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Towards Model Checking Reconfigurable Petri Nets using Maude

Alexander Schulz, Julia Padberg

Hamburg University of Applied Sciences, Germany
julia.padberg@haw-hamburg.de, alexander.schulz1@haw-hamburg.de

Abstract: This paper introduces an approach to model checking of reconfigurable
Petri nets. The main task is to flatten the two levels of dynamic behavior that recon-
figurable nets provide, the firing of transitions on the one hand and the transforma-
tion of the nets on the other hand. We show how to translate a reconfigurable net
into Maude modules. Maude’s LTL model-checker is then used to verify properties
of these modules.
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1 Motivation

Software systems are increasingly characterized by dynamic structures that require execution
and reconfiguration at run-time to adjust the system’s behavior to its changing environment.
Their main feature results from their complex coordination behavior within dynamically adapting
infrastructures. Such dynamic structures need a suitable formal description technique that allows
the separation at different levels of dynamic behavior.

Reconfigurable Petri nets provide dynamic changes at the process level, (as typical for Petri
nets) and additionally at the structure level. They are based on the algebraic approach to Petri
nets, with operations describing the pre- and post-domain of transitions as introduced in [MM90]
and are equipped with rules for the transformation of the net. These rules allow the mod-
ification of the net’s structure at run time. Reconfigurable Petri nets form a family (e.g., in
[EP03, LO04, EHP+07, PEHP08, KCD10, Mod12, Gab14]) depending on the underlying kind
of Petri net and have been applied in various application areas where complex coordination
and structural adaptation at run-time is required (e.g., mobile ad-hoc networks, communication
spaces, ubiquitous computing, workflows in a dynamic infrastructure). The distinction between
the net behavior and the dynamic change of its net structure is the characteristic feature that
makes reconfigurable Petri nets so suitable for systems with dynamic structures.

Dynamic changes at two levels leads to a very complex behavior that is hard to understand,
hence verification support is crucial. In this paper we suggest a first approach to verification
of reconfigurable nets based on model checking. Model checking is a powerful verification
technique to improve the quality of the software system. Basically, it is a systematic check of
specified properties in all reachable states of the system’s behavioral model. By now it is a highly
effective verification technology, that is widely adopted in the hardware and software industries.
Petri nets with a collective token approach can be easily be described in terms of theories and
theory morphisms in partial membership equational logic, see ,e.g.,[BMMS98]. There are some
experiences of translating Petri nets to Maude, as in [SMÖ01, AS02, BBR+11].
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The paper is organized as follows: First we define reconfigurable Petri nets based on decorated
place/transition nets and introduce the tool RECONNET. In the next section we outline rewriting
in Maude and the subsequent section is concerned with the translation from reconfigurable nets to
Maude and the use of its LTL model checker. Section 5 concerns related work, there we discuss
the relation to graph transformation. Future work is discussed in the concluding remarks.

2 RECONNET: a Simulation Tool for Reconfigurable Petri Nets

The tool RECONNET (see [PEOH12]) has been developed at the HAW Hamburg and supports
the modeling and simulation of reconfigurable nets. An intuitive graphic-based user interface
allows the user to create, modify and simulate reconfigurable nets. The net and rule in Fig. 1

Figure 1: Reconfigurable net1rN = (N1, {switchArc}) with net N1 and the rule switchArc

have been edited and computed by RECONNET. The simulation of nets can be done in differ-
ent modes for firing transitions only, for applying rules only and for both. There are two more
advanced simulation options - steps and continuous simulation. The steps option executes a de-
finable amount of steps (firing transitions or applying rules) on the net. The simulation option
allows running the net non-deterministically until it is stopped by the user. The following exam-
ple is a purely theoretical one, unfortunately the space limitations do not allow a larger example,
e.g., from [Rei12].
1 For readability the identities have been given explicitly, so place A,1 has the name A and the id 1.
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In Fig. 1 we state not only the name of a place A, but the identity of the place explicitly as well.
In net N1 (see Fig. 1) the transitions with name X can fire twice yielding two tokens on the place
A,2. But then there is a deadlock. In contrast the reconfigurable net rN = (N1, {switchArc})
consists of the net N1 together with the rule switchArc, that replaces a transition by one with
switched arcs. In this case either the transition with name X fires or the rule switchArc is applied,

yielding N1
switchArc
=⇒ N2. This transformation deletes one of the transitions and adds a transition,

also with the name X, but with the arcs going in the opposite direction. Hence, the resulting net
N2 is cyclic and live. So, there exists no longer a deadlock, this will be confirmed in Section 4
by the Maude’s LTL model-checker.

Decorated nets, as supported by RECONNET belong to the algebraic approach to Petri nets, so
they have pre- and post-domain functions pre, post : T → P⊕ and a marking M ∈ P⊕, where P⊕

is the multiset of of places, formally defined by a free commutative monoid. A transition t ∈ T is
M-enabled for a marking M ∈ P⊕ if we have pre(t) ≤ M, and in this case the follower marking
M′ is given by M′ = M 	 pre(t) ⊕ post(t) and M[t〉M′ is called firing step. In [Pad12] new
features have been added to gain an adequate modeling technique. The extension to capacities
and names is quite obvious. More interesting are the transition labels that may change, when
the transition is fired. This allows a better coordination of transition firing and rule application,
for example can be ensured that a transition has fired (repeatedly) before a transformation may
take place. This last extension is conservative with respect to Petri nets as it does not change
the net behavior. A decorated place/transition net is a marked P/T net N = (P,T, pre, post,M)
together with a capacity as a function cap : P→ Nω, AP, AT name spaces with pname : P→ AP

and tname : T → AT the function tlb : T →W mapping transitions to transition labels W and the
function rnw : T → END where END is a set containing some endomorphisms on W, so that
rnw(t) : W →W is the function that renews the transition label. For the sake of clarity we have
omitted the decorations up to the names.

For decorated place/transition nets as given above, we obtain with a suitable notion of mor-
phisms anM-adhesive HLR category (see [Pad12]). M-adhesive HLR systems can be consid-
ered as a unifying framework for graph and Petri net transformations providing enough structure
that most notions and results from algebraic graph transformation systems are available, as re-
sults on parallelism and concurrency of rules and transformations, results on negative application
conditions and constraints, and so on (e.g. in [EEPT06, EGH+12]).

Net morphisms map places to places and transitions to transitions. They are given as
a pair of mappings for the places and the transitions, so that the structure and the deco-
ration is preserved and the marking must be mapped so that the tokens are be preserved.

L

m
��

(1)

K

��

//oo

(2)

R

��
N1 D //oo N2

Figure 2: Transformation of a net

A rule in the DPO approach2 is given by three nets
called left hand side L, interface K and right hand side
R, respectively, and two strict net morphisms K→ L and
K→ R. Additionally, a match morphism m : L→ N1 is
required that identifies the relevant parts of the left hand
side in the given net N1.

2 Note, the transformations in RECONNET are DPO transformation in the cospan approach, so that the intermediate
K is the union and not the intersection of the left-hand L and the right-hand R. The cospan approach is known to be
equivalent to the usual DPO-span approach (see [EHP09]), so we refer in this paper to the usual DPO approach.
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Then a transformation step N1
(r,m)
=⇒ N2 via rule r can be constructed in two steps. Given a rule

with a match m : L→ N1 the gluing conditions have to be satisfied in order to apply a rule at
a given match. These conditions ensure the result is again a well-defined net. In this case, we

obtain a net N2 leading to a direct transformation N1
(r,m)
=⇒ N2 consisting of the following pushouts

(1) and (2) in Fig. 2. Hence we can combine one net N together with a set of rules R leading to
reconfigurable place/transition nets rN = (N,R).

3 Introduction to Maude and its Model-Checker

Maude is a rewriting system operating on typed terms and has been developed at SRI Interna-
tional3 for over two decades. The underlying theory of rewriting logic can be considered as a
unifying framework for concurrency formalisms [Mes92]. Various concurrency formalisms are
known to be modeled in terms of Maude, especially different kinds of Petri nets, e.g. P/T nets,
colored Petri nets, and algebraic Petri nets ([SMÖ01]).

A system is represented using membership equational logic describing its set of states and a
set of rewrite rules representing its state transitions. Maude is strictly typed, where the types
are called sorts and can be built hierarchically using subsorts. Maude’s basic programming
statements are equations and rules, and have in both cases a simple rewriting semantics in which
instances of the left-hand side pattern are replaced by corresponding instances of the right-hand
side.

mod PN i s
s o r t s P l a c e Marking .
s u b s o r t P l a c e < Marking .
op __ : Marking Marking −> Marking [ a s s o c comm] .
ops $ q a c : −> P l a c e .

r l [ buy−c ] : $ => c .
r l [ buy−a ] : $ => a q .
r l [ change ] : q q q q => $ .

endm

Listing 1: Net from Fig. 3 in Maude

Figure 3: Net from List. 1

Maude modules comprises a term-language plus sets
of equations and rewrite-rules that specify the dynamics
of a system, given by rl [l] : t => t, with l
being the rule label. These rules describe the local, con-
current transitions that can occur in the system. Here we
give a short example how a Petri net can be specified in
Maude (see [CDE+99]). The Maude specification4 in
Listing 1 models the Petri net given in Fig. 3 where the
places are given by constants of sort Places and the

3 URL: http://maude.cs.uiuc.edu/
4 URL: http://maude.cs.uiuc.edu/maude1/manual/CoreMaudeExamples/petri-net.maude
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transitions by rewrite rules. The marking of net is a multiset of places. So firing a transition is
modeled by rewriting one multiset of places by another one.

We assume the reader to have some basic knowledge on Linear Temporal Logic5 (LTL) and
merely give a basic outline. LTL is a temporal logic with a widespread use, well-developed
proof methods and decision procedures. It allows the specification of properties such as safety
properties (ensuring that something bad never happens) and liveness properties (ensuring that
something good eventually happens). Model checking can be used to prove properties, specified
in LTL when the set of states reachable from an initial state in a system module is finite. LTL
model checking is based on a Kripke structure K . Then, the model checker solves a satisfaction
problemK , s |= φ for a Kripke structureK , one of its states s and a property φ ∈ LT L(AP) where
LT L(AP) is the set of LTL formulas over the atomic propositions AP. LTL formulas are built
up inductively from a finite set of atomic propositions AP, the logical connectives negation and
conjunction, and the temporal modal operators "Next" O and "Until" U. Other LTL connectives
can be defined in terms of the above minimal set of connectives. In this paper we need the
following LTL connectives that given for each path of the Kripke structure K starting in state s
and each LTL-formula φ.

• Next: K , s |=Oφ states that φ has to hold at the next state, informally: s→ φ→•→•→ ·· ·

• Finally: K , s |= Fφ states that φ eventually has to hold somewhere on the subsequent path,
informally: s→ •→ ·· · → φ→ •→ ·· ·

• Globally: K , s |= Gφ states that φ has to hold on the entire subsequent path, informally:
φ→ φ→ φ→ φ→ ·· ·

An important way to model check a system is to express the desired properties using LTL
formulas and actually check if the model satisfies this property. If the property is satisfied, the
result of model checking is true; if not, then there is a counterexample, that is a trace of the model
in which the property does not hold.

The Maude LTL model checker6 supports on-the-fly explicit-state model checking of con-
current systems expressed as rewrite theories [EMS02]. Maude’s LTL syntax is defined in the
module LTL. The logical and temporal operators used in Section 4 in Maude’s notation are
negation ~, conjunction /\, next O, finally <> and globally []. Based on the Maude module
a Kripke structure needs to defined. The sorts that are considered to be states and the set of
atomic propositions needs to be defined explicitly depending on the model (see module mod
TRANS in Section 4). In the MODEL-CHECKER module the operator modelCheck is defined.
modelCheck maps a state and an LTL formula to a Boolean value. If the formula is not satis-
fied, the Boolean is false and a counterexample is returned, else it is true.

5 See e.g. URL: http://en.wikipedia.org/wiki/Linear_temporal_logic
6 URL: http://maude.cs.uiuc.edu/maude2-manual/html/maude-manualch10.html
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4 Model-Checking of Reconfigurable Nets

The conversion of a reconfigurable Petri net to a Maude specification employs the term rewriting
and the equation logic modules. Term rewriting is used for the computation of the markings and
for the transformation of the net.

For better readability we have simplified the Maude modules slightly by leaving out some line
consuming details, as capacities, dealing with identities an so on. A comprehensive report of the
conversion of decorated Petri nets to Maude and its implementation can be found in [Sch14].

First we exemplify the translation of the reconfigurable net in Fig. 1 to a Maude specifica-
tion. Maude rules are explicitly called rewrite rules (or Maude rules) to distinguish them from
the net rules belonging to a reconfigurable Petri net. Module mod RPN models the net struc-
ture, the rules and the firing behavior and module mod PROP defines the atomic propositions
the LTL is based on. The Maude modules mod NET and mod RULES can be generated from
the reconfigurable net rN = (N1, {switchArc}) in Fig. 1. Module mod NET defines the place/-
transition net together with the initial stated and mod RULES specifies the net transformation
rules and their application. Since the whole specification (see [Sch14]) is quite large we only
present clippings of the modules. Module mod PN exploits the algebraic definition of place/-
transition nets and is given accordingly, see List. 2. There are the obvious sorts modeling the
corresponding sets in the formal definition. The sort MappingTuple in line 8 and operation
-> in line 19 are the set representation of functions and are used for the definition of the pre-
and post-functions in lines 22 and 23. The operator _,_ (line 15) together with emptyPlace
(line 13) specifies a multiset (or free commutative monoid) by the attributes [ctor assoc
comm id: emptyPlace], stating the operator to be an associative, commutative construc-
tor with the identity emptyPlace. Similar operators are given for transitions (op _:_) and
markings. Places and transitions have a name and an identifier (line 26 and 27). that contains the
pre-domain of T. The rewriting rule in lines 30 to 40 describes the firing of a set of transitions.

A net consists of some set of places, i.e. the variable P, of transitions, those to be fired T and
the others TRest, the pre- and post-domain functions of T and a marking markingPreValue
; M. This net can be rewritten to the net, that has then same structure, but a new marking
calc(((PreValue ; M) minus PreValue) plus PostValue) modeling exactly
the formal definition: M′ = M	 pre(t)⊕ post(t). Rules are given by a left hand side and a right
hande side net (lines 42-44). And at last a reconfigurable net is given by a place/transition net
and a set of rules (line 46).

Note, that for rules that delete places conditional rewrite rules need to be generated. The
dangling condition, i.e., no deletion that leads to dangling arcs or markings, is the ensured by an
additional condition. This condition guarantees that all adjacent transitions are deleted as well
and that the place to be deleted has he same amount of tokens in the net as well as in the rule.
Examples of such rules can be found in [Sch14].

If several rewrite rules are available, Maude always chooses the first that is applicable. In
terms of simulation this would lead to a strongly reduced, and hence wrong behavior. Since
model checking is only concerned with the existence of paths this fact only reduces the amount
of non-determinism.
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1 mod RPN
2 [ . . . ]
3 s o r t Net .
4 s o r t P l a c e s .
5 s o r t T r a n s i t i o n s .
6 s o r t Pre .
7 s o r t P o s t .
8 s o r t MappingTuple .
9 s o r t Markings .

10 [ . . . ]
11 s u b s o r t P l a c e s < Markings .
12 [ . . . ]
13 op emptyP lace : −> P l a c e s .
14 [ . . . ]
15 op _ , _ : P l a c e s P l a c e s −> P l a c e s [ c t o r a s s o c comm i d : emptyP lace ] .
16 [ . . . ]
17 op p ( _ | _ ) : S t r i n g I n t −> P l a c e s .
18 op t ( _ | _ ) : S t r i n g I n t −> T r a n s i t i o n s .
19 op ( _−−>_ ) : T r a n s i t i o n s P l a c e s −> MappingTuple .
20 op p l a c e s {_} : P l a c e s −> P l a c e s .
21 op t r a n s i t i o n s {_} : T r a n s i t i o n s −> T r a n s i t i o n s .
22 op p r e {_} : MappingTuple −> Pre .
23 op p o s t {_} : MappingTuple −> P o s t .
24 op marking {_} : Markings −> Markings .
25 [ . . . ]
26 op c a l c : Markings −> Markings .
27 op _ p l u s _ : Markings Markings −> Markings .
28 op _minus_ : Markings Markings −> Markings .
29 [ . . . ]
30 r l [ f i r e ] :
31 n e t ( P ,
32 t r a n s i t i o n s { T: TRest } ,
33 p r e { (T −−> PreVa lue ) , MTupleRest1 } ,
34 p o s t { (T −−> P o s t V a l u e ) , MTupleRest2 } ,
35 marking { PreVa lue ; M} ) =>
36 n e t ( P ,
37 t r a n s i t i o n s { T: TRest } ,
38 p r e { (T −−> PreVa lue ) , MTupleRest1 } ,
39 p o s t { (T −−> P o s t V a l u e ) , MTupleRest2 } ,
40 c a l c ( ( ( P reVa lue ; M) minus PreVa lue ) p l u s P o s t V a l u e ) ) .
41 [ . . . ]
42 op l : Net −> Lef tHandS ide .
43 op r : Net −> Righ tHandSide .
44 op r u l e : Le f tHandS ide Righ tHandSide −> Rule .
45 s o r t C o n f i g u r a t i o n .
46 op __ : Net Rule −> C o n f i g u r a t i o n .

Listing 2: Maude specification of reconfigurable place/transition nets
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mod PROP i s
i n c l u d i n g RULES .
i n c l u d i n g SATISFACTION .

[ . . . ]
s u b s o r t Markings < S t a t e .
s u b s o r t Net < S t a t e .

[ . . . ]
op r e a c h a b l e : Markings −> Prop .
eq n e t ( P ,

T ,
Pre ,
P o s t ,
marking { M ; MRest } )

RRest
| = r e a c h a b l e (M) = t r u e .

[ . . . ]
op e n a b l e d : −> Prop .
eq n e t ( P ,

T ,
p r e { ( T −−> M) } ,
P o s t ,
marking { M ; MRest } )

RRest
| = e n a b l e d = t r u e .

[ . . . ]

Listing 3: Maude specification of atomic
properties for reconfigurable nets

The second module mod PROP in List. 3
contains the definitions connecting the nets
algebraic structure to the LTL model check-
ing modules. The atomic propositions
enabled and reachable are defined as
operators of sort Prop for checking activa-
tion of transitions or for checking reachabil-
ity of places. If a place is in the marking,
then the operator enabled equals true.
If the pre-domains of the transitions are
in the marking the corresponding operator
enabled equals true.

The Maude modules mod NET and
mod RULES specify the reconfigurable
net rN = (N1, {switchArc}) in Fig. 1.
The equation in List. 4 states that the
initial configuration contains net N1 in
lines 4 to 8 and the rule switchArc in
lines 9 to 18, where the left-hand side
is in lines 10 to 13 and the right-hand
side in lines 14 to 18. The marking of
net N1 (namely, two tokens on place
A,1 ) is given by marking p("A"
| 1) ; p("A" | 1) ) in line 8.

1 mod NET i s
2 [ . . . ]
3 eq i n i t i a l =
4 n e t ( p l a c e s {p ( "A " | 1 ) , p ( "A " | 2 ) } ,
5 t r a n s i t i o n s { t ( "X " | 3 ) : t ( "X " | 4 ) } ,
6 p r e { ( t ( "X " | 3 )−−>p ( "A " | 1 ) ) , ( t ( "X " | 4 )−−>p ( "A " | 1 ) ) } ,
7 p o s t { ( t ( "X " | 3 )−−>p ( "A " | 2 ) ) , ( t ( "X " | 4 )−−>p ( "A " | 2 ) ) } ,
8 marking {p ( "A " | 1 ) ; p ( "A " | 1 ) } )
9 r u l e (

10 l ( n e t ( p l a c e s {p ( "A " | 1 ) , p ( "A " | 2 ) } ,
11 t r a n s i t i o n s { t ( "X " | 3 ) } ,
12 p o s t { ( t ( "X " | 3 )−−>p ( "A " | 2 ) ) } ,
13 marking {p ( "A " | 2 ) } ) ) ,
14 r ( n e t ( p l a c e s {p ( "A " | 1 ) , p ( "A " | 2 ) } ,
15 t r a n s i t i o n s { t ( "X" | 2 3 ) } ,
16 p r e { ( t ( "X" | 2 3 )−−>p ( "A " | 2 ) ) } ,
17 p o s t { ( t ( "X" | 2 3 )−−>p ( "A " | 1 ) ) } ,
18 marking {p ( "A " | 2 ) } ) ) ) .

Listing 4: Maude specification of rN = (N1, {switchArc})

Proc. GraBaTs 2014 8 / 14



ECEASST

Module mod RULES in List. 5 defines the transformation step induced by switchArc. The
rewrite rule rl [switchArc] (line 4-19) requires a net (line 5-9) that contains the left-hand
side, where the identifiers are variables (Irule1,Irule2,Irule3) and a rule (omitted in
List. 5) and yields a net (line 13-17), where the arcs of the transition with name X are switched.

1 mod RULES i s
2 i n c l u d i n g RPN .
3 [ . . . ]
4 r l [ s w i t c h A r c ] :
5 n e t ( p l a c e s {p ( "A " | I r u l e 1 ) , p ( "A " | I r u l e 2 ) , PRes t } ,
6 t r a n s i t i o n s { t ( "X " | I r u l e 3 ) : TRest } ,
7 p r e { ( t ( "X " | I r u l e 3 )−−>p ( "A " | I r u l e 1 ) ) , MTupleRest1 } ,
8 p o s t { ( t ( "X " | I r u l e 3 )−−>p ( "A " | I r u l e 2 ) ) , MTupleRest2 } ,
9 marking {p ( "A " | I r u l e 2 ) ; MRest } )

10 r u l e ( l ( n e t ( p l a c e s {p ( "A " | I r u l e 1 ) , p ( "A " | I r u l e 2 ) } ,
11 [ . . . ]
12 =>
13 n e t ( p l a c e s {p ( "A " | I r u l e 1 ) , p ( "A " | I r u l e 2 ) , PRes t } ,
14 t r a n s i t i o n s { t ( "X " | I r u l e 2 3 ) : TRest } ,
15 p r e { ( t ( "X " | I r u l e 2 3 )−−>p ( "A " | I r u l e 2 ) ) , MTupleRest1 } ,
16 p o s t { ( t ( "X " | I r u l e 2 3 )−−>p ( "A " | I r u l e 1 ) ) , MTupleRest2 } ,
17 marking {p ( "A " | I r u l e 2 ) ; MRest } )
18 r u l e ( l ( n e t ( p l a c e s {p ( "A " | I r u l e 1 ) , p ( "A " | I r u l e 2 ) } ,
19 [ . . . ]

Listing 5: Maude module for rule switchArc

Loading these modules together with the Maudes’s LTL model checker allows the rewrite sys-
tem to prove LTL formulas based on the atomic propositions given in module mod PROP. So,
we use Maude’s LTL model checker to verify properties of reconfigurable Petri nets, checking
whether these properties are satisfied by the nets and its rules or not. Subsequently we give
examples how to use the Maude LTL checker for proving or disproving LTL formulas on recon-
figurable Petri nets. These examples are given in the listings below and are the output at Maude’s
console.

Considering the reconfigurable Petri net rN = (N1, {switchArc}) in Fig. 1 consisting of the net
N1 and the rule switchArc, the net together with the rules is free of deadlocks. The corresponding
property means that enabled holds globally; in terms of Maude [] enabled. In module
mod PROP the property enabled has been defined to be true, whenever the pre domain of
some transition is part of the current marking or the left-hand side of the rule is part of the
net. So, at each state some transition is enabled or some rule may be applied, hence there is no
deadlock.

Maude> rew modelCheck ( i n i t i a l , [ ] e n a b l e d ) .
r e w r i t e in NET : modelCheck ( i n i t i a l , [ ] e n a b l e d ) .
r e w r i t e s : 66 in 1628036047000ms cpu (6 ms r e a l ) (0 r e w r i t e s / second )
r e s u l t B o o l : t r u e

Listing 6: No deadlock in rN; proven by Maude
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In rN = (N1, {switchArc}) the second place A is reachable, i.e. there is in each path at
least one state, where A,2 is marked with at least one token. In Maude this is denoted by <>
reachable(p("A" | 2) ) ). A liveness condition is that the place A,2 can always (from
all reachable markings) be reached again. This can be phrased as "For all paths and from all
states A,2 can finally be reached". In Maude this is stated by [] <> reachable(p("A"
| 2) and proven by its model checker in Listing 7.

Maude> rew modelCheck ( i n i t i a l , [ ] <> r e a c h a b l e ( p ( "A" | 2 ) ) ) .
r e w r i t e in NET : modelCheck ( i n i t i a l , [] < > r e a c h a b l e ( p ( "A" | 2 ) ) ) .
r e w r i t e s : 69 in 1628036047000ms cpu (4 ms r e a l ) (0 r e w r i t e s / second )
r e s u l t B o o l : t r u e

Listing 7: Liveness condition for rN; proven by Maude

For properties that are not satisfied, the model checker returns a counterexample consisting of
two lists of transitions. A transition is given by a state and the label of the rule applied to reach
the next state. The first list describes a path starting from the initial state, that violates the given
property. Since an LTL property being not valid in a finite Kripke structure always results in a
path ending with a cycle, the second list of transitions is a loop. For an extensive discussion of a
counterexample see [Sch14].

5 Related Work

To regard Petri nets as special bipartite graph is an obvious and sound idea. In [MEE10, MEE12]
a concise, comprehensive and categorical translation of net transformations to graph transforma-
tions is given. An M-functor from the category of place/transition nets with individual tokens
to the category of typed attributed graphs translates rules preserving and reflecting applicability
and transformations. The approach to reconfigurable Petri nets based on AGG [AGG13] and
RON [BEHM07] exploits this translation and could also be used as input to Maude using one
of the existing graph transformation encodings for Maude [CEC13, RGLV09, AS02]. Another
minor difference to the approach we have been following with reconfigurable Petri nets is that
our approach has the classical collective token semantics.

Nevertheless, there are some differences concerning the notion of a state. In algebraic graph
transformations a state is usually an isomorphism class of graphs due the construction using
pushouts. In Petri nets a state is a marked net. In Fig. 4 (see also [Pad12]) there are the iso-
morphic nets N1 and N2, in terms of Petri nets they are distinct states, whereas in terms of graph
transformations they denote the same state. The sequential firing of the transitions in net N1
in Fig. 4(a) leads to N1[t1〉N2[t2〉N1. Obviously, the nets N1 and N2 are isomorphic, but they
have to be differentiated in order to describe the firing adequately. In [Pad12] this problem is
solved using standard isomorphisms. A promising approach to avoid the standard isomorphism
construction is to examine whether transformation and firing sequences have common nodes that
have been preserved over the different sequences. This approach has been developed in [Plu05]
to obtain a Critical Pair Lemma for hypergraph rewriting that guarantees local confluence.

To ensure that in a graph transformation system the nets N1 and N2 can be modeled distinctly,
labels can obviously be used. But then the explicit handling of labels needs to modeled as
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(a) Net N1 (b) Net N2 (c) Rule L =⇒ R

Figure 4: Notion of States in Petri nets and graph transformations

well. For purposes of automatic model checking this is only a small drawback, but for modeling
purposes it is not adequate. The Maude modules also require a sophisticated handling of labels
in terms of identities.

We have achieved a conversion from reconfigurable Petri nets to Maude modules that then can
be checked using Maude’s LTL model checker. Related work concerns mainly various attempts
to model Petri nets or graph transformations in Maude, e.g. [CEC13, RGLV09, SMÖ01, AS02,
BBR+11]. Closely related is [FL04], where object Petri nets are translated to Prolog and Maude.
Model-checking the corresponding Maude modules has been the focus in [CEC13, RGLV09,
AS02, BBR+11, FL04].

Model-checking of graph transformation systems (that is for the SPO approach) can be
achieved by translating them into abstract state machines [Var04]. Model checking for graph
transformation systems in the DPO approach is not known (at least by the authors). Nevertheless
the example reconfigurable net in Fig. 1 can be modeled in Groove (an SPO graph transformation
tool with model-checking features [Gro14, KR06]) using for rules for the firing of the transitions
and the switching of the arcs. Another possibility for bounded reconfigurable Petri nets is the
translation into Petri nets and the subsequent analysis with existing model checking tools as for
example Snoopy and Charlie [sno14, HHL+12].

6 Conclusion

This paper introduces a conversion from reconfigurable Petri nets to Maude modules that then
are employed for checking LTL properties. This is a first step towards a suitable verification ap-
proach for reconfigurable Petri nets. Of course there are other possibilities to tackle this problem
(see Sect. 5). These approaches may have some restrictions, but for fitting examples it is very
interesting to use them for benchmarking the model checking.

Future work concerns the presentation of the results gained from the model checking as well.
The representation of the counterexamples in Maude as text is hard to interpret. An interpreta-
tion of the counterexamples in RECONNET would be very helpful. The paths described in the
counterexamples could be used to animate the corresponding sequence of transformations and
firing steps.

Acknowledgements: We are grateful to the referees for their valuable remarks.
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