASST
Volume 67 (2014)

Proceedings of the
13th International Workshop on Graph Transformation

and Visual Modeling Techniques
(GTVMT 2014)

Solving the N-Queens Problem with GROOVE –
Towards a Compendium of Best Practices

Eduardo Zambon and Arend Rensink

13 pages

Guest Editors: Frank Hermann, Stefan Sauer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Solving the N-Queens Problem with GROOVE –
Towards a Compendium of Best Practices

Eduardo Zambon1 and Arend Rensink2

1zambon@inf.ufes.br
Department of Computer Science and Electronics (DCEL/CEUNES)

Federal University of Espirito Santo (UFES), Brazil

2arend.rensink@utwente.nl
Formal Methods and Tools Group
Department of Computer Science

University of Twente, The Netherlands

Abstract: We present a detailed solution to the N-queens puzzle using GROOVE, a
graph transformation tool especially designed for state space exploration and anal-
ysis. While GROOVE has been freely available for more than a decade and has
attracted a reasonable number of users, it is safe to say that only a few of these users
fully exploit the tool features. To improve this situation, using the N-queens puz-
zle as a case study, in this paper we provide an in-depth discussion about problem
solving with GROOVE, at the same time highlighting some of the tool’s more ad-
vanced features. This leads to a list of best-practice guidelines, which we believe to
be useful to new and expert users alike.

Keywords: GROOVE, N-Queens Problem, Tool Usage Guidelines

1 Introduction

It is widely understood that the ultimate acceptance of graph transformation as a practically
useful and valuable modelling technique is largely dependant on the availability of reliable tool
support. Yet it is almost as widely accepted to be a nearly insurmountable challenge to create
and especially maintain that tool support in an academic context. The main difficulty may not
even be the lack of manpower but the lack of academic credit that flows from this kind of work:
how can one package tool maintenance and documentation in such a way that the results are
publishable within the scientific community?

This paper represents an attempt to overcome this challenge. We discuss, on the basis of a
well-known example, namely the N-queens problem1, the design choices one has to go through
in order to arrive at a solution. The contribution of the paper is not so much the solution itself
but the actual development process followed to find said solution.

The N-queens problem is a representative of a certain class of questions which can sometimes
be solved analytically, by a proof dedicated to the problem itself, which then immediately ap-
plies to arbitrary instances of the question (in this case, arbitrary values for N); or they can be

1 See, e.g., http://en.wikipedia.org/wiki/Eight_queens_puzzle.

1 / 13 Volume 67 (2014)

mailto:zambon@inf.ufes.br
mailto:arend.rensink@utwente.nl
http://en.wikipedia.org/wiki/Eight_queens_puzzle

Solving the N-Queens Problem with GROOVE

zzzzz5Qzz
zzz5Qzzzz
zzzzzz5Qz
5Qzzzzzzz
zzzzzzz5Q
z5Qzzzzzz
zzzz5Qzzz
zz5Qzzzzz

Figure 1: Solution for the 8-queens puzzle.

regarded and treated as search problems, in which the quest is to find a graph (or, more gener-
ally, a state) with particular properties. Search problems also include model checking questions,
where one typically searches for a state that violates some requirements and hence represents
erroneous behaviour. These questions can be solved, or attempted to be solved, by general,
push-button techniques, but only once they have been appropriately modelled. What constitutes
an appropriate model is very often a question of trial-and-error: there are always many possible
ways to capture any given aspect of a problem, some of which make the solution harder to find
automatically whereas others may actually dramatically reduce the search space.

In the case of this paper, we take GROOVE as our general-purpose tool used to solve the
problem at hand, and we show how certain tool features can be exploited to significantly improve
the capacity for treating larger problem instances. We present these insights in the form of
guidelines (or best practices). Some of these guidelines are valid for any graph transformation
modelling tool or even for any modelling attempt at all; some are dedicated to GROOVE and
address especially the capacity for symmetry reduction.

More information about GROOVE can be found in, e.g., [Ren03, GMR+12] and the tool user
manual; however, this paper is self-contained and understandable without prior experience —
even though we heartily recommend trying out the example for oneself.

In the paper, we first recall the problem itself (Section 2) and then develop the solution step-by-
step (Section 3). We then show the results for this particular problem (Section 4) and conclude
in Section 5.

2 Problem

The N-queens puzzle requires the placement of N queens on an N×N chessboard in such a way
that no queen can attack any other. In chess, a queen is able to move any number of squares in
any of the eight directions, and thus a solution to the puzzle requires that no two queens share the
same row, column, or diagonal. In the usual instance of the problem a standard sized chessboard
is used, and therefore we have N = 8. Figure 1 shows one solution for this instance.

Proc. GTVMT 2014 2 / 13

ECEASST

N 1 2 3 4 5 6 7 8 9 10

N-queens problem distinct solutions 1 0 0 2 10 4 40 92 352 724
unique solutions 1 0 0 1 2 1 6 12 46 92

k-queens variant minimum k 1 1 1 3 3 4 4 5 5 5
unique solutions 1 1 1 2 2 17 1 91 16 1

Table 1: Summary of (known) solution counts for the different problem instances.

The 8-queens puzzle has 92 distinct solutions. If we collapse (count as one) solutions that
differ only by rotations and reflections of the board, the puzzle has 12 unique solutions. Given
that there are

(64
8

)
= 4,426,165,368 possible arrangements of eight queens on a 8× 8 board, it

is unfeasible to use a simple brute force algorithm that generates a configuration and tests if it is
a solution.

Finding all (unique) solutions to the 8-queens puzzle is a classic example of a simple but non-
trivial problem, which has been used many times as an exercise in algorithm design. In 1972, Di-
jkstra [DDH72] presented a solution using a recursive depth-first backtracking algorithm. Since
then many other programming techniques such as constraint and logic programming have used
this problem to illustrate their features.

The number of distinct and unique solutions for 0 < N < 27 are respectively given in se-
quences A0001702 and A0025623 of the On-Line Encyclopedia of Integer Sequences (OEIS).
This information is summarised in Table 1 for N up to 10. A variant of the problem consists
of finding the minimum number of k queens needed to occupy or attack all squares of a N×N
board. For the 8-queens puzzle the answer is k = 5, with 91 unique configurations. The summary
for this problem variant is given in the last two lines of Table 1.

3 Solution

In this section we present our GROOVE solution for the N-queens puzzle, and the results obtained.
The rationale as to why the solution was modelled in this way gives rise to a set of design
guidelines, presented in Section 4.

An important feature of GROOVE is its ability for isomorphism detection, potentially enabling
large state space reductions. For this to be applicable to the problem at hand, the graph represen-
tation used should be modelled so as to be isomorphic whenever possible. This means that (in
terms of Table 1) we aim to find unique and not distinct solutions.

3.1 Initial considerations

A GROOVE grammar has at least two main components: a start graph, describing an initial
configuration; and a rule set, describing the actions to be performed. Typically, one starts by
designing the start graph, followed by the rules. However, in many cases there is an iterative
cycle, where some insights gained during rule creation lead to changes in the start graph.

2 http://oeis.org/A000170
3 http://oeis.org/A002562

3 / 13 Volume 67 (2014)

http://oeis.org/A000170
http://oeis.org/A002562

Solving the N-Queens Problem with GROOVE

The design of a grammar is a creative process akin to programming, and as such, some famil-
iarity with the tools employed (programming language, compiler, etc) is expected in order for
“effective” solutions to be obtained. Analysing our experiences with novice (student) GROOVE

users, it is clear that an important skill that needs to be acquired is the ability to think declar-
atively and in terms of graph structure. Unfortunately, such ability is hard to teach and also to
condense as guidelines; it can usually only be acquired by practice. Nevertheless, as with many
intellectual endeavours, once the proper mindset is achieved it becomes a second nature.

Continuing with the programming analogy, the definition of what an “effective” solution
means is up to debate. In problems of the kind considered in this paper, effectiveness certainly
requires computational efficiency. State space exploration is inherently a complex combinato-
rial problem, and as such, we consider a grammar “effective” if it produces the desired answer
within a reasonable amount of time, and without exhausting the available resources (e.g., mem-
ory). Once more, a “reasonable amount of time” is still a subjective metric, dependent on the
user view of the problem complexity. We return to this discussion in Section 3.4.

Finally, we would like to point out the interplay between certain modelling choices and the
associated difficulty in rule creation. In some cases, resorting to a simpler start graph repre-
sentation can make the rules more complex, and therefore, harder to write. Additionally, the
way a grammar is modelled may have a significant impact on tool performance. When attack-
ing a new problem, we follow the motto by Knuth that “premature optimisation is the root of all
evil” [Knu74], and thus we initially strive for ease in grammar design. Only after an initial gram-
mar is crafted, if performance happens to be problematic then some tweaking is done. Further
discussion about this point is interspersed throughout the rest of this paper.

3.1.1 Start graph — representing the board

Representing a chessboard as a graph can be done in several ways. In the course of this section
we present the options that were considered until the final representation was found.

We begin by modelling each board square as a graph node. The immediate question that
follows is which characteristics of a square should be transferred to its associated node. We
recall that a key aspect in abstracting a real-world artefact (the chessboard) into a graph model
is preventing unnecessary details from creeping into the model. For instance, while in the real
board a square can either be “light” or “dark”, this characteristic is irrelevant for solving the
puzzle, and therefore square colour is not represented in the graph node.

Each square of the real-world 8×8 chessboard is identified by its column (denoted with letters
a to h) and its row (denoted with numbers 1 to 8). Such naming convention could in principle be
used to distinguish each of the 64 nodes in the graph, but we discard this idea for two reasons:

1. The valid placement of a queen in a node becomes complex to represent in the rules,
since the conditions for attacks (no other queen in the same row, column or diagonal) have
to be formulated in terms of square attributes. Note that while such conditions can be
easily expressed and tested for in a conventional imperative programming language, when
working with attributes in a purely graph-based setting this is not so straightforward.

2. Making each node totally distinct from the others completely eliminates graph symme-
try under rotations and reflections. This effectively renders the isomorphism checking of
GROOVE moot.

Proc. GTVMT 2014 4 / 13

ECEASST

hh

h

h

h

h

h

h

h

h

h

h

vv

v

v

v v

v

v v

v v

v
rd

ld

ld

rd

rdrd

rd

rd ld

ld

ld ld

rd ld

ld

ld rd

rd

Q

Q

Q

Q

d

d

d d

dd

dd

d

d

dd

d

d

d

dd

d

p

p

p

p

p

p

p

p

p

p

pp

p p p

p

p

p

p

p p

p

p

p

(a) Start graph representing a 4×4 board (b) Unique solution (after edge renaming)

Figure 2: Start and final graphs for the 4-queens problem.

In the end, we represent an empty square simply as an unlabelled node, ; and a square
occupied by a queen as a Q-labelled node, Q . This simplistic node model implies that node
distinction has to be based on incident edges. Figure 2(a) shows the start graph representation
used to model a 4×4 board. Nodes are distinguished by their neighbours, identified by the con-
necting edges. Edges labelled h and v indicate horizontal and vertical neighbourhood relations,
respectively. Diagonals are distinguished by their orientation: NW-SE diagonals are called left
diagonals and are labelled ld; NE-SW diagonals are called right diagonals and are labelled rd.
Note that all edges are bidirectional4 (i.e., undirected) since all relations are symmetric.

3.1.2 Rules — constructing a solution

It can be immediately seen that the start graph given in Figure 2(a) has only one degree of
symmetry, namely over a 180◦ rotation, due to the distinction between horizontal and vertical
edges and between left and right diagonals. However, this representation is convenient as it
allows us to solve the problem with a single rule for queen placement. After a solution is found,
we “repair” the board with another rule that restores symmetry.

Figure 3 shows the rules of the grammar. The place rule performs a single step towards a valid
solution, by placing a queen in a suitable square. The topmost node in the rule tries to find a
square that does not already have a queen, as indicated by the embargo5 condition ! Q inside the
node. The candidate square should also not be under attack by another existing queen: this is
encoded by the bottom (embargo) node, coloured in red. It should not be possible for an exist-
ing queen to reach the selected square in a straight line from any direction, either horizontally,

4 GROOVE works only with directed edges, so to represent a symmetric relation between two nodes we have to use
two opposite directed edges. These edges are rendered in the GUI as a single bidirectional (double-arrowed) edge to
avoid visual clutter.
5 Embargo is the GROOVE terminology for a negative application condition (NAC).

5 / 13 Volume 67 (2014)

Solving the N-Queens Problem with GROOVE

+ Q
! Q

Q

h+|v+|ld+|rd+

∀>0 ∀>0

d

?[ld,rd]
@@

p

?[h,v]
@@

Q ∀

int
0

@

count

(a) place rule (b) rename rule (c) count rule

Figure 3: Rules of the N-queens solution.

vertically, or diagonally. This restriction is imposed by means of the regular expression placed
in the edge: h+|v+|ld+|rd+. In this expression, h+ matches a path in the host graph formed by one
or more h-edges (and similarly for the other labels), and | represents a path choice. If indeed
a proper square can be found, a new queen should be placed there, as indicated by the creator
label + Q inside the reader node.

Rule rename (Figure 3(b)) renames all edges of the board in order to restore the other sym-
metries. In this way, GROOVE can use isomorphism checking to collapse similar final configura-
tions, thus obtaining only the unique solutions for the puzzle. Symmetry is achieved by renaming
left and right diagonals to d-edges, and by transforming horizontal and vertical edges into p-edges
(perpendicular).6 The rule uses wildcard labels ?[ld,rd] and ?[h,v], each of which matches either of
the labels between square brackets. Additionally, universal quantification modifies all edges in a
single application, thus avoiding interleaving due to independent rule applications and therefore
simplifying the state space (see Section 4 for further discussion).

At this point one may wonder why the renamed board with only d- and p-edges was not already
used as a start graph. The reason for avoiding this simpler representation at the beginning is that
it would make queen placement much harder to express. For instance, the regular expression in
Figure 3(a) cannot simply be replaced by p+|d+, as this new condition allows paths to “bend”
over board corners. To illustrate this problem, see Figure 2(b), which shows the single unique
solution for the 4-queens puzzle. For example, the queens at the first column and at the last row
can reach one another via a p+ path that goes over the lower left corner, but these queens are not
attacking each other. This is a case of the point discussed at the last paragraph of Section 3.1,
where a compromise between rule and start graph complexity has to be achieved.

Finally, we do not only want to find a solution but also report it; in particular, we want to
count the number of queens that have been successfully placed at the end. This is what rule count
in Figure 3(c) achieves: it quantifies over all nodes with a Q-label, and lifts the count to a rule
parameter (indicated by the black adornment on the top left corner of the int-node): for instance,
if there are 4 Q-labelled nodes as in Figure 2(b), applying this rule will result in a transition
bearing the label count(4).

6 Edges have their label fixed upon creation so label renaming requires deleting the edge with the old label and
creating another edge with the new label. In GROOVE, deletions are represented by the so-called eraser elements,
drawn in dashed blue.

Proc. GTVMT 2014 6 / 13

ECEASST

3.1.3 Typing — improving the solution

The start graph and rules we have discussed above are untyped: we have used particular labels
with a certain intuition, but there was nothing to prevent us from choosing other labels, and
nothing to warn us of a typo. This is excellent for rapid prototyping, but at a certain stage it
becomes useful to enforce one’s own representation choices by introducing a type graph, fixing
the allowed labels and assigning node types to every node. Our sample case is simple enough to
remain understandable and maintainable in the absence of typing: for instance, there is only a
single node type (representing a square of the board). The actual rule system made available at
groove.cs.utwente.nl does use typing.

3.2 Control of rule application

Rule rename should only be applied after all queens are placed because it modifies the board
representation expected by rule place. Rule count, furthermore, should come after rename because
we want to count unique solutions modulo all possible degrees of symmetry. To ensure such
order of rule applications, we use a control program, which instructs GROOVE on which rules to
try, and in which order.

Listing 1 shows the control program used in our solution. Line 1 in the program tries to place
queens in the board as long as possible, as indicated by the keyword alap. When rule place can
no longer be applied we have found a valid solution for the k queens coverage problem. Among
these solutions we also have the answer for the original problem when k = N. Note that, by
construction, the inapplicability of rule place is a sufficient condition for obtaining a k coverage
solution; when GROOVE cannot find a node to apply the rule to, we can conclude that every
square of the board is either occupied or under attack.

Listing 1: Control program for rule application.
1 alap place; // Place queens as long as possible
2 rename; // Rename the edges to get a symmetric board
3 count; // Count the number of queens placed

After all queens are placed, control moves
to line 2 of Listing 1, where rule rename is ap-
plied. Since this rule operates over the entire
board due to quantification, only a single invo-
cation is necessary. Following this renaming,

all distinct solutions are collapsed under isomorphism (done automatically by the tool during
exploration) and the remaining final states correspond only to unique solutions.

The last step of the control program invokes count and thus marks the final states with the
corresponding number of queens. As explained above, the rule does not actually modify the
graph, but will result in a transition labelled by the (parameterised) rule.

3.3 Extracting information from the state space

After the state space is fully explored and stored as a labelled transition system (LTS), we can
analyse it to obtain the desired information. For our running example, we are interested in the
number of final states marked by the count rule. These states also enumerate all unique solutions
of a problem instance.

For N up to five, the state space is quite small and can be directly inspected using the LTS view
of the Simulator. This approach is quite useful during the grammar design, as it allows the user to
interactively experiment with the rules, and to have an immediate feedback after an exploration.

7 / 13 Volume 67 (2014)

groove.cs.utwente.nl

Solving the N-Queens Problem with GROOVE

However, for N > 5 the state space grows to more than a thousand states, which renders visual
inspection unfeasible. For these cases, we use the Prolog extension of GROOVE [GZR+11],
which lets us query the state space programmatically.

Listing 2: Prolog program for querying the transition system.
1 % Usage: rule_application_target(+RuleName, ?Target)
2 % Finds the resulting state after an application of a rule with a given name.
3 rule_application_target(RuleName, Target) :−
4 state(Source), % Get a source state in the LTS
5 state_transition(Source, Transition), % Get a transition from source state
6 edge_label(Transition, RuleName), % Test whether the transition label is the one we seek
7 transition_target(Transition, Target). % Get the target state from the transition
8
9 % Predicate to print the number of final states with a given N queens count.

10 report(N) :−
11 length(RuleNames, N), append(RuleNames, _, % Select the N first elements of the list of transition labels
12 [’count(1)’, ’count(2)’, ’count(3)’, ’count(4)’, ’count(5)’, ’count(6)’, ’count(7)’, ’count(8)’, ’count(9)’, ’count(10)’]),
13 member(RuleName, RuleNames), % Pick one rule name to use
14 findall(State, rule_application_target(RuleName, State), States), % Collect all states where the rule was applied
15 write(’ ’), write(RuleName), write(’: ’), length(States, L), write(L), write(’ states.’), nl, % Report
16 fail % Fail so we backtrack to ’member’ and pick another rule name
17 .

Listing 2 shows the Prolog program used for state space analysis. Lines 1–7 show the def-
inition of a predicate for finding a state in the LTS that is the application target of the given
rule. Note that the body of rule_application_target is composed entirely of predicates created for
the Prolog extension of GROOVE. These provide the user with the power to access the internal
GROOVE data structures without having to delve into the tool code.

?− report(6)
count(1): 0 states.
count(2): 0 states.
count(3): 0 states.
count(4): 17 states.
count(5): 28 states.
count(6): 1 states.

After exploring the state space, we use the predicate in lines 9–17
to report the result counts. Predicate report selects the N first elements
from the rule name list in line 12, and proceeds to collect all states
marked with each rule on the list (lines 13–14). For each collected set,
its size is printed (line 15). The results of a query for the 6-queens
puzzle is shown on the right. For a much more detailed description
about the Prolog extension and its usage, see [GZR+11].

3.4 Results

After the grammar was finished, we performed tests (state space explorations) with N ranging
from 2 up to 10 7. When analysing the test results we are interested in two main points:

• Grammar testing: the solution counts found for each value of N should match the num-
bers given in Table 1.
• Grammar (tool) performance: the time required for a full space state exploration should

be “reasonable”, when considering the state space size of each instance.

Table 2 summarises the results obtained. For each value of N the corresponding line shows:
the state space size in terms of state and transition counts; the time needed to perform a full state
7 Picking a value for N amounts to selecting a properly sized start graph from the grammar.

Proc. GTVMT 2014 8 / 13

ECEASST

N
State space size Time Uni. Solution count for coverage with k queens
States Transitions (s) sols. 1 2 3 4 5 6 7 8 9 10

2 5 7 < 1 0 1 0 – – – – – – – –
3 14 24 < 1 0 1 1 0 – – – – – – –
4 53 117 < 1 1 0 0 2 1 – – – – – –
5 254 717 1 2 0 0 2 4 2 – – – – –
6 1,429 4,810 2 1 0 0 0 17 28 1 – – – –
7 8,954 35,785 10 6 0 0 0 1 160 69 6 – – –
8 62,159 289,581 79 12 0 0 0 0 91 871 307 12 – –
9 472,424 2,529,678 774 46 0 0 0 0 16 968 4,848 1,335 46 –

10 3,862,735 23,362,184 8,538 92 0 0 0 0 1 107 10,443 30,278 6,199 92

Table 2: Results obtained by varying N with isomorphism checking enabled.

space exploration; the number of unique solutions with N queens found; and the solution count
for the k queens coverage problem. We discuss each of these numbers in turn.

State space sizes show the usual explosion, i.e., an exponential growth on the number of states
w.r.t. N. This kind of explosion is commonplace within the setting of combinatorial problems.
The 3.8 million states computed for N = 10 lie around the usual limit the tool can handle. At
the time of this writing, the maximum number of states standard GROOVE has ever reached in
a published experiment was around 7 million [GMRZ10], for a grammar modelling a network
protocol for car platoon construction in highways. Using an experimental version of the tool
with distributed exploration, this limit was raised to 35 million states [BKR10] but this required
the use of extra tools for parallel execution.

The fourth column of Table 2 lists the running times for state space exploration using a DFS
traversal8. DFS was preferred over BFS as it usually requires less memory [GMRZ10]. All
tests were run on a 64-bit laptop with 6GB of RAM. The running time for the 8-queens problem
was slightly over 1 minute. While this might seem high when compared to a dedicated solution
written in a common programming language, we consider this time reasonable for a solution
obtained by a general purpose tool, i.e., that has no particular heuristics for the problem. When
N increases to 9 and 10, the respective running times of 12 minutes and two and half hours can
no longer be considered reasonable.

Moving to the columns presenting the solution counts, we see that the unique solutions column
of Table 2 matches the second line in Table 1. The same can be said about the results for the k
queens coverage problem, where the first non-zero column in Table 2 shows the minimal k for
solving the problem and the number of unique solutions for such k. It is interesting to point out
that our grammar not only finds all solutions for the minimal k and k = N cases, but also all other
solutions for k lying in between these extremes.

4 Guidelines

We are now ready to generalise the content from the previous section into some tool usage
guidelines. As discussed in the introduction, it should be born in mind that these apply in the

8 Querying times for the Prolog program are not shown since they are negligible when compared to exploration time.

9 / 13 Volume 67 (2014)

Solving the N-Queens Problem with GROOVE

N
State space size Time Distinct

States Transitions (s) solutions
2 13 12 < 1 0
3 36 43 < 1 0
4 123 220 < 1 2
5 578 1,411 1 10
6 3,331 9,676 3 4
7 20,594 72,427 15 40
8 139,345 585,256 131 92
9 1,030,642 5,098,357 1,241 352

Table 3: Results obtained by varying N with isomorphism checking disabled.

problem class of state space search (which occurs for instance in model checking), where the
dreaded space state explosion has to be tamed. For users employing GROOVE in other settings,
[GMR+12] offers some more recommendations.

Furthermore, the guidelines below focus mainly on GROOVE characteristics and features; we
do not explicitly present generalisations applicable to other tools as this would require an exten-
sive comparison of functionalities. However, users of other similar tools can lean on the sim-
ilarities to transfer these guidelines to their own tool, when applicable. Comparisons between
GROOVE and other existing graph transformation tools are given in [GMR+12, JBW+13].

Minimalism is beautiful. State space exploration entails generating and storing all reachable
graphs of the grammar, meaning that every rule application yields a new state that has to be kept
in memory. While several optimisations are programmed in the tool (e.g., keeping only the deltas
between source and target states), the bottom line here is keep your graphs to a bare minimum,
as smaller and simpler graphs usually help performance. Of course, as discussed in Section 3.1,
this recommendation needs not to be taken to extremes. In the end, the user is presented with an
engineering problem, where a proper balance between graph simplicity, performance, and ease
of grammar design has to be found. An exception should be made here concerning remark nodes
and edges, which can be used to document rules: these are quite helpful and cause no overhead
in the exploration.

Symmetry is your friend. The main feature that distinguishes GROOVE from other model
checkers is its representation of states as graphs. This representation in turn allows the tool
to perform symmetry reduction of similar states, by collapsing isomorphic graphs into a single
canonical representative.

Much research has been done to make isomorphism checks fast. GROOVE uses certificates (a
sort of graph hash) to speed up comparisons, which works very well in practice [Ren06a]. To
illustrate the impact symmetry reduction has on our running example, we ran exploration tests
for N up to 9 with isomorphism checking disabled, with Table 3 showing the results. Taking for
instance the 8-queens problem, the state space doubles in size when isomorphism checks are not
used, with the running time for the exploration also doubling accordingly.

Of course, for isomorphism checks to be effective, state graphs need to contain a certain degree
of symmetry. When this symmetry is not present in the real world artefact being modelled, the
checks can be disabled to avoid unnecessary overhead. However, in general the user should

Proc. GTVMT 2014 10 / 13

ECEASST

strive for host graph representations that have symmetry, as was done for this case study. A
suggestion for achieving this is sticking to standard graphs (with nodes and edges only) when
possible. An example was discussed in Section 3.1: attributes make nodes distinct and therefore
break symmetry.

Be greedy when designing your rules. Here the recommendation is simple: do as much as
possible in one rule to avoid producing unnecessary intermediates states. This was illustrated in
Figure 3(b) with rule rename; we want to relabel all edges of the board, so we do it in one step
using universal quantification. Had this relabelling been done in a stepwise fashion, it would
generate possibly many additional states storing the mixed board representation; a wasted effort
since all these states end up in the same final configuration.

GROOVE allows nested quantification of rule conditions, enabling one to write very expressive
transformation rules [RK09]. In [Ren06b], an analysis of a gossiping network protocol showed
that the grammar state space is reduced by 2 orders of magnitude when quantification is used.

Keep your rules under control. The interleaving of rule applications is one of the big culprits
of state space explosion, as every sequence of applicable rules have to be considered. Fur-
thermore, rule matching is an NP-complete problem, and therefore, computationally expensive.
Luckily, rule applications usually follow some predetermined sequence that can be used. The
simplest form of rule ordering in GROOVE is done with priorities: a lower priority rule is only
scheduled for matching if all other rules with higher priority are not applicable. A more powerful
and flexible form of scheduling uses control programs, such as the one shown in Listing 1. Ex-
cept for the most simpler cases, the use of control programs is usually preferred over priorities,
since programs allow more complex rule sequencing. In the end, the take away message is: use
some form of rule scheduling whenever possible.

Make sure to get your results out. The simplest form of state space analysis is by visual
inspection but this can only be done for very small transition systems (LTSs). For larger LTSs, the
usual method is model checking, and GROOVE supports both variants: CTL and LTL formulæ.
However, model checking can be cumbersome as it requires the entire property of interest to be
written in a single logical formula. A much more flexible method is the use of Prolog queries,
such as the one given in Listing 2. All in all, here the message is: there are several methods for
state space analysis, make sure to pick the one most suitable to your needs.

5 Conclusion

We usually advertise GROOVE as a flexible modelling tool, specially suited for rapid prototyp-
ing [GMR+12]. Indeed, at least for us, GROOVE is flexible and easy to use, but our own tool
experience is obviously not a good representative of the “average” user. The goal of this paper
was to bridge the gap (or at least shrink it) between novice and more advanced GROOVE users by
pointing to information that we, as tool developers, consider important but that up to now was
not properly available and documented.

As a side note, we are aware that this text contains a high number of imprecise terms such as
“usually”, “generally”, “in some cases”, etc. We hope for some understanding from the readers

11 / 13 Volume 67 (2014)

Solving the N-Queens Problem with GROOVE

in this matter, as this language use is an unfortunate side-effect of writing about best practices and
guidelines. For every rule there is an exception, and making clear-cut statements about certain
topics would make them dubious at best, and plain wrong at worst.

The N-queens puzzle is a good representative for the class of combinatorial problems that can
be tackled using GROOVE, and therefore the information presented here is geared towards this
kind of problem. Future work w.r.t. this form of documentation points to the development of
similar tool usage guidelines for other problem classes, such as model transformation. A more
extensive line of future work points towards a tool usability study, where an empirical evaluation
with novice GROOVE users could help identify the strengths and weaknesses of the tool.

Related tools. In this paper we have concentrated on the capabilities and features of GROOVE;
as stated in the beginning of Section 4, our guidelines have been formulated especially with
this in mind. Of the rich set of other graph transformation-based tools, we believe that HEN-
SHIN [ABJ+10] comes closest in matching the particular capabilities of GROOVE. For a very
comprehensive overview of other modelling graph-based tools see [JBW+13].

Availability. The experiments presented in this paper were performed with GROOVE version
4.9.2, available at http://groove.cs.utwente.nl. The grammar for solving the N queens puzzle can
also be downloaded at the same address.

Bibliography
[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced Concepts and

Tools for In-Place EMF Model Transformations. In Model Driven Engineering Languages
and Systems (MODELS), Part I. LNCS 6394, pp. 121–135. Springer, 2010.

[BKR10] S. C. C. Blom, G. Kant, A. Rensink. Distributed Graph-Based State Space Generation. In
International Workshop on Graph-Based Tools (GraBaTs). Electronic Communications of
the EASST 32. European Association of Software Science and Technology (EASST), 2010.

[DDH72] O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare. Structured Programming. Academic Press Ltd.,
London, UK, 1972.

[GMR+12] A. Ghamarian, M. de Mol, A. Rensink, E. Zambon, M. Zimakova. Modelling and Analy-
sis Using GROOVE. International Journal on Software Tools for Technology Transfer (STTT)
14(1):15–40, 2012.

[GMRZ10] A. Ghamarian, M. de Mol, A. Rensink, E. Zambon. Solving the Topology Analysis Case
Study with GROOVE. In Transformation Tool Contest (TTC). 2010. http://is.ieis.tue.nl/staff/
pvgorp/events/TTC2010/submissions/final/groove.pdf.

[GZR+11] I. Galvão, E. Zambon, A. Rensink, L. Wevers, M. Aksit. Knowledge-based Graph Explo-
ration Analysis. In International Symposium on Applications of Graph Transformation with
Industrial Relevance (AGTIVE). LNCS 7233, pp. 121–136. Springer, 2011.

[JBW+13] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Hegedüs, M. Hermannsdörfer, T. Horn,
E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. M. Rose, S. Wätzoldt, S. Mazanek.
A Survey and Comparison of Transformation Tools Based on the Transformation Tool Con-
test. Science of Computer Programming, pp. 1–59, November 2013.

Proc. GTVMT 2014 12 / 13

http://groove.cs.utwente.nl
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/submissions/final/groove.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/submissions/final/groove.pdf

ECEASST

[Knu74] D. E. Knuth. Structured Programming with Goto Statements. ACM Comput. Surv. 6(4):261–
301, 1974.

[Ren03] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In International
Symposium on Applications of Graph Transformation with Industrial Relevance (AGTIVE).
LNCS 3062, pp. 479–485. Springer, 2003.

[Ren06a] A. Rensink. Isomorphism Checking in GROOVE. In International Workshop on Graph-Based
Tools (GraBaTs). Electronic Communications of the EASST 1. European Association of Soft-
ware Science and Technology (EASST), 2006.

[Ren06b] A. Rensink. Nested Quantification in Graph Transformation Rules. In International Confer-
ence on Graph Transformations (ICGT). LNCS 4178, pp. 1–13. Springer, 2006.

[RK09] A. Rensink, J.-H. Kuperus. Repotting the Geraniums: On Nested Graph Transformation
Rules. In International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT). Electronic Communications of the EASST 18. European Association of Software
Science and Technology (EASST), 2009.

13 / 13 Volume 67 (2014)

	Introduction
	Problem
	Solution
	Initial considerations
	Start graph — representing the board
	Rules — constructing a solution
	Typing — improving the solution

	Control of rule application
	Extracting information from the state space
	Results

	Guidelines
	Conclusion

