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Abstract: We study the model checking problem for monotonic extensions of Petri
Nets, namely for two extensions of Petri nets: reset nets (nets in whicksptao be
emptied by the firing of a transition with a reset arc) anBetri nets (nets in which
tokens are pure names that can be matched with equality and dynamicallygreate
We consider several fragments of LTL for which the model checkingdplpro is
decidable for P/T nets. We first show that for those logics, model chgdfireset
nets is undecidable. We transfer those results to the cagePetri nets. In order

to cope with these negative results, we define a weaker fragment ofi.Tihich
negation is not allowed. We prove that for that fragment, the model chedking
both reset nets ang-Petri nets is decidable, though with a non primitive recursive
complexity. Finally, we prove that the model checking problem for a versidhat
fragment with universal interpretation is undecidable even for P/T nets.

Keywords: LTL, model checking, Petri nets, decidability, complexity

1 Introduction

Temporal logics4] have been established as a very expressive formalism for the spgaifiof
properties of computational concurrent systems. Model checking igtfdem of deciding if a
given system satisfies a given temporal formula.

For infinite state systems the model checking problem is undecidable in ggitgrad very
well known formalism for infinite state concurrent systems is that of Petsi[6g Among them,
place/Transition nets (P/T nets) are potentially infinite state, but their exprgeswver is be-
low Minsky machines (e.g., reachability is decidable for th&h [Decidability and complexity
of the model checking problem for P/T nets are well studied, and thespmneling decidability
frontiers are well settledl|3, 9, 12, 8]. Roughly speaking, model checking of P/T nets is undecid-
able for any branching-time logic, while for linear time logics, “event-baddd” is decidable,
though “state-based” LTL is undecidable.

In the last two decades, several monotonic extensions of Petri netappeared in the lit-
erature. These extensions usually consist either on the extension afiibedie of P/T nets,

* Authors supported by the Spanish projects STRONGSOFT TIN201213@®4-04 and PROMETIDOS
S2009/TIC-1465.
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or on the use of colours, that is, distinguishable tokens. We considerinmpdesextensions of

P/T nets, one in each group: reset n&lsgnd v-Petri nets ¢-PN) [21]. In reset nets the firing

of a transition can empty some places. Their modeling capabilities are disdossestance

in [14]. Tokens inv-PNs are pure names, that can be created fresh, moved along thednet an
used to restrict the firing of transitions with name matching. Names can be sg@o@ess
identifiers [L9], so thatv-PN can serve as the basis of models in which an unbounded number
of components (which are in turn unbounded) synchronize. For exammgl can be used to
model resource-constrained workflow nets, an extension of workfkte/ in which an arbitrary
number of instances of the workflow can be executed concurretit]y lin [5], they are used to

give a semantics to an extension of BPH|[with instance isolation.

In this paper we study the decidability of the model checking problem of tieskels. More
precisely, we consider the logics for which model checking of P/T netgidalele, and we study
their decidability for the two extensions. In particular, we studyt ¢, which is the fragment of
LTL that uses onlyfirst as basic predicat®], .Z(F), the fragment of LTL in which negation is
only applied to basic predicates (not to operators), and the operagofqaext),F (eventually),

A andV [12]; and £ (GF), which is the fragment of LTL in which the only allowed composed
operator isGF (globally future), the operators afe v and A and negation is only applied to
basic predicateslf].

Unfortunately, we conclude that the decidability results for P/T nets cdenatiapted, so that
model checking for any of the logics considered is undecidable. In pkatjave reduce.T L¢
model checking of lossy inhibitor nets, which is undecidabld, Td.; model checking of reset
nets. Moreover, we prove that repeated coverability and reachabilitghvare undecidable for
reset nets, can be expressedAiGF) and.Z (F) respectively.

As a first step to mitigate the previous undecidability result, we consider méaigof LTL
weaker than all the logics considered so far in which, in particular, weotlalifow negations.
We call that logid=¢,,. We prove that the model checking problem for this logic is decidable for
both models.

In some of the subclasses of LTL considered in the literatlBe]2] a formula is said to be
satisfied if there exists one run that satisfies it, as opposed to the morerdtdafiaition of LTL
in which all runs are required to satisfy the formula. Even though the twopirgtations are
equivalent when negation can be used without restriction, this is not feefeathe considered
subclasses of LTL, neither fdf.,,. We justify this definition by proving that already for P/T
nets,F.oy model checking is undecidable under the universal interpretation.

Table1 summarizes the results on model checking of P/T nets, reset netsaNd. By “+”
(resp. -) we denote that the model checking problem for the consittagidis decidable (resp.
undecidable). If the references of the results are not given, theesh# is either new (the ones
with signs in bold letters) or follows directly from other results of the table.

Outline: The rest of the paper is structured as follows. Secipresents some basic results and
notations we use throughout the paper. SecB@moves undecidability of the model checking
problem for the considered logics, for reset nets areN. Sectior4 definesF¢,, and proves
decidability of the model checking problem for reset nets a+i!N, and undecidability for P/T
nets in the universal case. In Sect®we present our conclusions.
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] | PIT | Reset | v-PN

LTL | -[9] - -
LTLr | +[9] “13] -
Z(GF) | +[13 - -
Z(F) | +[17 - -
Fcov + + +
Yooy | - : :

Table 1: Summary of results. Those in bold signs are the new contributidhis glaper.

2 Preliminaries

A quasi order(qo) is a reflexive and transitive binary relation. For a<gowe writea < b if
a<bandb £ a.

Labelled transition systems. A transition systenis a tuple.” = (S L,—,init), whereSis a
(possibly infinite) set of statek,is a set of labelgnit € Sis the initial state and>C Sx L x S*.
Given two states;, s, € Sanda € L, we writes; N s instead of(s;,a,s) €—, ands; — s if

S L\ s, for someb € L. We denote by—* the reflexive and transitive closure of and by—*

the transitive closure ofs. A run 1 of . is any sequencs =2 s; 5 s,... such thatls = s.1

fori > 0. We define the length of arumasne N if m=g X S b . S, is a finite run,
andoo if 7Tis an infinite run. Theeachability problenconsists in deciding for a given stade
whetherinit —* s¢. If Sis endowed with a qe< we can define theoverability problemthat
consists in deciding, givest € S whether some > s; is reachable. Then, we say tlsedovers

si. Therepeated coverability probleis the problem of deciding whether a given state is covered
infinitely often in some infinite run starting imit, that is, for a givers there is an infinite run
int -+ s —-Ts, —*...suchthas<s foralli > 1.

Multisets. Given a (possibly infinite) arbitrary st we denote byA® the set of finite multisets
overA, that is, the mappings: A — N for whichsupgm) = {a€ A| m(a) > 0} is finite. When
needed, we identify each conventional set with the multiset defined by itaatkeistic function,
and use set notation for multisets when convenient, with repetitions to adoountiltiplicities
greater than one. Moreover, given two sAtandB, and an injectionx : A — B, sometimes
we interpreta as the functioro : A¥ — B® such that giverMa € A, a(Ma) = Mg, where for
eachb € B, Mg(b) = n > 0 if there existaa € A with a(a) = b andMa(a) = n, andMg(b) =0
otherwise.

Given two multisetsm , m, € A® we denote bym +mp the multiset defined bymy +myp)(a) =
my(a) +mp(a). We define multiset inclusion asy C ny if my(a) < mp(a) for all ac A. If
m; C mp, we can definen, — my, taking (mp —my)(a) = mp(a) —my(a). We denote by & A
the empty multiset, given by(@) = 0 for allac A.

Petri nets. A Place/Transition ne(P/T net for short) is a tupll = (P, T,F) whereP is a finite
set of placesT is a finite set of transitions (WitRNT = 0) andF : (Px T)U(T xP) — N is

1 We use transition labels to homogeneously define logics based on staeseatsl

3/18 Volume 64 (2013)



On the decidability of model checking LTL fragments in monotonic extensions of Petri nt—:‘tsE5

P (O—t—(d PO—Tt—®0

R

Figure 1: The firing of a transition in a P/T net.

the flow function. Givert € T, the multiset of preconditions ¢fis *t € P® given by (*t)(p) =
F(p,t). Analogously, the postconditions bare given by(t*)(p) = F(t,p). A marking is any

m e P®. For Petri nets we consider the order between markings given by multdasion.
This order defines the standard coverability problem for Petri nets.ayéhat a transitiom is
enabled at a markinm if for eachp € P, m(p) > F(p,t). In that caset can be fired fronm,
reaching a new markingy, which is denoted byn- nv, wherent is given by (p) = (m(p) —
F(p,t)) + F(t, p). The reachability, the coverability and the repeated coverability probleens ar
all decidable for P/T netd]. In the rest of this paper, we represent places as circles, transitions
as rectangles, the flow function as arrows and markings as tokens iteids pThe arcs which
represent the flow function are not labelled by any constant repiegéine corresponding values
of F. That is because for ay € P, t € T with an arc going fronp tot (resp. fromt to p) in
figures, we assumie(p,t) =1 (resp.F(t, p) = 1).

Examplel In the P/T net in the left-hand side of Fif, transitiont is enabled, so it can be
fired reaching the marking depicted in the right-hand side. Tokens havedemsumed from
andr, and a token has been produced|imAs there is not a priority order over transitions, note
that from the marking represented in the left-hand side, the other transideh leave been fired
instead of, reaching a marking with a token in each place of the net.

Now, we explain two extensions of P/T nets, namely reset nets and inhibitar Beth of
them are defined from P/T nets by adding special arcs: reset arch) empty a place, and
inhibitor arcs, which add to the enabling conditions the requirement thataircplace is empty.
For both extensions, the concepts of preconditions, postconditions akihghare analogous to
those for P/T nets.

A reset neis a tupleN = (P, T,F,R), where(P,T,F) isa P/T netandRC P x T is a relation
containing the so calleteset arcs The enabled transitions at a marking are defined as for P/T
nets. An enabled transitidrcan be fired from a markingy reachingm’ given by:

_J (m(p)—F(p,t))+F(t,p) if (p,t) ¢R
M(p)_{ F(t,p) if (p,t) eR

Notice that if (p,t) € RandF(t,p) = 0 (i.e.,t does not put any token ip) then p has no
tokens after the firing df (hencep is reset).

Example2 Focus on Fig2. The double arc represents a reset arc from plaicet, that is,
(r,t) € R. Then, transition is enabled in the marking represented in the net in the left-hand side

Proc. PROLE 2013 4/18
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Figure 2: The firing of a transition in a reset net.

Figure 3: A simplev-PN

of the figure, and it can be fired, reaching the marking depicted in the Adhtbkens in place
have been consumed in the firingtalue to the presence of the reset arc. Note that transition
is also enabled in the marking represented in the net in the left-hand sidhsititras with reset
arcs do not have any priority over the rest of the enabled ones. foheréansitiort’ could be
fired from the first marking too.

An inhibitor netis a tupleN = (P, T,F,I) whereN = (P,T,F)isaP/Tnet,anl CPx T isa
relation containing thehibitor arcs(also called zero tests). We say that a transitisrenabled
at a markingmif:

e for eachp e P, m(p) > F(p,t) and
e for each(q,t) € I, m(q) = 0 (placeq is empty).

Then,t can be fired fronm, reaching the markingy given by (p) = (m(p) —F(p,t)) +F(t, p)
(as for P/T nets¥. Inhibitor nets with two inhibitor arcs are already Turing complets] [
though, interestingly, inhibitor nets with only one inhibitor arc are dé}.[

v-PN. Another way in which P/T nets are extended in the literature is by considdstigglish-
able tokens. Perhaps the most simple extension of P/T nets with (arbitrarily) aliatigguish-
able tokens are@-Petri Nets P1], that encompass unboundedly many names (via a mechanism
for fresh name creation) and the unbounded occurrence of each name

LetVar be a set of variables, anfic Var a set of special variables for fresh name creation. A
v-Petri Net(v-PN for short) is a tupl®& = (P, T,F), whereP andT are finite disjoint sets, and
F:(PxT)U(T xP) — Var® labels every arc by a multiset of variables. We denm#gt) =
UpepSUpPHF (p,t)) (the set of variables in pre-arcs) apds{t) = UpcpSUpHF(t, p)) (the set
of variables in post-arcs). We also takar(t) = pre(t) U postt).

2 Actually, it is straightforward to simulate a reset arc using inhibitor arcsvimy preserving reachability, cover-
ability and repeated coverability.
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Let Id be an infinite set of names. markingof a v-PN is a mappindv : P — Id® assigning
to each place the multiset of tokens currently in it. We také/) = UycpSUPAM(p)), that is,
the set of names iNl.

Given a transitiot € T of av-PN, amodefor t is any injectiong; : Var(t) — Id. As modes are
injections, we can match names with equality (just by using the same variable raarertbe)
and with inequality (by using different variables). We say that a transitisrenabled with a
modeo; for a markingM, if for eachv €Y, ai(v) ¢ Id(M) and for allp e P, a;(F (p,t)) C M(p).
Then,t can be fired, and a new markii is reached, given byl’(p) = (M(p) — ai(F(p,t))) +

ai(F(t,p)) for all p € P. In that case we writé ANVE

Example3 Fig. 3 depicts thev-PNN given byN = ({p1, p2, P3, Pa}, {t},F) with F(p1,t) =
{va}’ F(pz,t) = {y}' F(t, p3) = {Xv Vl}’ F(t, p4) = {V17V2}' and for(n, m) € {(p37t)7(p47t)7
(t,p1),(t,p2)}, F(n,m) = 0. We assume thati,vo € Y. The initial marking is given by
Mo(p1) = {a,b}, Mo(p2) = {b,c} andMo(ps) = Mo(ps) = 0. The transition is fired with re-
spect to a mode given byo(x) =a, a(y) =b, o(vi) =d anda(v;2) = e. Note that named
ande are not in the initial marking, and therefore they are created new.

Intuitively, each name in a marking ofilaPN can represent a different process running in the
same net. Therefore, we can represent the synchronization betwmmsges and the creation
of new ones.

Given a markingM of a v-PN and a set of names, a renaming &fl is any injectiona :
Id(M) — |. We say thaM C M’ < there is a renaming of M such thata (M) (p) € M’(p) for
all p € P. With this order, coverability is decidable forPN, though reachability is undecidable
for them R1].

Exampled The markingM given byM(p1) =0, M(p2) =0, M(p3) = {a,d}, M(ps) = {a,c}

is covered by the markinigl’ on the right-hand side of Figg. Note that, although there is not a
token of namex in placepy, with the order we have defineld, is covered byM’ by considering
the renamingx, such thatr(a) =d, a(d) = a anda(e) =c.

Finally, note that both models induce labelled transition systems in the obvious thay
states of the labelled transition systems are the markings of the nets, the fet®fddhe set of
transitions, and if# is the set of markings of the net, the transition relatiea .#Z x T x .#
is the one such thamlﬁmz in the nets (Mg, t,mp) €—.

3 Model checking of Petri net extensions

Temporal logics are used to specify dynamic properties of systems. dheider a set of atomic
propositions (which express atomic properties), the boolean operatbsegeral temporal oper-
ators and path quantifiers, which allow us to express temporal propértiese are mainly two
kinds of temporal logics: linear time logics and branching time logics. The piepehat are
expressed in branching time logics are about the computationlfeetile the ones expressed
in linear time logics are about the rurk/] (where we consider the notion of run defined in the
preliminaries). In this paper we focus on linear time logics because modgkioeof P/T nets
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with branching time logics is undecidable, even for very simple fragméhts [
The basic temporal operators used in temporal logicXaFeandU®. The most representative
example of a linear time logic is LTL.

Definition 1 An LTL formula is either an atomic proposition or a formula of the fofig,
dAY, oV P, XP, Fo, orpUy, whereg andy are LTL formulae.

First, we explain the semantics of the temporal operators informally. LTL flaenare inter-
preted over maximal runs, i.e., runs that are either infinite, or end in a ddestimte. Letp be
an LTL formula,.” a transition system armd a maximal run starting is. We write., 1T= ¢ to
denote thatt satisfiesp:

o .7 1 X¢ (next) holds if the property holds in the state that followsin 7.
o . mE F¢ (eventually) holds if the property holds in some state af.

o ., mE ¢UY (until) holds if there is a state of the runsuch thaty holds in that state, and
¢ holds at every preceding state on the run.

We also definés (globally) asG¢ = —-F—¢, so that¥, r= G¢ holds if ¢ holds in every state
of 1.

Now, we give the formal semantics of temporal operators.rietsy A5, & . beafinite or
infinite run of lengthn € NU {e}. Forn > 0, 7' is defined as the suffix of the runstarting by
thei-th states.. We suppose that the states and the actions of a system are labelled byrtite ato
propositions that they satisfy, that is, if a stat@r an actiona) satisfies an atomic proposition
p, thenp € L(s) (p € L(a) resp.), wherd_(s) (L(a)) represents the labels ef(a). The formal
definition of the semantics of the previous operators is inductively defimgf:a

e 7,TF p& pel(s)Vtisdefined (that is, the length afis greater than 0) andL(ay ).
o T ME 1 & T, 11 .

o T MEYL1V & T, 1TE ¢ 0r T, 1TE ¢o.

o T MEP1NG, & T, 1TF ¢ and. T, 1TF ¢o.

o 7,1k X¢1 < mtis defined andZ, i F ;.

e 7, 1kF F¢1 < there exists & > 0 such that7, i€ E ¢1.

e 7,mE G¢, < foralli > 0 such thatt is defined,7, 1 E ¢1.

o 7,mE ¢1U¢, & there exists & > 0 such thatrt* is defined,.7, * = ¢, and for all
0<j<k 7, E¢;.

3 Even thoug!F can be defined in terms &f, we prefer to include it as a primitive temporal quantifier, since we will
later disallowU.
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Note that in the previous definition, we assign the propositions they satisfythctie states
and the transition labelsy, defined for the labelled transition systems. The atomic propositions
usually considered for P/T nets, are given by the following predicates:

e cov(m), wheremis a marking:covm) holds inrtif the first marking inrt coversm.
o first(t), wheret is a transitionfirst(t) holds intif the first transition fired inTist.

Some works consider the atomic propositiggsp, n) anden(t) [9]. The first one expresses
that there are at leasttokens in placep, and the second states thads enabled. We will not
consider them since they are equivalentée({ p, o p}) andcou *t), respectively.

According to the standard definition, a systerh satisfies an LTL formulap, denoted by
< [= ¢ iff every maximal run of the system starting in the initial stati satisfies it (universal
interpretation). The model checking problem consists in deciding, gi¥eand ¢, whether
< = ¢. The model checking problem is equivalent to deciding, giveandé¢, the existence of
one run starting innit satisfying the formula (existential interpretation), provided negation can
be used without restriction, sin@&= ¢ (under the universal interpretation) &}~ —¢ (under
the existential interpretation).

We consider different LTL fragments, built depending on which predigand operators we
consider.

Definition 2 We consider the following fragments of LTL.:

e LTL;, the fragment of LTL that uses onfiyst as basic predicaté],

e Z(F), the fragment of LTL in which negation is only applied to basic predicatest(no
operators), and the operators XreF, A andv [17],

e Z(GF), the fragment of LTL in which the only allowed composed operatdeks the
operators ar€&, v andA and negation is only applied to basic predicated.|

Example5 The formulaFfirst(t), which expresses thatis eventually fired, is inZ (F), but
Gfirst(t) = -F-first(t), which expresses thats always fired, is not.

The formulafirst(t) — GFfirst(t), which expresses thattifis the first transition being fired
thent is fired infinitely often, is inZ (GF), but Ffirst(t) — GFfirst(t) = —Ffirst(t) v GFfirst(t),
which expresses thattifis eventually fired, then it is fired infinitely often, is not.

In LT L negation can be used without restriction, so that the universal andithergial inter-
pretations are equivalent (i.e., their model checking decision problenegjaielent). However,
this is not the case fo’(F) and.Z(GF). Actually, they are defined using the existential inter-
pretation in L2, 13]. For the subclasses of LTL considered, we have the following results.

e LTL model checking is undecidable (with bdiinst andcov), butLT Lt model checking is
decidable (withcovonly) [9].

e Z(F) model checking is decidabléf] (with existential interpretation),

e Z(GF) model checking is decidablé ] (with existential interpretation).

Proc. PROLE 2013 8/18
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3.1 Model checking of reset nets

Let us show that the three logics which are decidable for P/T nets becameeidable for reset
nets. Let us first considetTL¢. In [3] the model checking problem afT L¢ is studied for
lossy vector addition systems (lossy VAS) with tests for zero, which is prtivbe undecidable.
Let us see that we can adapt that result for reset nets. Let usdfisedhe lossy version of a
transition system in general.

Definition 3 Given a transition systen¥’ = (S, —,init) and a quasi-ordeg over S, thelossy
versionof .7 is ./ = (S —,init), wheres; —| s, if and only if there exists two state$ ands,
such that; > s} — s, > 5. A lossy Petri nets the lossy version of some Petri net.

In the lossy version of a transition system, states can be spontaneousgsiat In the case
of Petri nets, tokens may be lost just before or after a transition is fired.

Example6 Focus on Fig2. In the lossy version of the P/T net obtained by replacing the reset
arc by a plain arc, despiteis not reseted by any reset arctpthe second marking could be
reached from the first one by first losing a token froand then firing.

Reset nets can simulate lossy inhibitor nets, as we prove next. This faetisnuhe proof of
the next result.

Proposition 1 LT L model checking is undecidable for reset nets.

Proof. We reducel TL; model checking for lossy inhibitor nets, which is undecidalile fo

the same problem for reset nets. Iét= (P, T,F,1) be an inhibitor net. We define the reset
netN' = (P, T,F,l). We are going to prove that there is a surjective function between the runs
of N andN’ that preserves the sequence of labels of runs and therefore, stnoalyhatomic
proposition inLT Ly is first, given anLT L; formula¢, N = ¢ iff N’ = ¢. Notice that sinc&\’ is

a reset net, checks for zero have been replaced by resets, thatrikjkitor arc from a place

to a transitiort in N is replaced by a reset arc froptot in N'. The following holds:

° m1i>mz in N = there is an, > mp such thamlim'{2 in N’: the preconditions and effects
of the firings oft in N andN’ are the same, except for the fact that we have replaced
inhibitor arcs by reset arcs. Therefore, when a transition with an inhiditoin N is firing
in N’, the corresponding place is reseted instead of being checked for lf¢here are
tokens in such a place, all the tokens in it are removed, so there existiaiptysof losing
tokens in our simulation if the place was not emptyt fifas no inhibitor arc, anm1i>mz
in N, t is enabled atm in N/, and it can be fired reaching a marking greater or equal than
np, because some token may have been lost in the firilg in

Now, suppose thdthas some inhibitor arcs, amﬂliﬂnz in N. First of all, note that if a
transition is enabled iN at a marking, it is enabled iN" at the same marking. Moreover,

the places with inhibitor arcs leading tare empty in that marking. Therefore, whien

is fired frommy in N’, these places are reset (hence staying empty). Therefore, the only
differences in the effects of the firing ofin both nets come because of lossiness. In
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Figure 4: From lossy inhibitor nets to reset nets

particular, sincé may loose tokens iN, but not inN’, mlimiz in N/, with m, > mp.

For example, focus on the left-hand side of Fig.In the inhibitor nets depicted in this
figure, given a place and a transitiom, we representp,t) € | by an arc fromp tot, with

a circle in the place. The markingm, in the first lossy inhibitor net in A1 may evolve to
Mp1 Or M2 (Mp2 has lost the token). The corresponding reset net, depicted in A2 ¢&an on
evolve t the markingr,. However, note thaty, covers bothmy; andmps.

° mli>mz inN = m1i>mz in N: In particular, ifN’ resets a placé\ can first loose tokens,
thus emptying it, and then test for zero in that place. Therefore, the transitfoeable
in N (because the preconditions of the firings af N andN’ are the same, except for the
lossiness and the inhibitor arcs) and the place is empty at the end of both.firing

Focus on the right-hand side of Fig. Transitiont is fireable from the markingy in
the reset net in B1, reaching the markimg. Despitet is not fireable fronm, = my, the
lossy inhibitor net may lose tokens, reachmiy,, from whicht can be fired, reaching the

markingsr,; or m,.

Therefore, there is a surjective function between the ruhsaridN’ that preserves the sequence
of labels of runs. Note that this holds because reset nets are monototrEnsitions which are
fired inN at a markingnwhich has lost tokens, can be fired from the corresponding marking
of N’, without loss of tokens, because > m. Since the only atomic proposition T L is first,

N |= ¢ iff N’ = ¢ and we conclude. O

Let us now focus on the two other fragments of LTL. The casef¢9GF) is straightforward:
Proposition 2 2 (GF) model checking of reset nets is undecidable.

Proof. It is enough to consider th&Fcou M), which is a formula inZ(GF), expresses the
repeated coverability problem, which is undecidable for reset Ggts [ O
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However, not only that fragment, but the weaker fragmet{f), which is decidable for P/T
nets [L2], is undecidable for reset nets. The following proof uses ideas fiidnih which £ (F)
model checking is reduced to reachability for P/T nets.

Proposition 3 _Z(F) model checking of reset nets is undecidable.

Proof. We reduce reachability, which is undecidable for reset ridf¢q model checking some
formulain.Z(F). LetN = (P, T,F,R) be a reset net and a marking ofN. We can compute the
set of the least markings greater thart Indeed, that set is jugmg | p € P}, wheremj is given

by mp(q) = m(q) for g # p andmy(p) = m(p) + 1. For example, the set of the least markings
greater than the marking depicted in the net in the left-hand side o2 Bd.m,, mq,m }, where

my = {p,p,r,r}, my={p,q,r,r} andm, = {p,r,r,r}. Then,mis reachable iM iff there is a
reachable marking? that coveram, but does not cover anyy,, because this would imply that
in each placep, m has exactlym(p) tokens (because it does not covey). Thereforemis
reachable iN iff the formulaF(coum) A A pep ~cOMMy)) is satisfied. O

The previous proof is based on obtaining a formula which expressesabkeability problem.
In order to obtain this formula, there is an important property that resetsaétfy: Given a
markingm, we are able to compute a finite set of marki®s {m,...,my} such that for each
m € S, m; D mand ifm’ O m, then there isn, € Ssuch that’ > m. Intuitively, we can compute
the finite set of “the smallest markings greater than As we can build that set, a markings
coincides withmif and only if m; coversmandm; does not cover any marking &f

3.2 Model checking ofv-PN

We first recall from 1] how v-PN can simulate reset nets (see Figwhere the double arrow
represents a reset arc). For each plao¢a reset nelN we consider a copy of it and a new place
P’ in the v-PN N’ we build. The main idea of the construction is to store in plgca single
token of the colour that we consider valid in the current marking for pfaoéN’. That is, the
tokens inp of the colour of the token ip’ will be considered valid, and the rest of the tokens in
p will be considered garbage. For example, in thEBN of Fig.5, there are two valid tokens in
placer, because the colour of the tokenriris b.

The construction o’ guarantees that for each plapeof N, the placep’ of N’ contains a
single token at any time. The firing of any transition ensures that the tokag beed in the
placep of N’ coincides with that irp’ (by labelling both arcs with the same variatalg. Every
time a transition resets a plapef N, the token inp’ is replaced by a fresh one, so that no token
remaining in placep of N’ can be used from then on. For example, suppose we fire transition
in Fig. 5. Then, a new colour is put irf, and therefore the tokens of nammé r cannot be used
anymore.

Therefore, this simulation can introduce some garbage tokens (thgs&len p is reset).
Given a markingnwe definem’ by arbitrarily choosing a different nanag < Id for eachp € P,

and takingn (p') = {ap}, andnf(p) = {ap, P, a,}. Then, ifmg is the initial marking oN, N’

4 In order theory that set is called the covemafthough we prefer not to overload that term here.

11/18 Volume 64 (2013)



On the decidability of model checking LTL fragments in monotonic extensions of Petri nt—:‘tsE5

PO—Tt—0)

Figure 5: A reset net and the correspondingN. The double arrow represents a reset arc

with initial markingny, simulatesN. The previous simulation preserves all behavioral properties.
Then, the following is a straightforward consequence of Ptop.

Corollary 1 LT L model checking is undecidable fofrPN.

The previous simulation also preserves coverability. More precisely, ifrkingam is cover-
able in the reset néd, then the markingn' of N’ defined above is coverable too. The markings
in the simulation may contain some garbage, which is created when we simulaténipefia
reset, because instead of removing all tokens of some plave change the name of the token
in p/, making all tokens irp become garbage. However, the presence of that garbage is irtelevan
for coverability. In particular, we have the following.

Proposition 4 Repeated coverability is undecidable foiPN.

Proof. It is enough to consider that repeated coverability is undecidable fet ness P], and
that the previous simulation preserves repeated coverability. We prave ttan be repeatedly
covered frommg in N iff M’ can be repeatedly covered frarg in N'. Indeed, ifmis repeatedly
covered there is a rumg —* my — mp — T ... of N such thatm > mfor all i > 1. By construc-
tion of N’, there is a rumy, -+ My —* My —* ... of N’ such thatV; > m{ > n7 for all i > 1,
somn is repeatedly covered. Moreové; coincides withm{ when considering only the “valid
tokens” of M; (and after possibly renaming the names carried by the tokens). Therserige
analogous. O

Once we know that repeated coverability is undecidable, undecidability @3F) model
checking is trivial.

Corollary 2 . (GF) model checking of-PN is undecidable.
Next, we see the undecidability ¢f (F) model checking fow-PN.
Proposition 5 _Z(F) model checking of-PN is undecidable.

Proof. The proof is analogous to the one of the same result for reset nets dWeereeachability

in v-PN, which is undecidable?l], to the model checking problem for some formulagf(F).
Let N = (P T,F) be av-PN. Given a markingV, we can compute the finite set of the least
markings greater thall. Indeed, giverp € P andc € Id(M) U {b}, with b ¢ Id(M), we define
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Mpc given byMpe(q) = M(q) if p# gandMpc(p) = M(p) + {c}. Then, the set we are looking
foris {Myc| pe P,celd(M)uU{b}}. For example, consider a net with two plageandqg, and

a markingM with one tokema in p and empty ing. The set of the least markings greater than
this marking is{Mpa, Mpb, Mga, Mgb}, WhereMpa(p) = {a,a}, Mpa(q) = 0, Mps(p) = {a,b},
Mpb(d) = 0, Maa(P) = {a}, Mga(@) = {a}, Mgo(p) = {b} andMgy(q) = {a}. ThereforeM is
reachable iN iff N = F(couM) A A\pc~COMMpgc)), and we conclude. O

4 A decidable fragment

In the previous section we have proved the undecidability of model chgdfineset nets and
v-PN for some logics, whose model checking problem is known to be ddeiflabP/T nets.

In this section we define a restriction &f(F), thus obtaining a fragment that is less expressive
than all the logics considered here.

Definition 4  F¢oyis the fragment ofZ(F) in which negation is not allowed.

In this logic we can express bounded repeated coverability. HowEygrcannot express
properties like~coM). In particular, the formuleE(coMM) A A,cp—COMMp)) which ex-
presses reachability, is not a formulaFeg,. As for Z(F), we consider existential interpretation,
so that a formula is satisfied if some maximal run starting in the initial marking satisf\é&
will see thatF¢,, model checking is decidable both for reset nets and/f&N. Later, we will
considervFcg, the version ofF, with universal interpretation, and we will prove th& .oy,
model checking is undecidable even for P/T nets.

Proposition 6 F,, model checking of reset nets is decidable.

Proof. LetN = (P, T,F,R) be a reset net angl a formula inF¢,,. We proceed by induction on
the nesting of operatofsin @. If @ is a boolean combination of formulae of the fooomm), it
is trivial to decide whetheg is satisfied because multiset inclusion is decidable.

Let us suppose that we can check each formula with at mps0 nested~ operators. Let
@ be a boolean combination of formulae of the foooMm) and F¢, where¢ has at most
n nestedF operators, and let us see that we can decide whether each of thoadaeF ¢
is satisfied (and hence, whethgris satisfied). Using standard techniques, we can vix{ie
asF(Vi((AjcoMmij)) A (AcFoik))), wheregi, are formulae of ¢y with at mostn — 1 nested
operators. That formula is equivalent to the formytd((A; coMm;j)) A (AxFoik)), that is, a
disjunction of formulae of the forrfr(coimy) A ... Acovmg) AF@1 A ... AF¢r), whereq andr
are not simultaneously zero, and edgghhas at mosh — 1 nested operators. Let us distinguish
the following two cases:
(a) If g= 0 the formula is of the fornk(F$1 A ... AF¢y), which is equivalent té-¢1 A ... AF¢y.
Hence, we can apply the induction hypothesis to dashand we are done.
(b) If g > 0, we modifyN, thus obtainingN’, by adding transitionsy, ..., ty,tq+1 and places
Po, P1, .., Pq as follows. We adgbg as precondition/postcondition of every transitiotNinMore-
over,ti moves a token fronpi_ to p;j, providedm is covered. Finallylq 1 can be fired only
one time (for which we add a new place with a single token initially, as precondifity1 1),
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Figure 6: Construction df’ in Prop.6

setting again a token ipp, and havingpg as precondition and postcondition. This construction
is represented in Fid3, for q= 2. Then,N’ behaves asl, but when everyn can be covered,

it can sequentially firéy, ..., tq,tq+1. Hence, everyn can be simultaneously coverednhhiff pq
can be covered iN’. We consider the following two sub-cases:

(b.1) If r = 0 then the formula is of the forfi(coumy) A ... AcoV(Imy)) and hence equivalent to
Fcou({pq}), which expresses a coverability problem, so that it can be decided.

(b.2) Consider now that> 0. For any formulap, we definep’ as follows:

e If ¢ =cov(m)then¢’ =coum+ {pqg}).
o If ¢ =¢1A¢athend’ = @1 A 5. Analogously, ifp = ¢1V ¢ thend’ = ¢; V ¢5.
o If ¢ =F¢1thend’ =F¢;.

Then,F(coMmy) A...Acomg) AF@1 A ... AF@,) holds inN iff F(F¢1A...AF@/) holds in
N’. Notice that the number of nest&cbperators is the same f@g and¢,. Then, by (a) we are
done. O

The proof of the same result forPNs is analogous to the previous one.
Proposition 7 F¢o, model checking is decidable forPN.

Proof. The construction fov-PN is the same as the previous one. The only difference is that
the names in the markings of the formulae need to be handled correddly by choosing a
different variable for each name in a marking to label the arcs. O

Since in particulaFcoy allows us to express coverability, which has a non primitive recursive
complexity for reset netp] and forv-PN [21], we have the following:

Proposition 8 The complexity ofF .oy model checking is non primitive recursive for reset nets
and forv-PN.

5 Actually, the same is true for any model that belongs to the class of WelltStad Transitions Systems, with fairly
minor conditions.
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To conclude, let us see that the versiorngf, with universal interpretation, that we denote
by VFcow is undecidable even for P/T nets. Intuitively, formulaevFyo, are global properties
of some trace, or equivalently, eventuality properties of every trace.instance,Fcov M)
expresses that every run starting from the initial marking eventually stwer

We reduce control-state reachability for Two Counter Machines, whichdscidable15]. A
Two Counter MachinéTCM for short) is a tupl€ = (Q, {c1,C2},Ins, qo), whereQ is a finite set
of control states;; andc, are the two counterdsis a set of instructions arg € Q is the initial
state. An instruction can be of the following three forrrec(p,i,q), Dedp,i,q) or Zero( p,i,q),
wherep, g € Q andi € {1,2}, for the increasing of the counter, the decreasing af;, or check
for zero ofc; respectively. A configuration & is given by a tupl€q,c; = ni,c; = ny), where
g € Q is the current state, anth,n, € N are the current values of the counters. The initial
configuration is(qp, ¢; = 0,c, = 0).

In a configuration(p,c; = n1,C; = np), we may executénc(p,i,q) € Ins, reaching(q,c; =
M, = n,), wheren, = nj+ 1 andn;_; = nzg_i. If nj > 0 we may execut®edp,i,q) € Ins,
reaching(q,c1 = n},c; = ,), wheren/ = n; — 1 andn;_; = nz_;. Finally, if nj =0, we can
executeZero(p,i,q) € Ins, reaching(q,c; = ng,C2 = ny). The control-state reachability problem
consists in deciding, giveq € Q, whether a configuration of the forgg,c; = ni,c, = ny) is
reachable. It is well-known that this is an undecidable probl&sh [

Exampler Considerthe TCM = (Q, {c1,Cz2},Ins, p), withQ={p,q,r} andins= {Inc(p,c1,q),
Inc(q,cz, p),Zero(p,cy,r)}. In order to reach a configuration with statehe first instruction to
be executed must ero(p, ¢y, r). Otherwise, the two first executed instructionslacg p, c1, q)
andlinc(q,cz, p), SO we reach a configuration with = c, = 1. As there is not ®ecinstruction
in this machine, after executing this instructions we cannot reach a caatfiguwithc, = 0
anymore, and therefore we cannot reach stateymore.

We consider only deterministic TCM, that is, TCM such that at each re&ehanfigura-
tion there is at most one instruction that can be executed. Moreover, witssubf generality
we assume that Zera(p,i,q) € Ins then there is no other instruction of the fotmc(p', j,q),
Dedp, j,q) or Zerop, j,q) in Ins, that is,q can only be reached by that instruction (defined
as requirement). Indeed, for each instruction= Zero(p,i,q) € Ins we can add two states
01,2, and replace by Zera(p,i,q1), Inc(qy,i,d2), Deddp,i,q).° The control-state reachability
problem for deterministic TCM is still undecidable.

Proposition 9 VF.,, model checking of P/T nets is undecidable.

Proof. We reduce the control-state reachability problem for deterministic TCM to theemod
checking problem of a formula iMFco. LetC = (Q,{c1,C2},Ins,qo) be a deterministic TCM

and peng € Q. We use the standard simulation of a TCM by means of a P/T net. We define
N = (Qu{cl,c2},Ins F), where:

e F(p,Inc(p,i,q)) = 1,F(Inc(p,i,q),q) = 1,and
F(Inc(p,i,q),c) =1 (atoken is moved fromp to g, and a token is added ).

6 If we allow instructions that do not modify the counter then it is enough tozasidgle statel; and an instruction
changing the state froup to g.
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Zera(p,co.r)|  [Inc(a,co, p)}—()c2

o

Figure 7: Construction of Prop.for the TCM of Ex.7

e F(p,Dedp,i,q)) =1,F(Dedp,i,q),q) =1, andF(c;,Dedp,i,q)) = 1 (a token is moved
from p to g, and a token is removed frog).

e F(p,Zera(p,i,q)) =1 andF(Zerq(p,i,q),q) = 1 (a token is moved frorp to g).

Moreover,F (n,m) = 0 elsewhere, and the initial marking Nfis {go}. In N, the number of
tokens inc; represent the value of the countgiin C. Increasing and decreasing transitions are
simulated faithfully. However, the simulation of a transitidero( p,i,q) can “cheat”, whenever
itis fired with tokens irt;. In that case, notice that the markifig, g} can be covered. Moreover,
because cannot be reached using a different instruction (requirenémtiove), we know that
if such marking is covered then the current simulation has cheated. Facki .07, which
represents the net built from the TCM of EX. Note that transitiorZero(p, cz,r) can be fired
even after firingnc(p, c1,q) andinc(q, ¢z, p), whenc; is not empty. In this case, this simulation
has cheated.

We considep = F(coM Pend) V VimejcoMm)), whered = {{c;,q} | Zero(p,i,q) € Ins}. Notice
that all the cheating runs satisfy We prove thapeng can be reached i@ if and only if N |= ¢.
For the if part, ifC reacheeng then the non-cheating run &f eventually covergeng, so that
it satisfiesg. Since cheating runs always satigfy every run ofN satisfiesp. Conversely, ifC
does not reaclpenq then the non-cheating run dfdoes not satisfy. O

5 Conclusions and future work

Table1l summarizes the results on model checking of P/T nets, reset netsRNg. In partic-
ular, in this work we have proved the undecidability of the fragmeiitss, .2’ (GF) and.Z(F)
for reset nets and-PN.

We have definefq,, a very simple restriction of LTL that does not allow negations, for which
model checking of reset nets andPN is decidable. Actually, we claim this is the case for any
model in the class of Well Structured Transition Systed Lnder fairly minor conditions,
since the model checking problem can be reduced to a finite number atbditg problems.
Moreover, we have proved that if we require that every run startiog fihe initial marking
satisfies a formula, then even for the simple casé.gf and P/T nets, the corresponding model
checking problem is undecidable.
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Further study, in order to define more expressive logics for which the lnbdeking problem
is decidable, is needed. A possible direction in such study could be thé&ideff logics with
atomic propositions that are more specific of the particular model. Such dirdictks with the
so called Yen'’s logics for P/T nets. In the casevePN, the corresponding logic should be able
to express properties about the names in the marking.

Language theory was used to prove the difference of expressivdratween reset nets and
v-PNs in 20]. In this sense, it would certainly be interesting to find a logic which distingagish
between reset nets amadPNs.

Finally, we have proved that the complexityfef,, model checking is non primitive recursive
for reset nets and fov-PN. However, it would be interesting to perform a finer complexity
analysis.
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