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Abstract: We study the model checking problem for monotonic extensions of Petri
Nets, namely for two extensions of Petri nets: reset nets (nets in which places can be
emptied by the firing of a transition with a reset arc) andν-Petri nets (nets in which
tokens are pure names that can be matched with equality and dynamically created).
We consider several fragments of LTL for which the model checking problem is
decidable for P/T nets. We first show that for those logics, model checking of reset
nets is undecidable. We transfer those results to the case ofν-Petri nets. In order
to cope with these negative results, we define a weaker fragment of LTL,in which
negation is not allowed. We prove that for that fragment, the model checkingof
both reset nets andν-Petri nets is decidable, though with a non primitive recursive
complexity. Finally, we prove that the model checking problem for a versionof that
fragment with universal interpretation is undecidable even for P/T nets.

Keywords: LTL, model checking, Petri nets, decidability, complexity

1 Introduction

Temporal logics [4] have been established as a very expressive formalism for the specification of
properties of computational concurrent systems. Model checking is the problem of deciding if a
given system satisfies a given temporal formula.

For infinite state systems the model checking problem is undecidable in general [15]. A very
well known formalism for infinite state concurrent systems is that of Petri nets [6]. Among them,
place/Transition nets (P/T nets) are potentially infinite state, but their expressive power is be-
low Minsky machines (e.g., reachability is decidable for them [8]). Decidability and complexity
of the model checking problem for P/T nets are well studied, and the corresponding decidability
frontiers are well settled [13, 9, 12, 8]. Roughly speaking, model checking of P/T nets is undecid-
able for any branching-time logic, while for linear time logics, “event-based”LTL is decidable,
though “state-based” LTL is undecidable.

In the last two decades, several monotonic extensions of Petri nets haveappeared in the lit-
erature. These extensions usually consist either on the extension of the firing rule of P/T nets,

∗ Authors supported by the Spanish projects STRONGSOFT TIN2012-39391-C04-04 and PROMETIDOS
S2009/TIC-1465.
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or on the use of colours, that is, distinguishable tokens. We consider two simple extensions of
P/T nets, one in each group: reset nets [7] andν-Petri nets (ν-PN) [21]. In reset nets the firing
of a transition can empty some places. Their modeling capabilities are discussedfor instance
in [14]. Tokens inν-PNs are pure names, that can be created fresh, moved along the net and
used to restrict the firing of transitions with name matching. Names can be seen as process
identifiers [19], so thatν-PN can serve as the basis of models in which an unbounded number
of components (which are in turn unbounded) synchronize. For example, they can be used to
model resource-constrained workflow nets, an extension of workflownets in which an arbitrary
number of instances of the workflow can be executed concurrently [11]. In [5], they are used to
give a semantics to an extension of BPEL [16] with instance isolation.

In this paper we study the decidability of the model checking problem of thesemodels. More
precisely, we consider the logics for which model checking of P/T nets is decidable, and we study
their decidability for the two extensions. In particular, we studyLTLf , which is the fragment of
LTL that uses onlyfirst as basic predicate [9], L (F), the fragment of LTL in which negation is
only applied to basic predicates (not to operators), and the operators areX (next),F (eventually),
∧ and∨ [12]; andL (GF), which is the fragment of LTL in which the only allowed composed
operator isGF (globally future), the operators areF, ∨ and∧ and negation is only applied to
basic predicates [13].

Unfortunately, we conclude that the decidability results for P/T nets cannotbe adapted, so that
model checking for any of the logics considered is undecidable. In particular, we reduceLTLf

model checking of lossy inhibitor nets, which is undecidable, toLTLf model checking of reset
nets. Moreover, we prove that repeated coverability and reachability, which are undecidable for
reset nets, can be expressed inL (GF) andL (F) respectively.

As a first step to mitigate the previous undecidability result, we consider a fragment of LTL
weaker than all the logics considered so far in which, in particular, we do not allow negations.
We call that logicFcov. We prove that the model checking problem for this logic is decidable for
both models.

In some of the subclasses of LTL considered in the literature [13, 12] a formula is said to be
satisfied if there exists one run that satisfies it, as opposed to the more standard definition of LTL
in which all runs are required to satisfy the formula. Even though the two interpretations are
equivalent when negation can be used without restriction, this is not the case for the considered
subclasses of LTL, neither forFcov. We justify this definition by proving that already for P/T
nets,Fcov model checking is undecidable under the universal interpretation.

Table1 summarizes the results on model checking of P/T nets, reset nets andν-PNs. By “+”
(resp. -) we denote that the model checking problem for the consideredlogic is decidable (resp.
undecidable). If the references of the results are not given, then theresult is either new (the ones
with signs in bold letters) or follows directly from other results of the table.
Outline: The rest of the paper is structured as follows. Section2 presents some basic results and
notations we use throughout the paper. Section3 proves undecidability of the model checking
problem for the considered logics, for reset nets andν-PN. Section4 definesFcov and proves
decidability of the model checking problem for reset nets andν-PN, and undecidability for P/T
nets in the universal case. In Section5 we present our conclusions.
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P/T Reset ν-PN

LTL - [9] - -
LTLf + [9] - [3] -

L (GF) + [13] - -
L (F) + [12] - -

Fcov + + +
∀Fcov - - -

Table 1: Summary of results. Those in bold signs are the new contributions ofthis paper.

2 Preliminaries

A quasi order(qo) is a reflexive and transitive binary relation. For a qo≤, we writea < b if
a≤ b andb 6≤ a.

Labelled transition systems. A transition systemis a tupleS = (S,L,→, init ), whereS is a
(possibly infinite) set of states,L is a set of labels,init ∈ S is the initial state and→⊆ S×L×S1.
Given two statess1,s2 ∈ Sanda∈ L, we writes1

a
→ s2 instead of(s1,a,s2) ∈→, ands1 → s2 if

s1
b
→ s2 for someb∈ L. We denote by→∗ the reflexive and transitive closure of→ and by→+

the transitive closure of→. A run π of S is any sequences0
a0→ s1

a1→ s2... such thatsi
ai→ si+1

for i ≥ 0. We define the length of a runπ asn ∈ N if π = s0
a0→ s1

a1→ ...
an→ sn is a finite run,

and∞ if π is an infinite run. Thereachability problemconsists in deciding for a given statesf

whetherinit →∗ sf . If S is endowed with a qo≤ we can define thecoverability problem, that
consists in deciding, givensf ∈ S, whether somes≥ sf is reachable. Then, we say thats covers
sf . Therepeated coverability problemis the problem of deciding whether a given state is covered
infinitely often in some infinite run starting ininit , that is, for a givens there is an infinite run
init →+ s1 →

+ s2 →
+ ... such thats≤ si for all i ≥ 1.

Multisets. Given a (possibly infinite) arbitrary setA, we denote byA⊕ the set of finite multisets
overA, that is, the mappingsm : A→N for whichsupp(m) = {a∈ A | m(a)> 0} is finite. When
needed, we identify each conventional set with the multiset defined by its characteristic function,
and use set notation for multisets when convenient, with repetitions to accountfor multiplicities
greater than one. Moreover, given two setsA andB, and an injectionα : A → B, sometimes
we interpretα as the functionα : A⊕ → B⊕ such that givenMA ∈ A, α(MA) = MB, where for
eachb∈ B, MB(b) = n> 0 if there existsa∈ A with α(a) = b andMA(a) = n, andMB(b) = 0
otherwise.

Given two multisetsm1,m2∈A⊕ we denote bym1+m2 the multiset defined by(m1+m2)(a)=
m1(a) +m2(a). We define multiset inclusion asm1 ⊆ m2 if m1(a) ≤ m2(a) for all a ∈ A. If
m1 ⊆ m2, we can definem2−m1, taking(m2−m1)(a) = m2(a)−m1(a). We denote by /0∈ A⊕

the empty multiset, given by /0(a) = 0 for all a∈ A.

Petri nets. A Place/Transition net(P/T net for short) is a tupleN = (P,T,F) whereP is a finite
set of places,T is a finite set of transitions (withP∩T = /0) andF : (P×T)∪ (T ×P)→ N is

1 We use transition labels to homogeneously define logics based on states andevents.
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Figure 1: The firing of a transition in a P/T net.

the flow function. Givent ∈ T, the multiset of preconditions oft is •t ∈ P⊕ given by(•t)(p) =
F(p, t). Analogously, the postconditions oft are given by(t•)(p) = F(t, p). A marking is any
m∈ P⊕. For Petri nets we consider the order between markings given by multiset inclusion.
This order defines the standard coverability problem for Petri nets. We say that a transitiont is
enabled at a markingm if for each p ∈ P, m(p) ≥ F(p, t). In that case,t can be fired fromm,

reaching a new markingm′, which is denoted bym
t
→ m′, wherem′ is given bym′(p) = (m(p)−

F(p, t))+F(t, p). The reachability, the coverability and the repeated coverability problems are
all decidable for P/T nets [8]. In the rest of this paper, we represent places as circles, transitions
as rectangles, the flow function as arrows and markings as tokens inside places. The arcs which
represent the flow function are not labelled by any constant representing the corresponding values
of F . That is because for allp ∈ P, t ∈ T with an arc going fromp to t (resp. fromt to p) in
figures, we assumeF(p, t) = 1 (resp.F(t, p) = 1).

Example1 In the P/T net in the left-hand side of Fig.1, transitiont is enabled, so it can be
fired reaching the marking depicted in the right-hand side. Tokens have been consumed fromp
andr, and a token has been produced inq. As there is not a priority order over transitions, note
that from the marking represented in the left-hand side, the other transition could have been fired
instead oft, reaching a marking with a token in each place of the net.

Now, we explain two extensions of P/T nets, namely reset nets and inhibitor nets. Both of
them are defined from P/T nets by adding special arcs: reset arcs, which empty a place, and
inhibitor arcs, which add to the enabling conditions the requirement that a certain place is empty.
For both extensions, the concepts of preconditions, postconditions and marking are analogous to
those for P/T nets.

A reset netis a tupleN = (P,T,F,R), where(P,T,F) is a P/T net andR⊆ P×T is a relation
containing the so calledreset arcs. The enabled transitions at a marking are defined as for P/T
nets. An enabled transitiont can be fired from a markingm reachingm′ given by:

m′(p) =

{

(m(p)−F(p, t))+F(t, p) if (p, t) /∈ R
F(t, p) if (p, t) ∈ R

Notice that if (p, t) ∈ R andF(t, p) = 0 (i.e., t does not put any token inp) then p has no
tokens after the firing oft (hencep is reset).

Example2 Focus on Fig.2. The double arc represents a reset arc from placer to t, that is,
(r, t) ∈ R. Then, transitiont is enabled in the marking represented in the net in the left-hand side

Proc. PROLE 2013 4 / 18



ECEASST

• •a

ab••

p q

r t ′

t

→
• •a

a•

p q

r t ′

t

Figure 2: The firing of a transition in a reset net.
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Figure 3: A simpleν-PN

of the figure, and it can be fired, reaching the marking depicted in the right.All tokens in placer
have been consumed in the firing oft due to the presence of the reset arc. Note that transitiont ′

is also enabled in the marking represented in the net in the left-hand side. Transitions with reset
arcs do not have any priority over the rest of the enabled ones. Therefore, transitiont ′ could be
fired from the first marking too.

An inhibitor net is a tupleN = (P,T,F, I) whereN = (P,T,F) is a P/T net, andI ⊆ P×T is a
relation containing theinhibitor arcs(also called zero tests). We say that a transitiont is enabled
at a markingm if:

• for eachp∈ P, m(p)≥ F(p, t) and

• for each(q, t) ∈ I , m(q) = 0 (placeq is empty).

Then,t can be fired fromm, reaching the markingm′ given bym′(p) = (m(p)−F(p, t))+F(t, p)
(as for P/T nets)2. Inhibitor nets with two inhibitor arcs are already Turing complete [15],
though, interestingly, inhibitor nets with only one inhibitor arc are not [18].

ν-PN. Another way in which P/T nets are extended in the literature is by considering distinguish-
able tokens. Perhaps the most simple extension of P/T nets with (arbitrarily many) distinguish-
able tokens areν-Petri Nets [21], that encompass unboundedly many names (via a mechanism
for fresh name creation) and the unbounded occurrence of each name.

LetVar be a set of variables, andϒ ⊂Var a set of special variables for fresh name creation. A
ν-Petri Net(ν-PN for short) is a tupleN = (P,T,F), whereP andT are finite disjoint sets, and
F : (P×T)∪ (T ×P) → Var⊕ labels every arc by a multiset of variables. We denotepre(t) =
⋃

p∈Psupp(F(p, t)) (the set of variables in pre-arcs) andpost(t) =
⋃

p∈Psupp(F(t, p)) (the set
of variables in post-arcs). We also takeVar(t) = pre(t)∪post(t).

2 Actually, it is straightforward to simulate a reset arc using inhibitor arcs, in away preserving reachability, cover-
ability and repeated coverability.
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Let Id be an infinite set of names. Amarkingof a ν-PN is a mappingM : P→ Id⊕ assigning
to each place the multiset of tokens currently in it. We takeId(M) =

⋃

p∈Psupp(M(p)), that is,
the set of names inM.

Given a transitiont ∈ T of aν-PN, amodefor t is any injectionσt :Var(t)→ Id. As modes are
injections, we can match names with equality (just by using the same variable more than once)
and with inequality (by using different variables). We say that a transitiont is enabled with a
modeσt for a markingM, if for eachν ∈ϒ, σt(ν) /∈ Id(M) and for allp∈P, σt(F(p, t))⊆M(p).
Then,t can be fired, and a new markingM′ is reached, given byM′(p) = (M(p)−σt(F(p, t)))+

σt(F(t, p)) for all p∈ P. In that case we writeM
t
→ M′.

Example3 Fig. 3 depicts theν-PN N given byN = ({p1, p2, p3, p4},{t},F) with F(p1, t) =
{x,y}, F(p2, t) = {y}, F(t, p3) = {x,ν1}, F(t, p4) = {ν1,ν2}, and for(n,m) ∈ {(p3, t),(p4, t),
(t, p1),(t, p2)}, F(n,m) = /0. We assume thatν1,ν2 ∈ ϒ. The initial marking is given by
M0(p1) = {a,b}, M0(p2) = {b,c} andM0(p3) = M0(p4) = /0. The transition is fired with re-
spect to a modeσ given byσ(x) = a, σ(y) = b, σ(ν1) = d andσ(ν2) = e. Note that namesd
andeare not in the initial marking, and therefore they are created new.

Intuitively, each name in a marking of aν-PN can represent a different process running in the
same net. Therefore, we can represent the synchronization between processes and the creation
of new ones.

Given a markingM of a ν-PN and a setI of names, a renaming ofM is any injectionα :
Id(M)→ I . We say thatM ⊑ M′ ⇔ there is a renamingα of M such thatα(M)(p)⊆ M′(p) for
all p∈ P. With this order, coverability is decidable forν-PN, though reachability is undecidable
for them [21].

Example4 The markingM given byM(p1) = /0, M(p2) = /0, M(p3) = {a,d}, M(p4) = {a,c}
is covered by the markingM′ on the right-hand side of Fig.3. Note that, although there is not a
token of namea in placep4, with the order we have defined,M is covered byM′ by considering
the renamingα , such thatα(a) = d, α(d) = a andα(e) = c.

Finally, note that both models induce labelled transition systems in the obvious way: the
states of the labelled transition systems are the markings of the nets, the set of labels is the set of
transitions, and ifM is the set of markings of the net, the transition relation→⊆ M ×T ×M

is the one such thatm1
t
→m2 in the net⇔ (m1, t,m2) ∈→.

3 Model checking of Petri net extensions

Temporal logics are used to specify dynamic properties of systems. They consider a set of atomic
propositions (which express atomic properties), the boolean operators and several temporal oper-
ators and path quantifiers, which allow us to express temporal properties.There are mainly two
kinds of temporal logics: linear time logics and branching time logics. The properties that are
expressed in branching time logics are about the computation tree [1], while the ones expressed
in linear time logics are about the runs [17] (where we consider the notion of run defined in the
preliminaries). In this paper we focus on linear time logics because model checking of P/T nets
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with branching time logics is undecidable, even for very simple fragments [9].
The basic temporal operators used in temporal logics areX, F andU3. The most representative

example of a linear time logic is LTL.

Definition 1 An LTL formula is either an atomic proposition or a formula of the form¬ϕ ,
ϕ ∧ψ , ϕ ∨ψ , Xϕ , Fϕ, or ϕUψ , whereϕ andψ are LTL formulae.

First, we explain the semantics of the temporal operators informally. LTL formulae are inter-
preted over maximal runs, i.e., runs that are either infinite, or end in a deadlock state. Letϕ be
an LTL formula,S a transition system andπ a maximal run starting ins. We writeS ,π � ϕ to
denote thatπ satisfiesϕ :

• S ,π � Xϕ (next) holds if the propertyϕ holds in the state that followss in π.

• S ,π � Fϕ (eventually) holds if the propertyϕ holds in some state ofπ.

• S ,π � ϕUψ (until) holds if there is a state of the runπ such thatψ holds in that state, and
ϕ holds at every preceding state on the run.

We also defineG (globally) asGϕ =¬F¬ϕ , so thatS ,π � Gϕ holds ifϕ holds in every state
of π.

Now, we give the formal semantics of temporal operators. Letπ = s0
a1→ s1

a2→ . . . be a finite or
infinite run of lengthn∈ N∪{∞}. Forn> 0, π i is defined as the suffix of the runπ starting by
the i-th statesi . We suppose that the states and the actions of a system are labelled by the atomic
propositions that they satisfy, that is, if a states (or an actiona) satisfies an atomic proposition
p, thenp ∈ L(s) (p ∈ L(a) resp.), whereL(s) (L(a)) represents the labels ofs (a). The formal
definition of the semantics of the previous operators is inductively defined as [4]:

• T ,π � p⇔ p∈ L(s0)∨π1 is defined (that is, the length ofπ is greater than 0) and∈ L(a1).

• T ,π � ¬ϕ1 ⇔ T ,π 2 ϕ1.

• T ,π � ϕ1∨ϕ2 ⇔ T ,π � ϕ1 or T ,π � ϕ2.

• T ,π � ϕ1∧ϕ2 ⇔ T ,π � ϕ1 andT ,π � ϕ2.

• T ,π � Xϕ1 ⇔ π1 is defined andT ,π1
� ϕ1.

• T ,π � Fϕ1 ⇔ there exists ak≥ 0 such thatT ,πk
� ϕ1.

• T ,π � Gϕ1 ⇔ for all i ≥ 0 such thatπ i is defined,T ,π i
� ϕ1.

• T ,π � ϕ1Uϕ2 ⇔ there exists ak ≥ 0 such thatπk is defined,T ,πk
� ϕ2 and for all

0≤ j < k,T ,π j
� ϕ1.

3 Even thoughF can be defined in terms ofU, we prefer to include it as a primitive temporal quantifier, since we will
later disallowU.
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Note that in the previous definition, we assign the propositions they satisfy to both the states
and the transition labels (a), defined for the labelled transition systems. The atomic propositions
usually considered for P/T nets, are given by the following predicates:

• cov(m), wherem is a marking:cov(m) holds inπ if the first marking inπ coversm.

• first(t), wheret is a transition:first(t) holds inπ if the first transition fired inπ is t.

Some works consider the atomic propositionsge(p,n) anden(t) [9]. The first one expresses
that there are at leastn tokens in placep, and the second states thatt is enabled. We will not
consider them since they are equivalent tocov({

n
p, ..., p}) andcov(•t), respectively.

According to the standard definition, a systemS satisfies an LTL formulaϕ, denoted by
S |= ϕ iff every maximal run of the system starting in the initial stateinit satisfies it (universal
interpretation). The model checking problem consists in deciding, givenS and ϕ , whether
S |= ϕ . The model checking problem is equivalent to deciding, givenS andϕ , the existence of
one run starting ininit satisfying the formula (existential interpretation), provided negation can
be used without restriction, sinceS |= ϕ (under the universal interpretation) iffS 6|= ¬ϕ (under
the existential interpretation).

We consider different LTL fragments, built depending on which predicates and operators we
consider.

Definition 2 We consider the following fragments of LTL:

• LTLf , the fragment of LTL that uses onlyfirst as basic predicate [9],

• L (F), the fragment of LTL in which negation is only applied to basic predicates (not to
operators), and the operators areX, F, ∧ and∨ [12],

• L (GF), the fragment of LTL in which the only allowed composed operator isGF, the
operators areF, ∨ and∧ and negation is only applied to basic predicates [13].

Example5 The formulaFfirst(t), which expresses thatt is eventually fired, is inL (F), but
Gfirst(t) = ¬F¬first(t), which expresses thatt is always fired, is not.

The formulafirst(t) → GFfirst(t), which expresses that ift is the first transition being fired
thent is fired infinitely often, is inL (GF), butFfirst(t)→ GFfirst(t) = ¬Ffirst(t)∨GFfirst(t),
which expresses that ift is eventually fired, then it is fired infinitely often, is not.

In LTLf negation can be used without restriction, so that the universal and the existential inter-
pretations are equivalent (i.e., their model checking decision problems areequivalent). However,
this is not the case forL (F) andL (GF). Actually, they are defined using the existential inter-
pretation in [12, 13]. For the subclasses of LTL considered, we have the following results.

• LTL model checking is undecidable (with bothfirst andcov), butLTLf model checking is
decidable (withcovonly) [9].

• L (F) model checking is decidable [12] (with existential interpretation),

• L (GF) model checking is decidable [13] (with existential interpretation).

Proc. PROLE 2013 8 / 18
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3.1 Model checking of reset nets

Let us show that the three logics which are decidable for P/T nets become undecidable for reset
nets. Let us first considerLTLf . In [3] the model checking problem ofLTLf is studied for
lossy vector addition systems (lossy VAS) with tests for zero, which is proved to be undecidable.
Let us see that we can adapt that result for reset nets. Let us first define the lossy version of a
transition system in general.

Definition 3 Given a transition systemS = (S,→, init ) and a quasi-order≤ overS, the lossy
versionof S is Sl = (S,→l , init ), wheres1 →l s2 if and only if there exists two statess′1 ands′2
such thats1 ≥ s′1 → s′2 ≥ s2. A lossy Petri netis the lossy version of some Petri net.

In the lossy version of a transition system, states can be spontaneously decreased. In the case
of Petri nets, tokens may be lost just before or after a transition is fired.

Example6 Focus on Fig.2. In the lossy version of the P/T net obtained by replacing the reset
arc by a plain arc, despiter is not reseted by any reset arc oft, the second marking could be
reached from the first one by first losing a token fromr and then firingt.

Reset nets can simulate lossy inhibitor nets, as we prove next. This fact is used in the proof of
the next result.

Proposition 1 LTLf model checking is undecidable for reset nets.

Proof. We reduceLTLf model checking for lossy inhibitor nets, which is undecidable [3], to
the same problem for reset nets. LetN = (P,T,F, I) be an inhibitor net. We define the reset
netN′ = (P,T,F, I). We are going to prove that there is a surjective function between the runs
of N andN′ that preserves the sequence of labels of runs and therefore, since the only atomic
proposition inLTLf is first, given anLTLf formulaϕ , N |= ϕ iff N′ |= ϕ . Notice that sinceN′ is
a reset net, checks for zero have been replaced by resets, that is, an inhibitor arc from a placep
to a transitiont in N is replaced by a reset arc fromp to t in N′. The following holds:

• m1
t
→m2 in N ⇒ there is anm′

2 ≥ m2 such thatm1
t
→m′

2 in N′: the preconditions and effects
of the firings oft in N and N′ are the same, except for the fact that we have replaced
inhibitor arcs by reset arcs. Therefore, when a transition with an inhibitorarc inN is firing
in N′, the corresponding place is reseted instead of being checked for zero. If there are
tokens in such a place, all the tokens in it are removed, so there exist a possibility of losing
tokens in our simulation if the place was not empty. Ift has no inhibitor arc, andm1

t
→m2

in N, t is enabled atm1 in N′, and it can be fired reaching a marking greater or equal than
m2, because some token may have been lost in the firing inN.

Now, suppose thatt has some inhibitor arcs, andm1
t
→m2 in N. First of all, note that if a

transition is enabled inN at a marking, it is enabled inN′ at the same marking. Moreover,
the places with inhibitor arcs leading tot are empty in that marking. Therefore, whent
is fired fromm1 in N′, these places are reset (hence staying empty). Therefore, the only
differences in the effects of the firing oft in both nets come because of lossiness. In
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Figure 4: From lossy inhibitor nets to reset nets

particular, sincet may loose tokens inN, but not inN′, m1
t
→m′

2 in N′, with m′
2 ≥ m2.

For example, focus on the left-hand side of Fig.4. In the inhibitor nets depicted in this
figure, given a placep and a transitiont, we represent(p, t) ∈ I by an arc fromp to t, with
a circle in the placep. The markingm1 in the first lossy inhibitor net in A1 may evolve to
m21 or m22 (m22 has lost the token). The corresponding reset net, depicted in A2 can only
evolve t the markingm′

2. However, note thatm′
2 covers bothm21 andm22.

• m1
t
→m2 in N′ ⇒ m1

t
→m2 in N: In particular, ifN′ resets a place,N can first loose tokens,

thus emptying it, and then test for zero in that place. Therefore, the transition is fireable
in N (because the preconditions of the firings oft in N andN′ are the same, except for the
lossiness and the inhibitor arcs) and the place is empty at the end of both firings.

Focus on the right-hand side of Fig.4. Transitiont is fireable from the markingm1 in
the reset net in B1, reaching the markingm2. Despitet is not fireable fromm′

1 = m1, the
lossy inhibitor net may lose tokens, reachingm′

12, from whicht can be fired, reaching the
markingsm′

21 or m′
22.

Therefore, there is a surjective function between the runs ofN andN′ that preserves the sequence
of labels of runs. Note that this holds because reset nets are monotonic, so transitions which are
fired inN at a markingmwhich has lost tokens, can be fired from the corresponding markingm′

of N′, without loss of tokens, becausem′ ≥ m. Since the only atomic proposition inLTLf is first,
N |= ϕ iff N′ |= ϕ and we conclude.

Let us now focus on the two other fragments of LTL. The case forL (GF) is straightforward:

Proposition 2 L (GF) model checking of reset nets is undecidable.

Proof. It is enough to consider thatGFcov(M), which is a formula inL (GF), expresses the
repeated coverability problem, which is undecidable for reset nets [2].
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However, not only that fragment, but the weaker fragmentL (F), which is decidable for P/T
nets [12], is undecidable for reset nets. The following proof uses ideas from [12], in whichL (F)
model checking is reduced to reachability for P/T nets.

Proposition 3 L (F) model checking of reset nets is undecidable.

Proof. We reduce reachability, which is undecidable for reset nets [2], to model checking some
formula inL (F). Let N = (P,T,F,R) be a reset net andm a marking ofN. We can compute the
set of the least markings greater thanm.4 Indeed, that set is just{mp | p∈ P}, wheremp is given
by mp(q) = m(q) for q 6= p andmp(p) = m(p)+1. For example, the set of the least markings
greater than the marking depicted in the net in the left-hand side of Fig.2 is {mp,mq,mr}, where
mp = {p, p, r, r}, mq = {p,q, r, r} andmr = {p, r, r, r}. Then,m is reachable inN iff there is a
reachable markingm′ that coversm, but does not cover anymp, because this would imply that
in each placep, m′ has exactlym(p) tokens (because it does not covermp). Therefore,m is
reachable inN iff the formulaF(cov(m)∧

∧

p∈P¬cov(mp)) is satisfied.

The previous proof is based on obtaining a formula which expresses the reachability problem.
In order to obtain this formula, there is an important property that reset netssatisfy: Given a
markingm, we are able to compute a finite set of markingsS= {m1, . . . ,mn} such that for each
mi ∈ S, mi ⊃ mand ifm′ ⊃ m, then there ismi ∈ Ssuch thatm′ ⊇ mi . Intuitively, we can compute
the finite set of “the smallest markings greater thanm”. As we can build that set, a markingmf

coincides withm if and only if mf coversm andmf does not cover any marking ofS.

3.2 Model checking ofν-PN

We first recall from [21] how ν-PN can simulate reset nets (see Fig.5, where the double arrow
represents a reset arc). For each placep of a reset netN we consider a copy of it and a new place
p′ in the ν-PN N′ we build. The main idea of the construction is to store in placep′ a single
token of the colour that we consider valid in the current marking for placep of N′. That is, the
tokens inp of the colour of the token inp′ will be considered valid, and the rest of the tokens in
p will be considered garbage. For example, in theν-PN of Fig.5, there are two valid tokens in
placer, because the colour of the token inr ′ is b.

The construction ofN′ guarantees that for each placep of N, the placep′ of N′ contains a
single token at any time. The firing of any transition ensures that the token being used in the
placep of N′ coincides with that inp′ (by labelling both arcs with the same variablexp). Every
time a transition resets a placep of N, the token inp′ is replaced by a fresh one, so that no token
remaining in placep of N′ can be used from then on. For example, suppose we fire transitiont
in Fig. 5. Then, a new colour is put inr ′, and therefore the tokens of nameb in r cannot be used
anymore.

Therefore, this simulation can introduce some garbage tokens (those inp when p is reset).
Given a markingmwe definem′ by arbitrarily choosing a different nameap ∈ Id for eachp∈ P,

and takingm′(p′) = {ap}, andm′(p) = {ap,
m(p)... ,ap}. Then, ifm0 is the initial marking ofN, N′

4 In order theory that set is called the cover ofm, though we prefer not to overload that term here.
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Figure 5: A reset net and the correspondingν-PN. The double arrow represents a reset arc

with initial markingm′
0 simulatesN. The previous simulation preserves all behavioral properties.

Then, the following is a straightforward consequence of Prop.1.

Corollary 1 LTLf model checking is undecidable forν-PN.

The previous simulation also preserves coverability. More precisely, if a marking m is cover-
able in the reset netN, then the markingm′ of N′ defined above is coverable too. The markings
in the simulation may contain some garbage, which is created when we simulate the firing of a
reset, because instead of removing all tokens of some placep, we change the name of the token
in p′, making all tokens inp become garbage. However, the presence of that garbage is irrelevant
for coverability. In particular, we have the following.

Proposition 4 Repeated coverability is undecidable forν-PN.

Proof. It is enough to consider that repeated coverability is undecidable for reset nets [2], and
that the previous simulation preserves repeated coverability. We prove that m can be repeatedly
covered fromm0 in N iff M′ can be repeatedly covered fromm′

0 in N′. Indeed, ifm is repeatedly
covered there is a runm0 →

+ m1 →
+ m2 →

+ ... of N such thatmi ≥ m for all i ≥ 1. By construc-
tion of N′, there is a runm′

0 →
+ M1 →

+ M2 →
+ ... of N′ such thatMi ≥ m′

i ≥ m′ for all i ≥ 1,
som′ is repeatedly covered. Moreover,Mi coincides withm′

i when considering only the “valid
tokens” ofMi (and after possibly renaming the names carried by the tokens). The converse is
analogous.

Once we know that repeated coverability is undecidable, undecidability ofL (GF) model
checking is trivial.

Corollary 2 L (GF) model checking ofν-PN is undecidable.

Next, we see the undecidability ofL (F) model checking forν-PN.

Proposition 5 L (F) model checking ofν-PN is undecidable.

Proof. The proof is analogous to the one of the same result for reset nets. We reduce reachability
in ν-PN, which is undecidable [21], to the model checking problem for some formula inL (F).
Let N = (P,T,F) be aν-PN. Given a markingM, we can compute the finite set of the least
markings greater thanM. Indeed, givenp∈ P andc∈ Id(M)∪{b}, with b /∈ Id(M), we define
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Mpc given byMpc(q) = M(q) if p 6= q andMpc(p) = M(p)+{c}. Then, the set we are looking
for is {Mpc | p∈ P,c∈ Id(M)∪{b}}. For example, consider a net with two placesp andq, and
a markingM with one tokena in p and empty inq. The set of the least markings greater than
this marking is{Mpa,Mpb,Mqa,Mqb}, whereMpa(p) = {a,a}, Mpa(q) = /0, Mpb(p) = {a,b},
Mpb(q) = /0, Mqa(p) = {a}, Mqa(q) = {a}, Mqb(p) = {b} andMqb(q) = {a}. Therefore,M is
reachable inN iff N |= F(cov(M)∧

∧

p,c¬cov(Mpc)), and we conclude.

4 A decidable fragment

In the previous section we have proved the undecidability of model checking of reset nets and
ν-PN for some logics, whose model checking problem is known to be decidable for P/T nets.
In this section we define a restriction ofL (F), thus obtaining a fragment that is less expressive
than all the logics considered here.

Definition 4 Fcov is the fragment ofL (F) in which negation is not allowed.

In this logic we can express bounded repeated coverability. However,Fcov cannot express
properties like¬cov(M). In particular, the formulaF(cov(M)∧

∧

p∈P¬cov(Mp)) which ex-
presses reachability, is not a formula ofFcov. As forL (F), we consider existential interpretation,
so that a formula is satisfied if some maximal run starting in the initial marking satisfiesit. We
will see thatFcov model checking is decidable both for reset nets and forν-PN. Later, we will
consider∀Fcov, the version ofFcov with universal interpretation, and we will prove that∀Fcov

model checking is undecidable even for P/T nets.

Proposition 6 Fcov model checking of reset nets is decidable.

Proof. Let N = (P,T,F,R) be a reset net andφ a formula inFcov. We proceed by induction on
the nesting of operatorsF in φ . If φ is a boolean combination of formulae of the formcov(m), it
is trivial to decide whetherφ is satisfied because multiset inclusion is decidable.

Let us suppose that we can check each formula with at mostn > 0 nestedF operators. Let
φ be a boolean combination of formulae of the formcov(m) and Fϕ , whereϕ has at most
n nestedF operators, and let us see that we can decide whether each of those formulaeFϕ
is satisfied (and hence, whetherφ is satisfied). Using standard techniques, we can writeFϕ
asF(

∨

i((
∧

j cov(mi j ))∧ (
∧

k Fϕik))), whereϕik are formulae ofFcov with at mostn−1 nested
operators. That formula is equivalent to the formula

∨

i F((
∧

j cov(mi j ))∧ (
∧

k Fϕik)), that is, a
disjunction of formulae of the formF(cov(m1)∧ ...∧cov(mq)∧Fϕ1∧ ...∧Fϕr), whereq andr
are not simultaneously zero, and eachϕk has at mostn−1 nested operators. Let us distinguish
the following two cases:
(a) If q= 0 the formula is of the formF(Fϕ1∧ ...∧Fϕr), which is equivalent toFϕ1∧ ...∧Fϕr .
Hence, we can apply the induction hypothesis to eachFϕk and we are done.
(b) If q > 0, we modifyN, thus obtainingN′, by adding transitionst1, ..., tq, tq+1 and places
p0, p1, ..., pq as follows. We addp0 as precondition/postcondition of every transition inN. More-
over, ti moves a token frompi−1 to pi , providedmi is covered. Finally,tq+1 can be fired only
one time (for which we add a new place with a single token initially, as preconditionof tq+1),
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Figure 6: Construction ofN′ in Prop.6

setting again a token inp0, and havingpq as precondition and postcondition. This construction
is represented in Fig.6, for q = 2. Then,N′ behaves asN, but when everymi can be covered,
it can sequentially firet1, ..., tq, tq+1. Hence, everymi can be simultaneously covered inN iff pq

can be covered inN′. We consider the following two sub-cases:
(b.1) If r = 0 then the formula is of the formF(cov(m1)∧ ...∧cov(mq)) and hence equivalent to
Fcov({pq}), which expresses a coverability problem, so that it can be decided.
(b.2) Consider now thatr > 0. For any formulaϕ , we defineϕ ′ as follows:

• If ϕ = cov(m) thenϕ ′ = cov(m+{pq}).

• If ϕ = ϕ1∧ϕ2 thenϕ ′ = ϕ ′
1∧ϕ ′

2. Analogously, ifϕ = ϕ1∨ϕ2 thenϕ ′ = ϕ ′
1∨ϕ ′

2.

• If ϕ = Fϕ1 thenϕ ′ = Fϕ ′
1.

Then,F(cov(m1)∧ . . .∧cov(mq)∧Fϕ1∧ . . .∧Fϕr) holds inN iff F(Fϕ ′
1∧ . . .∧Fϕ ′

r) holds in
N′. Notice that the number of nestedF operators is the same forϕk andϕ ′

k. Then, by (a) we are
done.

The proof of the same result forν-PNs is analogous to the previous one.5

Proposition 7 Fcov model checking is decidable forν-PN.

Proof. The construction forν-PN is the same as the previous one. The only difference is that
the names in the markings of the formulae need to be handled correctly inN′, by choosing a
different variable for each name in a marking to label the arcs.

Since in particularFcov allows us to express coverability, which has a non primitive recursive
complexity for reset nets [22] and forν-PN [21], we have the following:

Proposition 8 The complexity ofFcov model checking is non primitive recursive for reset nets
and forν-PN.

5 Actually, the same is true for any model that belongs to the class of Well Structured Transitions Systems, with fairly
minor conditions.
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To conclude, let us see that the version ofFcov with universal interpretation, that we denote
by ∀Fcov, is undecidable even for P/T nets. Intuitively, formulae in∀Fcov are global properties
of some trace, or equivalently, eventuality properties of every trace. For instance,Fcov(M)
expresses that every run starting from the initial marking eventually coversM.

We reduce control-state reachability for Two Counter Machines, which is undecidable [15]. A
Two Counter Machine(TCM for short) is a tupleC= (Q,{c1,c2}, Ins,q0), whereQ is a finite set
of control states,c1 andc2 are the two counters,Ins is a set of instructions andq0 ∈Q is the initial
state. An instruction can be of the following three forms:Inc(p, i,q), Dec(p, i,q) or Zero(p, i,q),
wherep,q∈ Q andi ∈ {1,2}, for the increasing of the counterci , the decreasing ofci , or check
for zero ofci respectively. A configuration ofC is given by a tuple〈q,c1 = n1,c2 = n2〉, where
q ∈ Q is the current state, andn1,n2 ∈ N are the current values of the counters. The initial
configuration is〈q0,c1 = 0,c2 = 0〉.

In a configuration〈p,c1 = n1,c2 = n2〉, we may executeInc(p, i,q) ∈ Ins, reaching〈q,c1 =
n′1,c2 = n′2〉, wheren′i = ni + 1 andn′3−i = n3−i . If ni > 0 we may executeDec(p, i,q) ∈ Ins,
reaching〈q,c1 = n′1,c2 = n′2〉, wheren′i = ni − 1 andn′3−i = n3−i . Finally, if ni = 0, we can
executeZero(p, i,q) ∈ Ins, reaching〈q,c1 = n1,c2 = n2〉. The control-state reachability problem
consists in deciding, givenq ∈ Q, whether a configuration of the form〈q,c1 = n1,c2 = n2〉 is
reachable. It is well-known that this is an undecidable problem [15].

Example7 Consider the TCMC=(Q,{c1,c2}, Ins, p), with Q= {p,q, r} andIns= {Inc(p,c1,q),
Inc(q,c2, p),Zero(p,c2, r)}. In order to reach a configuration with stater, the first instruction to
be executed must beZero(p,c2, r). Otherwise, the two first executed instructions areInc(p,c1,q)
andInc(q,c2, p), so we reach a configuration withc1 = c2 = 1. As there is not aDec instruction
in this machine, after executing this instructions we cannot reach a configuration with c2 = 0
anymore, and therefore we cannot reach stater anymore.

We consider only deterministic TCM, that is, TCM such that at each reachable configura-
tion there is at most one instruction that can be executed. Moreover, withoutloss of generality
we assume that ifZero(p, i,q) ∈ Ins then there is no other instruction of the formInc(p′, j,q),
Dec(p′, j,q) or Zero(p′, j,q) in Ins, that is,q can only be reached by that instruction (defined
as requirement†). Indeed, for each instructionI = Zero(p, i,q) ∈ Ins we can add two states
q1,q2, and replaceI by Zero(p, i,q1), Inc(q1, i,q2), Dec(q2, i,q).6 The control-state reachability
problem for deterministic TCM is still undecidable.

Proposition 9 ∀Fcov model checking of P/T nets is undecidable.

Proof. We reduce the control-state reachability problem for deterministic TCM to the model
checking problem of a formula in∀Fcov. Let C = (Q,{c1,c2}, Ins,q0) be a deterministic TCM
and pend ∈ Q. We use the standard simulation of a TCM by means of a P/T net. We define
N = (Q∪{c1,c2}, Ins,F), where:

• F(p, Inc(p, i,q)) = 1, F(Inc(p, i,q),q) = 1, and

F(Inc(p, i,q),ci) = 1 (a token is moved fromp to q, and a token is added toci).

6 If we allow instructions that do not modify the counter then it is enough to adda single stateq1 and an instruction
changing the state fromq1 to q.
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Figure 7: Construction of Prop.9 for the TCM of Ex.7

• F(p,Dec(p, i,q)) = 1, F(Dec(p, i,q),q) = 1, andF(ci ,Dec(p, i,q)) = 1 (a token is moved
from p to q, and a token is removed fromci).

• F(p,Zero(p, i,q)) = 1 andF(Zero(p, i,q),q) = 1 (a token is moved fromp to q).

Moreover,F(n,m) = 0 elsewhere, and the initial marking ofN is {q0}. In N, the number of
tokens inci represent the value of the counterci in C. Increasing and decreasing transitions are
simulated faithfully. However, the simulation of a transitionZero(p, i,q) can “cheat”, whenever
it is fired with tokens inci . In that case, notice that the marking{ci ,q} can be covered. Moreover,
becauseq cannot be reached using a different instruction (requirement (†) above), we know that
if such marking is covered then the current simulation has cheated. Focus on Fig. 7, which
represents the net built from the TCM of Ex.7. Note that transitionZero(p,c2, r) can be fired
even after firingInc(p,c1,q) andInc(q,c2, p), whenc2 is not empty. In this case, this simulation
has cheated.

We considerϕ =F(cov(pend)∨
∨

m∈J cov(m)), whereJ= {{ci ,q} |Zero(p, i,q)∈ Ins}. Notice
that all the cheating runs satisfyϕ . We prove thatpend can be reached inC if and only if N |= ϕ .
For the if part, ifC reachespend then the non-cheating run ofN eventually coverspend, so that
it satisfiesϕ . Since cheating runs always satisfyϕ , every run ofN satisfiesϕ . Conversely, ifC
does not reachpend then the non-cheating run ofN does not satisfyϕ .

5 Conclusions and future work

Table1 summarizes the results on model checking of P/T nets, reset nets andν-PNs. In partic-
ular, in this work we have proved the undecidability of the fragmentsLTLf , L (GF) andL (F)
for reset nets andν-PN.

We have definedFcov, a very simple restriction of LTL that does not allow negations, for which
model checking of reset nets andν-PN is decidable. Actually, we claim this is the case for any
model in the class of Well Structured Transition Systems [10] under fairly minor conditions,
since the model checking problem can be reduced to a finite number of coverability problems.
Moreover, we have proved that if we require that every run starting from the initial marking
satisfies a formula, then even for the simple case ofFcov and P/T nets, the corresponding model
checking problem is undecidable.
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Further study, in order to define more expressive logics for which the model checking problem
is decidable, is needed. A possible direction in such study could be the definition of logics with
atomic propositions that are more specific of the particular model. Such direction links with the
so called Yen’s logics for P/T nets. In the case ofν-PN, the corresponding logic should be able
to express properties about the names in the marking.

Language theory was used to prove the difference of expressiveness between reset nets and
ν-PNs in [20]. In this sense, it would certainly be interesting to find a logic which distinguishes
between reset nets andν-PNs.

Finally, we have proved that the complexity ofFcov model checking is non primitive recursive
for reset nets and forν-PN. However, it would be interesting to perform a finer complexity
analysis.
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