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Abstract: Modeling and simulating dynamic systems require to represent their pro-
cesses and the system changes within one model. To that effect, reconfigurable Petri
nets consist of a place/transition net and a set of rules that can modify the Petri net.
The application of a rule is based on finding a suitable match of the rule in the given
net. This match is an isomorphic subnet that has to be located meeting requirements
of the rule application as well as the simulation. In this paper a non-deterministic al-
gorithm is presented for the matching in reconfigurable Petri nets. It is an extension
of the VF2 algorithm for graph (sub-)isomorphisms. We show that this extension
is correct and complete. Non-determinism ensures that during simulation different
matches can be found for each transformation step and is hence crucial for the sim-
ulation. But non-determinism has not been present in the VF2 algorithm. For the
matching algorithm non-determinism is proven.

Keywords: Reconfigurable Petri nets, matching algorithm, non-determinism, sim-
ulation, net transformation

1 Introduction

Motivation for reconfigurable Petri nets, a family of formal modeling techniques (e.g., in [EP03,
LO04, KCD10]) is the observation that in increasingly many application areas the underlying
system has to be dynamic in a structural sense. Complex coordination and structural adaptation
at run-time (e.g., mobile ad-hoc networks, communication spaces, ubiquitous computing) are
main features that need to be modeled adequately. The distinction between the net behavior and
the dynamic change of its net structure is the characteristic feature that makes reconfigurable
Petri nets so suitable for systems with dynamic structures.

Reconfigurable Petri nets consist of marked Petri nets, i.e., a net with a marking, and a
set of rules whose application modifies the net’s structure at runtime. For the sake of the
main focus we subsequently consider only a small and abstract example. More complex nets
and rules can be found in case studies for the applications of reconfigurable Petri nets (see
[Gabl4, Mod12, Reil2]). As an example of a dynamic system we use a cyclic process that
can either be executed or modified. These modifications change the process by inserting addi-
tional sequential steps using rule sequential_ext in Fig. 1(a) or by forking into parallel
steps rule parallel_ext in Fig. 1(b). The colors of the places and transitions indicate the
mappings within the rule. The net in Fig. 2(a) describes a cyclic process that can execute one
step and then returns to the start. The left-hand side of the rule is the net L and shows the places
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(a) rule sequential_ext (b) rule parallel_ext

Figure 1: Rules

that need to be in the context and the transition that is deleted. In the right hand side of the
rule is the net R and shows the added place and transitions as well as the context. For reasons
of space we have omitted the intermediate net K that denotes the context explicitly. The rule
sequential_ext is the first rule that can be applied by matching L in net start_net in
Fig. 2(a). Reconfigurable Petri nets allow the application of these rules together with the firing of
the transitions. Let the application of rule sequential_ext_s be the first step, followed by
a firing step. This results in the net in Fig. 2(b). The resulting net has an additional place and an
additional transition, denoting the process to have been modified by inserting a sequential step.
Moreover, the next step has already been executed by firing the transition in the post-domain of
the first place. These steps are chosen non-deterministically, so the start net in Fig. 2(a) may
evolve in 20 steps to the net in Fig. 2(c) by firing transitions or applying rules.

(a) net start_net

(b) net after 2 steps (c) net after 20 steps

Figure 2: Start and intermediate nets
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The simulation of reconfigurable Petri nets has to cover the full behavior. If this is not the
case, not all possible runs can be simulated and the simulation is not coherent with the semantics
of reconfigurable Petri nets. Hence, it is crucial that the search of the match is non-deterministic.
The match is the occurrence of a left hand side L of a rule to a target net N and is given by an
injective net morphism. So, the main contribution of this paper is the presentation and imple-
mentation of the non-deterministic algorithm PNVF2. This algorithm is an adaption of the VF2
algorithm [CFSV04b] for subgraph isomorphism, because a match, that is the injective occur-
rence morphism, can be considered to be equivalent to a net L being isomorphic to subnet of
N. The PNVF?2 algorithm is correct and complete and - in contrast to the VF2 algorithm - it is
non-deterministic.

The paper is organized as follows: First we define reconfigurable Petri nets based on place/
transition nets. In the next section we outline the algorithm, called PNVF2, that finds non-
deterministically a match of the left hand side of a given rule in a given net. We explain its main
function and the data structures for the representation of the state space. In Section 4 we show
that the algorithm is correct and complete, state its non-determinism and discuss its complexity.
n Section 5 we then discuss related and ongoing work.

2 Reconfigurable Petri Nets

We use the algebraic approach to Petri nets, so a marked place/transition net is given by N =
(P, T, pre, post,m) with pre- and post-domain functions pre, post : T — P® and a marking m € P®,
where P® is the free commutative monoid over the set P of places. Markings m;,m; € P® are
given by multisets or linear sums of places, defined by the free commutative monoid over the
set P of places. Accordingly, we can extend relations (<), addition (&) and substraction (&) to
markings. E.g., we have m| < my if m(p) < my(p) for all p € P. A transition ¢ € T is m-enabled
for a marking m € P® if we have pre(t) < m, and in this case the follower marking m’ is given by
m’ =mé6 pre(t)® post(t) and m[t)m’ is called firing step. To obtain the weight of an arc from a
place to a transition ¢ the pre-domain function is restricted to that place, i.e. pre(t), = 1, € N for
pre(t) = X pep App; analogously the weight of an arc from a transition to a place is given by the
restriction of the post-domain function. Note, that in [Blu13] as well as RECON NET! decorated
nets are considered. For the sake of brevity we here merely consider place/transition nets.

Place/transition nets yield an M-adhesive HLR category. AM-adhesive HLR systems can be
considered as a unifying framework for graph and Petri net transformations providing enough
structure that most notions and results from algebraic graph transformation systems are avail-
able: results on parallelism and concurrency of rules and transformations, results on negative
application conditions and constraints, and so on (e.g., in [EEPT06]). Net morphisms are given
as a pair of mappings for the places and the transitions, so that the structure and the decoration
and the marking are preserved. So, a net morphism f : N| — N, between two place/transition
nets N; = (P;, T}, pre;, posti,m;,) fori € {1,2} is given by f = (fp: Py = P2, fr : T1 — T5), so that
preyo fr = fy o prej and postyo fr = fy o post; and mi(p) < ma(fp(p)) for all p € Py. Moreover,
the morphism f is called strict if both fp and fr are injective and m(p) = ma(fp(p)) holds for all
p e P

1" The tool RECONNET has been developed at the HAW Hamburg in various students projects (see [EHOP12]).
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A rule in the DPO-approach given by three nets called left hand side L, interface K and right
hand side R, respectively, and a span’ of two strict net morphisms K — L and K — R. Then a
match (or occurrence) morphism o : L — N is required that identifies the relevant parts of the left

Cl . . (r,0) . .
hand side in the given net N. Then a transformation step N = N’ viarule r can be constructed in
two steps. Given a rule with a match o : L — N the gluing conditions have to be satisfied in order
to apply a rule at a given match. These conditions ensure the

result is again a well-defined net. In this case, we obtain a net L<—K——R
. . . (r,0) .

N’ leading to a direct transformation N =N consisting of the % ¢)) L () j

pushouts (1) and (2) in the category of place/transition nets (see N D N’

Fig. 3). So, we combine one place/transition net N together with
a set of net transformation rules leading to reconfigurable place/-
transition nets.

Figure 3: Net transformation

Definition 1 (Reconfigurable Nets) A reconfigurable place/transition net RN = (N, R) is given
by a place/transition net N and a set of net transformation rules R.

3 Matching Algorithm PNVF2

In this section we outline an algorithm that finds a match of a left hand side L of a rule in a given
net N. This match being an injective net morphism implies specific requirements the algorithm
has to satisfy the preservation of the net structure, that is preservation of the transitions pre- and
post-domain as well as the preservation of the marking. It has to discover only adequate matches
with respect to gluing conditions and it has to deliver correct matches, including the possibility
of delivering all matches and ensuring the non-determinism of the simulation. For graphs one of
the efficient algorithms for subgraph isomorphism is the VF2 that allows the satisfaction of the
above mentioned requirements.

3.1 Outline of the Algorithm

The adaptation of the VF2 algorithm [CFSV04b] to Petri nets, called PNVF2 algorithm [Blul3],
uses of an intricate data structure. In contrast to the VF2 algorithm the PNVF2 algorithm needs
to consider the pre- and post-domain of transitions. Given two nets N; = (P}, T, pre;, post;,m;)
for j € {1,2} with pre- and post-domain functions pre;, postj : T — P® we are looking for an
injective morphism, the match M = (Mp : Py — P,,Mr : T1 — T»). For convenience we use
M as a relation M = {(v,w) | v — w} as well, especially the two sets M| = {v | (v,w) € M} and
M, ={w|(v,w) € M}.

As a small example (in Subsect. 3.2) we consider the nets given in Fig. 4 on page 9 and search
a match of N1 in N2, where the indices of places and transitions represent an fixed, but arbitrary
order.

The match is computed by searching recursively the possible mappings of places and tran-
sitions. In the algorithm the match M describes an injective partial morphism defined by the

2 Actually, RECONNET implements the co-span DPO approach, but for the matching algorithm this is irrelevant .
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current match. For the computation of the match M the PNVF2 performs a recursive depth-first
search. The possible mappings of the nodes constitute the search space. At each level of re-
cursion, the algorithm tries to map a source node from net N; to different target nodes in N.
For the computation of the match we do not differentiate between places and transitions, as the
search space is a combination of the place and the transition mappings. At each recursion level
only one type of nodes, either places or transitions, is investigated. The node type is chosen non-
deterministically, yielding candidate pairs of places or transitions. These are possible mappings
and they are checked for feasibility. This feasibility comprises several conditions that ensure the
preservation of the net structure, that is preservation of the transitions pre- and post-domain and
the preservation of the marking. For each state s of the matching process there is a corresponding
partial match M(s) = (Mp(s) : Py = Py,M7(s) : Ty — T,), which contains only a subset of the
complete M.

Algorithm 1 PNVF2
establish arbitrary order for places and for transitions in both nets
initialize M(sg) =0
initialize arrays core,in and out
function MATCH( intermediate state s;)
if (PLUT)) = M,(s;) then
match M(s;) is complete return > termination with a match
else
compute terminal and residual node sets
compute set of candidate pairs P(s;)
for all (v,w) € P(s;) do
if feasible(s;,v,w) = true then
compute s;.1 by
M(siv1) = M(s) U{(v,w)}
update arrays core,in and out
MATCH(s;41)
restore arrays core,in and out
end if
end for
if i > 0 then
backtrack to s;_;
else
no match found return > termination without a match
end if
end if
end function

After the successful mapping of a candidate the algorithm examines a new pair at the next
recursion level. In this way increasing parts of the match are computed. At each recursion level
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inlout ; \3
s)’are based
i)

on the in- and outgoing arcs (in or out) of the current match to places and transitions for the
view from net Ni or net N,. E.g., Tl‘ii”(s) ={pe(P—M))|p < post(t) fort € Mi(s)} is the
set of places, that are reached from the nodes (i.e., transitions) of net N, that already belong
to the current partial match M(s). The corresponding terminal sets T;.e”"(s) = TZZ, (s)u T;;;” (s)u

the terminal and the residual node sets are computed. For j € {1,2} the sets T

T;’; (HUT ;?f(s) unite the in- and outgoing places and transitions. The residual node sets }r’]\lT/]
contain those nodes of N; for j € {1,2} that are neither in the current match nor connected to
any node of the current match, e.g., E(s) =Py — My(s)— Té”’"(s). Based on these sets the set
of candidate pairs is computed. According to the pre-defined order, that has been fixed during
initialization, the smallest place and the smallest transition of net N; is examined next. The
possible candidate pairs of terminal nodes are given by PT;';"”‘” = {min T)i(nllout( )} x T)’Zlom(s) for
X € {P,T}. Analogously, the possible candidate pairs of residual nodes are given for X € {P, T}
by Py = (minX(s)} X Xa(s).

For the example (in Subsect. 3.2) the empty match of the first state s is given by M(sp) = 0
and P(so) = P3(s0) = {(p1,Pa),(P1,Pb),(P1,pc)} and the first candidate is the pair (p1, pa), as pi
and p, are the first places of the corresponding order.

The PNVF2 examines the terminal out sets PT;m and PT;M first. If they are empty, the candi-
dates given in the terminal in sets P and Prin are used. Lastly, the candidates of the residual
node sets are considered for X € {P,T}:

PT;ur(S) if PT;)’M(S) U PT?M(S) 0
P(S) = PT;?(S) if PT;),ut(S) U PT;{M!(S) = @ A PT;f(S) UPT;'{z(s) * 0 (1)
Pi(s)  if Ppou(s)U Ppou(s) = O A Pru(s)U Pra(s) = 0

For the candidate pair (py, p,) from the example (in Subsect. 3.2) we have P(s;) = PT;m(sl) =
{t1}, PT}"(SI) = {12} and P5(s1) = {¢3} in state s1. Since Petri nets are bipartite, the corresponding
sets for places are empty.

These candidate pairs are not necessarily matching pairs. Similarly to VF2 [CFSV04b], the
feasibility function preserves the net structure and prunes the search space. feasible(s,v,w)
depends on the state s and a candidate pair (v,w) € P(s), that is either a pair of places or a pair of
transitions, so for X € {P,T} we have feasible(s,v,w) = feasiblex(s,v,w) with (v,w) € X| X X».
The conditions for the feasibility are presented in six rules (see [Blul3]), which may differ for
places and transitions defined below. The first rules are concerned with the preservation of the
net structure, so that the found match is an injective net morphism.

o rulegen p states that the marking needs to preserved.

o rules., r states that the number of in- and outgoing arcs of both transitions must be the
same.

rulesem,P = ml(Pl) < mZ(pZ)

r”lesem,T = Cardprel (1) = Cardprez () A Cardposll (t) = Cardpostz (2)

2

3 pinjout . . in out in out
TP/-|TJ- is a short notation for TP/, TP/_ s TT/ or TT/_ .
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o rule,eqp and rulep.qr examine the predecessors of the candidate pair.
rulepreq p(s, p1,p2) ensures that for each transition # of N; in the current match
there is a transition 7, of N, in the current match so that post|(t1),, = posta(t2)p,. So,
rulepreqr(s,1,1) ensures that for each place p; of Ny in the match there is a place
p2 = M(s)(p1) of N in the match so that pre(t1),, = prea(t2))p,.

e Analogously, ruleg,...p and ruleg,..t examine the successors of the candidate pair.

rulepreq p(s, p1,p2) =Vt € Mi(s)NT : posti(ty)p, = posta(M(s)(t1))p,
rulepreqr(s,11,12) =Vp1 € Mi(s)N Py : pre(t))p, = pre2(t2)ms)(p)

rulegyce,p(s, p1,p2) =Vty € Mi(s) Ty : pre((t1)p, = prea(M(s)(t1)))p,
rulegcer(s,11,12) =¥ p1 € Mi(s)N Py : posti(t1)p, = posta(t2)mes)(pr)

3)

Each pair that satisfies the rules (2) and (3) leads to a correct partial match if added to the current
state. However, the pursuit of all following states does not necessarily pay off. The following
rules check the possibility of mapping the neighborhood of the candidates and hence prune the
search space.

e The rules rule;, 71p and ruley, 7)p perform a lookahead of size one for places and for
transitions in the searching process by checking that there are at least as many adjacent
nodes in the corresponding terminal sets of net N, as there are in the sets of net N;. Since
net morphisms preserve the pre- and post domain of the transitions the number of adjacent
places must match.

e The rules rulep,, r|p perform a lookahead of size two as it checks the amount of adjacent
nodes in the residual node sets.

ruleinour,p(Sn> P15 P2)
inlout inlout

=|{f |t € TT1 /\pOStl(l‘l)|pl >0 <{nr|ne TT2 /\pOSl‘z(tz)|p2 > 0}

] t ] t
At Lt € TR A pres(t)yp, > ) < [{t2 | 12 € TP A prea(ta),p, > O}

r”leinlout,T(sm t,1)

=l(p1 | p1 € Ty A prei(t)yp, > Ol = {p2 | pa € T3/ A prei(t2)yp, > O}
Alpr | pr € TR A posti(t1)p, > O) = l{p2 | p2 € T A posty(t2);, > O

“)
rulepew,p(Sn, P1, P2)
= |{t1 |11 € T1 A posti(t1))p, > O}l < l{t2 | 12 € T2 A posta(t2)}, > O
Alltr |t € ﬂ/\prel(tl)“,l >0} <l{nnlne EAprez(t2)|p2 oyl
rulenew,7(Sn,11,12)
=|{p1|p1 e F;/\prel(tl)hm >0=lp21p2€ F;/\P”el(h)lpz > 0}
Alp1 | p1 € Py A posti(t)p, > O}l = [{p2 | p2 € P2 A posty(t2), > O}
Accordingly, feasibility of pairs of places is given by
feasiblep = rulesem,p A rulepreq,p A rulesyce,p A rulein p A ruleoy,p A ruleney, p o)
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and feasibility of pairs of transitions is given by
feasibler = rulegepm A rulepreqr Nruleg, e Aruley, t Aruleg, T Arilepe, (6)

Looking at the example (in Subsect. 4) the pair (¢1,,) cannot be considered for the match since
feasibler(sy,t1,tp) = false. This results from ruleg,., r because ¢ has less incoming and outgo-
ings arcs than 1.

The representation of the state uses six integer arrays for each net N;, namely
corejy,injy,outjx for j€ {1,2} and X € {P,T}. These arrays are shared among all states, so
if the algorithm backtracks, it restores the previous value for these arrays. The elements of these
arrays are ordered according to the (arbitrary, but fixed during initialization) order of the nodes,
1.e., the second element of core; p refers to the second place of net Ny and the third element of
iny 7 refers to the third transition in net N,.

In Subsect. 4 the six core array are presented by tables for different states in Fig. 4. In state
s1 the array core; and the array core; are presented in the second row. The order of the nodes
in both nets is given by the implicit order of their indices. So, p;, of net N; is represented in the
third column, and ¢, of net N, in the last column.

The core arrays are used for the mappings from the perspective of each net. The elements
position in the core array refers to the position of the node in the corresponding net, whereas the
value refers to the mapped node in the other net. The elements of core; and core, point mutually
to each other. The in and out arrays manage the terminal and residual node sets. Adding a pair of
nodes to the current state changes the values of in and out for the neighboring nodes. The value
coincides with the recursion depth, in which a node enters the terminal node set. If a pair of
nodes is added to the state only those fields are set to the current depth that do not have a value.
The combination of core, in and out arrays, the terminal and residual node sets can be computed.

In state s2 (see Subsect. 3.2) the mapping of p; in net N to the place p. in net N, leads
to corey p[1] = 3 and corey p[3] = 1 and the mapping of # to #. leads to core; r[1] = 3 and
corer 73] =1.

3.2 Example

For the nets given in Fig. 4, the empty match of the first state sy is given by M(sg) = 0
and P(so) = P3(s0) = {(p1>Pa)>(P1,Pb),(P1,pc)}. Hence, the arrays are empty as well.  Ac-
cording to the predefined order (given by the obvious order of the indices) the candidate pair
(p1,pa) 1s chosen. As feasiblep(sg, p1,ps) holds, M(s;) = {(p1,ps)} with the corresponding
core, in and out arrays for state s; in Fig. 4. Then P(s;) = Pr(sy) = {(t1,#)} is computed, but
feasibler(sy,t1,t,) = false A--- = false. So, the algorithm backtracks and computes a new state
s1 based on P(so) = Pp(so) = {(p1,ps),(P1,pc)} leading to M(sy) = {(p1,pc)} and the arrays of
state s; in Fig. 4. Next we obtain P(sy) = Pr(sy1) = {(t1,1), (t1,t.)} with feasiblep(sy,t1,tp) =
false and feasibler(sy,t1,t.) = true. The next recursion step yields M(s2) = {(p1, pe), (t1,1c)}
and the arrays of state so. Then P(s2) = Pp(s2) = {(p2, p»)} and feasiblep(ss, p2, pp) = true. This
leads to M(s3) = {(p1,pc), (t1,1c),(p2, pp)} and the candidate pairs P(s3) = {(t2,14),(t2,1), (12, 14)}
and feasibler(ss,ts,t,) holds. There is no more backtracking necessary and the last state is
ss5 with M(ss) = {(p1, pe), (t1, ), (P2, Pb), (t2,14), (13,24)} being an injective net morphism. The
corresponding arrays for state s5 are given in Fig. 4.

Proc. GraBaTs 2014 8/14
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NIi: @ N1 N2
. P T P T
corel | 1 core2 | 1
1 2 inl | 1 1 in2 | 1 1
outl | 1 1 out2 | 1 1
Q new sq
N1 N2
P T P T
3 corel | 3 core2 1
) inl | 1 1 in2 111
N2: » outl | 1 I out2 I 1
te 52
N1 N2
P T P T
ta @ corel | 3 3 core2 1 1
inl | 1 211 in2 111 2
outl | 1|21 out2 211 1)1
S5
@ = th N1 N2
P T P T
; corel | 3|2 |3 | 1] 4] core2 21112 113
@ inl [ 1|3]2]1]5 in2 3011 215
outl | 1|21 |33 out2 21114 11|11]3

Figure 4: Nets N1 and N2 and some states

4 Evaluation of PNVF2

4.1 Correctness

Both the VF2 and the PNVF2 guarantee the correctness of the found matches. A match is
considered to be correct if the structure of the source net and its annotations are preserved. And
the match has to be an injective morphism. To satisfy these conditions, the algorithms examine
the candidates before they add them to the respective part of the match. The candidate selection
during the recursive descent makes sure that the mapping is injective. And the function feasible
ensures structural and semantic compatibility. The correctness of PNVF2 is stated explicitly
in Theorem 1. For Lemma | we need at each state the corresponding partial nets*. In these
partial nets the sets of places and the sets of transitions are restricted to the matched places
and transitions. Given j € {1,2} and 0 <i <|P|+|T | we define Q;; with places P; N M;(s;) and
transitions 7'; N M (s;), and the pre- and post-domain are given by pre JT;0M (s;) and post JT;0M (s;)
and the other functions accordingly. Obviously, the partial nets Q;; are well-defined. Then each
state computed by PNVF2 leads to an injective net morphism between the corresponding partial
nets.

4 Note, that these nets are subgraphs but there are not necessarily net morphisms form Q i to Nj.
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Lemma 1 (Correctness of feasible) Let1<i<n=|Pi|+|T}| be given.

1. If M(si—1) : Q1-1 = Qa,i—1 is an injective net morphism and feasible(s;_1,v,w) holds for
(v,w) € P(si—1) and M(s;) = M(si—1) U{(v,w)}, then M(s;) : Q1,; — Qa,; is an injective net
morphism as well.

2. If feasible(s;,v,w) = false, there is no injective net morphism f : Ny — Ny with fp =
o1+ Qrist = Q2iv1, where Qi1 are the partial nets induced by the match M(sy1) =
M(si) U{(v,w)}.

Proof sketch

1. Since M(si_1) : Q1,-1 = O2,-1 Is an injective net morphism, it is an injective mapping
of places and an injective mapping of transitions. The addition of a pair of places (or
transitions) that are not in the current sets of places (or transitions), yields again an injective
mapping. For (v,w) € Py X P, feasiblep(s;_1,v,w) holds (equation 5), hence the marking is
preserved (rule 2). Moreover, the net structure is preserved (rule 3). Similarily, for (v,w) €
T XT, feasibler(s;-1,v,w) holds (equation 6), hence the number of in- and outgoing arcs
of both transitions are the same. Moreover, the net structure is preserved (rule 3). Hence,
M(s;) : Q1,; — Q2 Is an injective net morphism.

2. Failure of feasible(s;,v,w) (equation 5) implies that there is no injective morphisms with
fo: Qrir1 = Q2+1, and hence no f: Ny — N, with fig, .., = fo.

This lemma allows us to deduce that the result of PNVF2 is an injective net morphism.

Theorem 1 (PNVF2 is correct and complete.)  Let be given two place/transition nets N; with
je{1,2} and n = |P|+|T|. PNVF2 yields M(s,) if and only if there exists an injective net
morphism from f : N| — N».

Proof sketch
if: If the algorithm yields M(s,) then f = M(s,) : Ny — N is an injective net morphism is shown
by induction over n = |P1|+|T| the size of Nj.

Base M(so) = 0 is an injective net morphism for N| being the empty net.
Hyp. If PNVF2 yields M(s,-1) for a net N| of size n—1 = |Py|+|T}|, then each M(s;) :
Q1.i = (O is an injective net morphism fori <n-—1.
Step For for a net Ny of size n = |P{|+|T{| we have two cases
[Pl =1|P|+1 and|T{| = |T|. Since PNVF2 yields M(s,) and by induction hypothe-
sis there is M(sp-1) : Q1.,-1 — O2.,-1 an injective net morphism. Since PNVF2
yields M(s,), there is some p, p, € P(s,-1) so that feasiblep(s,-1,p},p5) holds.
We have then M(s,) : Q1., — Qan = M(s,) : Ny = N, and due to Lemma 1 this
is an injective net morphism.
IT{|=1T1|+1 and|P}| =|P| analogously.

only if: If PNVF2 does not yield M(s,), then there is a step in each recursion path, where
feasible(s;,v,w) fails and due to Lemma 1 there is no injective net morphism f : Ny — N5.
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4.2 Non-Determinism

The non-determinism of the matches is paramount for the simulation of reconfigurable nets, since
the full potential behavior should be captured. In a situation where several different matches are
possible, the algorithm has to deliver different matches for different runs. After sufficiently many
runs the algorithm must have delivered each of the possible matches. A very inefficient strategy
would be to compute first all possible mappings and to choose then one non-deterministically.
Instead we have realized non-deterministic choice at each possible step of the algorithm. Im-
plementing non-determinism at every level results in mapping source nodes randomly to target
nodes. However, this strategy has also the disadvantage that it is very inefficient, as choosing
random pairs the algorithm ignores the structure of the net to a large extent. This causes the
matching to fail more often in larger depths of the recursion. The VF2 follows the strategy to
map adjacent components to the destination net. For this purpose nodes of the terminal sets are
preferred. For the sake of reasonable runtime of the PNVF2, this strategy is maintained. The
VF?2 algorithm requires a fixed order on the the source nodes and an order on the target nodes.
This order determines the sequence in which nodes of the corresponding sets are processed and
it ensures that the algorithm does not generate the same states via different execution paths. Any
possible order of the nodes is sufficient, as long as it remains stable during the run. We use
this fact as the main realization of non-determinism by permuting all places and transitions of
both nets at each start of the algorithm. Another, but less influential, implementation of non-
determinism is the random choice of the node type (i.e., choosing places or transitions) at each
level of the recursion.

In order to prove that the algorithm is non-deterministic, i.e., it can compute any injective net
morphism between two given nets, we need to state an order of the places and transitions that
leads to a given injective net morphism. Then this order is compatible with the given morphism.

Lemma 2 (Compatible order) Let an injective net morphism f : N — N, be given. For orders
p=(px;) : X; = {1,...1X;l} with X € {P,T} and j € {1,2} with pp,(p) = pp,(fp(p)) and pr,(1) =
o1, (fr(2)) we have for all 0 <i <n = |P1|+|T1| and all (v,w) € M(s;):

There exists a match M(s;), so that we have px,(v) = px,(w)

If we need not to differentiate between places and transitions we use p; instead of py,.

Proof sketch  Induction overi for 0 <i<n=|P|+|T,|:

Base At state sg we have M(sy) = 0.

Step By induction hypothesis we have M(s;) and p1(v) = po(w) for all (v,w) € M(s;).

Then there is minimal p;(x) with p;(x) = minX; and X; € {T;;”l'l";’f, T, P}

Since f(x) = p; "(p1(x)) and since the terminal and residual nodes sets are constructed

similarly, we have that x € X, implies p;'(p1(x)) € X, for X, € {T;':’_'f;‘_’, T;,Pjlje{1,2}).
J\E

So, there is one candidate pair (x,p, Yp1(x)) € P(s)).

As f is an injective net morphism, the rules rule,, rule,,.; and ruleg,.. hold (see rules 2
and 3). rule;,, ruley,: and ruley,,, (see rule 4) hold, because the neighboring nodes can be
mapped, as f is an injective net morphism. Hence (feasible(s;, x,p; Y(p1(x))) holds.
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Last, let M(si1) = M(s;) U (x,03" (01(x)).

Theorem 2 (PNVF?2 is non-deterministic.) Given f : N| — N; an injective net morphism, then
PNVF2 can yield M(sy) : N = N, so that M(sy,) = f.

From Lemma 2 we directly obtain a match M(s,) = f.

4.3 Complexity

One of the most important properties of an algorithm is its complexity. In [CFSV04b] the space
and time complexity of VF2 has been given for graph isomorphisms by ®(N) and ®(N?) for the
best case and by ®@(N) and @(N! N) for the worst case on the number of nodes N. In principle we
have the same complexity measures. Nevertheless, for a more precise investigation of the com-
plexity differences of both algorithms the complexity measures have been computed explicitly
for the subgraph isomorphisms in [Blul3]. In the following we assume that the execution of an
elementary operation, as the reading and setting of the arrays, is done in @(1). Time complexity
of the VF2 is based on the number of nodes of the source graph n and of the target graph m,
and time complexity of the PNVF2 is based on the number of places p; and transitions #; of the
source net and of the target net p, and t,. For the PNVF2 the best case occurs if two equally
sized nets without any arcs are considered. Due to the lack of arcs any mapping of places (resp.
transitions) is a valid match. The worst case occurs if there are two almost complete nets whose
search area needs to be investigated completely. In contrast to the best case, the amount of nodes
in the target can be significantly higher than in the source.

The analysis of the space complexity refers only to the data structures of the algorithms. As
a representation of the current matching state, both algorithms use the same instance at each
recursion level, namely the arrays core, in and out. Therefore the memory is allocated only once.
For each graphs three arrays of length n» and m are managed. And the three arrays for each of
the nets have the length p; + ¢ and p, + ;. Due to the reduced search space, as nets are bipartite
graphs, we can expect the complexity results to be slightly better. Comparing the complexity
measures, we consider a net as a graph, and hence have n = p; +t; and m = p, + ;. Then we can
rate

B R A A N KR O

So, we obtain Tpyyr2(pl+t1, p2+12) € O(N!-N), since we have by induction nm*- (m)n’ <NN!,
n

15)

and hence p;t; - (pz)-pl! (
P1 5]

N=n+m.

)-tl! sz-(m)-n! <N:-N!forn=pl+tl, m= p2+1¢2 and for
n

5 Related Work and Conclusion

Obviously, reconfigurable Petri nets are closely related to graph transformations (see [MEE10]).
AGG [AGG13] and its derivations as the RON-editor [BEMSO08] and CPEditor [Mod12], trans-
late Petri nets into attributed graphs and net rules to attributed graph rules. But they do not
consider directly Petri nets, and hence do not support the separation of dynamics. An extensive
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discussion of various matching algorithms has been presented in [CFSV04a] comprising exact
as well as inexact algorithms. Due to the nature of the requirements we have investigated merely
exact algorithms [MBO0O0, Ull76, DZ09]. For more details see [Blul3]. The extension the VF2
algorithm by domain-specific information has been in order to speed up the pattern matching
process. These search plan driven graph pattern matching techniques have been investigated in
[GHS09, GBG"06, GSR05]. The Ullmann algorithm has been the basis of the RECONNET’s
previous implementation, that was faulty with respect to the non-determinism and moreover did
not provide means for the realization of negative application conditions, whereas, the PNVF2
has been adapted accordingly.

Ongoing work concerns model checking by translating nets and rules into rewrite logic Maude
and an explicit representation of an abstract reachability graph based on [Pad12]. Future work
includes the investigation of the runtime behavior and memory consumption of the implemented
algorithm and an experimental comparison with the VF2 algorithm to evaluate the implementa-
tion. Another fruitful extension of RECONNET are control structures, as the extension of rules
with negative application conditions or the introduction of transformation units.

Acknowledgements: We are grateful to the referees for their valuable remarks.
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