Electronic Communications of the EASST

Volume 64 (2013)

Proceedings of the
XIII Spanish Conference on Programming

and Computer Languages
(PROLE 2013)

Automatic Proving of Fuzzy Formulae with Fuzzy Logic Programming
and SMT

Miquel Bofill, Ginés Moreno, Carlos Vazquez and Mateu Villaret

19 pages

Guest Editors: Clara Benac Earle, Laura Castro, Lars-)AkeFredlund

ManagingEditors : TizianaMargaria,JuliaPadberg, GabrieleTaentzer
ECEASSTHomePage : http : | /www.easst.org/eceasst | ISSN1863 — 2122



http://www.easst.org/eceasst/

Eg ECEASST

Automatic Proving of Fuzzy Formulae with Fuzzy Logic
Programming and SMT

Miquel Bofill', Ginés Moreno”, Carlos Vazquez’ and Mateu Villaret'

! Miquel.Bofill@udg.edu, Mateu. Villaret @udg.edu
Department of Computer Science, Applied Mathematics and Statistics
University of Girona
17071 Girona (Spain)

2 Gines.Moreno@uclm.es, Carlos.Vazquez@uclm.es
Department of Computing Systems
University of Castilla-La Mancha
02071 Albacete (Spain)

Abstract: In this paper we deal with propositional fuzzy formulae containing sev-
eral propositional symbols linked with connectives defined in a lattice of truth de-
grees more complex than Bool. We firstly recall an SMT (Satisfiability Modulo
Theories) based method for automatically proving theorems in relevant infinitely-
valued (including Lukasiewicz and Godel) logics. Next, instead of focusing on sat-
isfiability (i.e., proving the existence of at least one model) or unsatisfiability, our
interest moves to the problem of finding the whole set of models (with a finite do-
main) for a given fuzzy formula. We propose an alternative method based on fuzzy
logic programming where the formula is conceived as a goal whose derivation tree
contains on its leaves all the models of the original formula, by exhaustively inter-
preting each propositional symbol in all the possible forms according the whole set
of values collected on the underlying lattice of truth-degrees.

Keywords: Fuzzy Logic Programming; Automatic Theorem Proving; SMT

1 Introduction

Research on SAT (Boolean Satisfiability) and SMT (Satisfiability Modulo Theories) [BSST09]
represents a successful and large tradition in the development of highly efficient automatic theo-
rem solvers for classic logic. More recently there also exist attempts for covering fuzzy logics, as
occurs with the approaches presented in [ABMV12, VBG12]. Moreover, if automatic theorem
solving supposes too an starting point for the foundations of logic programming as well as one
of its important application fields [L1087, Sti88, Fit96, Apt90, Bra00], in this work we will show
some preliminary guidelines about how fuzzy logic programming can face the automatic proving
of fuzzy theorems.

Let us start our discussion with an easy motivating example. Assume that we have a very
simple digital chip with just a single input port and just one output port, such that it reverts
on QOut the signal received from In. The behaviour of such chip can be represented by the
following propositional formula F : (In’ A Our) V (In A Out’). Depending on how we interpret
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Figure 1: Interpreting a formula with two values for signals/propositions /n and Out.

each propositional symbol, we obtain the following final set of interpretations for the whole
formula:

I1: {In=0,0ut=0} = F=0 2: {In=0,0ut=1} = F=1
I3: {In=1,0ut=0} = F=1 I4: {In=1,0ut=1} = F=0

A SAT solver easily proves that F is satisfiable since, in fact, it has two models (i.e., interpreta-
tions of the propositional variables /n and Out that assign 1 to the whole formula) represented
by 12 and I3. An alternative way for explicitly obtaining such interpretations consists of using
the fuzzy logic environment FLOPER developed in our research group [MMPV10, MMPV11,
MMPV 12, IMM ™ 13] (http://dectau.uclm.es/floper/). As we will explain in the rest of the pa-
per, when FLOPER executes the following goal (representing formula F) “ (@not (i (In))
& 1(Out)) | (i(In) & @not (i (Out)))” with respect to a fuzzy logic program com-
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Figure 2: Interpreting a formula with three values for signals/propositions /n and Out.

posed by just two rules: “i (1) with 1”7 and “i (0) with 07, it draws the tree shown in
Figure 1, where models /2 and I3 appear in the two central leaves of the tree inside a blue
box. Each branch in the tree starts by interpreting variables /n and Out and continues with the
evaluation of operators appearing in F.

Note that whereas formula F describes the behaviour of our chip in an “implicit way”, the
whole set of models /2 and I3 “explicitly” describes how the chip successfully works (any other
interpretation not being a model, represents an abnormal behaviour of the chip), hence the im-
portance of finding the whole set of models for a given formula.

Assume now that we plan to model an “analogic” version of the chip, where both the input
and output signals might vary in an infinite range of values between 0 and 1, such that Our will
simply represent the “complement” of /n. The new behaviour of the chip can be expressed again
by the same previous formula, but taking into account now that connectives involved in F could
be defined in a fuzzy way as follows (see also Figure 3 afterwards):

x = 1—x Product logic’s negation
xAy = min(x,y) Godel logic’s conjunction
xVy = min(x+y,1) Lukasiewicz logic’s disjunction

Here we could use an SMT solver to prove that F is satisfiable. Following the approach of the
work in [ABMV12], it can be easily checked that F is satisfiable' with the following SMT-LIB
script, encoding the previous connectives into SAT modulo linear real arithmetic:

! The formula has infinite models of the form {In = x, Out = y} such that x +-y = 1.
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i

; Set logic: Quantifier Free Linear Real Arithmetic
(set-logic QF_LRA)

; min(x,vy)
(define—fun min ((x Real) (y Real)) Real
(ite (> x y) y x))

;0 x =1 - x

(define-fun agr_not ((x Real)) Real
(= 1 %))

; &G(x,y) = min{x,y}

(define-fun and_godel ((x Real) (y Real)) Real
(min x vy))

i I1L(x,y) = min{x+y,1}

(define-fun or_luka ((x Real) (y Real)) Real
(min (+ x y) 1))

; Declaration of variables
(declare—-fun x () Real)
(declare—-fun y () Real)

; Ordering relation
assert (>= x 0))

(

(assert (<= x 1))
(assert (>= vy 0))
(assert (<=y 1))

; Formula to check
(assert (= (or_luka (and_godel (agr_not x) vy)
(and_godel x (agr_not vy)))
1))

; Check for satisfiability
(check-sat)

It is easy to understand the SMT-LIB syntax of the previous code. Just in case, we recall that
the ite expression corresponds to the if-then-else construct. Note that all necessary connectives
are easily encoded as is done in [ABMV12]. It is worth noting that, apart from proving satisfia-
bility of a formula, SMT solvers can be used to prove that a formula is a theorem, by checking

unsatisfiability of its negation.

On the other hand, Figure 2 shows too three models in the tree depicted by FLOPER when
considering only three kinds of values (that is, 0, 0.5 and 1) for interpreting /n and Out. Such
models include, apart of 12 and I3 seen before, the interpretation {I/n = 0.5, Out = 0.5} since, as
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we can see in the detailed computations performed along the middle branch of the tree, we have:

(0.5 A0.5)V (0.510.5") = ((1-0.5)A0.5)V(0.5A0.5") =(0.5A0.5)V(0.5N0.5)
= min(0.5,0.5)V (0.570.5) = 0.5V (0.5A0.5) =0.5V(0.5A(1-0.5))
=0.5V(0.510.5) = 0.5Vmin(0.5,0.5) =0.5v0.5
=min(0.540.5,1) = min(1,1) =1

Similarly, we can check for instance in the second branch of the tree that {In = 1,Our = 0.5} is
not a model (in fact, our chip can not return a signal of value 0.5 when its input is 1) since:

('A0S5)V(IA0S) = (1-1)A05)V(IA0S5) = (0A05)V(IA0S) =
min(0,0.5)V (1 A0.5") = 0V (1A0.5) = 0V(IA(1-0.35) =
0V (1A0.5) = 0Vmin(1,0.5) = 0V0.5 =
min(0+0.5,1) = min(0.5,1) = 05

To finish this section, let us comment some connections between the two main topics of this
work, i.e. Fuzzy Logic Programming and Fuzzy SMT, with Answer Set Programming (ASP), a
well-known declarative programming paradigm oriented towards combinatorial search problems
which has been recently combined with fuzzy logic [VDVO07]. In ASP, answer sets are models
computed according to the stable model semantics of logic programming. This introduces non-
monotonic reasoning into logic programming, and gives raise to a paradigm that is different from
the proof-derivation approach of PROLOG. In [MOQ9], it is presented an ASP semantics for a
kind of fuzzy logic programs very close to MALP, based on the idea of finding models that we
also use in this paper when analyzing fuzzy logic formulae with our FLOPER tool. On the other
hand, Constraint Satisfaction Problems (CSPs) are mathematical problems defined as a set of
objects whose state must satisfy a number of constraints or limitations and hence, SMT and ASP
can be roughly thought of as certain forms of CSPs. The translation of answer-set programs into
SMT has been considered in [Nie08, INS09, NJN13]. Also, ASP has been recently combined
with SMT in [WZI11]. Although its nonmonotonic form of reasoning is out of the scope of this
paper, we are interested in coping with this topic in future extensions of our proposal.

The structure of this paper is as follows. Section 2 constitutes the core of our paper and it
is divided in three blocks. In sub-section 2.1 we present the main features of our fuzzy logic
programming environment FLOPER, which are used in sub-section 2.2 for analyzing several
fuzzy formulae, whereas in sub-section 2.3 we provide some interesting hints on cost measures
associated to our method. Finally, we conclude in Section 3 by also describing a few number of
challenging lines for future research.

2 MALP, FLOPER and Automatic Theorem Proving

In what follows we describe a very simple subset of the MALP? language (see [MOV04, IMP09]
for a complete formulation of this framework), which in essence consists of a first-order lan-
guage, .Z, containing variables, constants, function symbols, predicate symbols, and several

2 Multi-Adjoint Logic Programming.
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&p(x,y) Exxy p(x,y) Ex+y—xx*y <p (x,y) = min(1,x/y)
A1 ify<x

&G(xay) £ min(xvy) |G(x7y) = max{x,y} el (xay) = .
x otherwise

& (x,y) £ max(0,x+y—1) lL(x,y) £ min{x+y,1} 1 (x,y) £min{x—y+1,1}

Figure 3: Conjunctors, disjunctors and implications from Product, Gddel and Lukasiewicz logics.

(arbitrary) connectives to increase language expressiveness: implication connectives (denoted
by <1,¢2,...); conjunctive connectives (A1, /A3,...), disjunctive connectives (V1, V>,...), and
hybrid operators (usually denoted by @, @5, ...), all of them are grouped under the name of
“aggregators”. Although these connectives are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. So, we often write @ (xy,...,x,) instead
of @(xy,...,@(x,_1,%,)). By definition, the truth function for an n-ary aggregation operator
[@] : L" — L is required to be monotonous.

Additionally, our language - contains the values of a lattice (L, <) and a set of connectives
interpreted over such lattice. In general, L may be the carrier of any complete bounded lattice
where a L-expression is a well-formed expression composed by values of L, as well as variable
symbols, connectives and primitive operators (i.e., arithmetic symbols such as *, +, min, etc.).
In what follows, we assume that the truth function of any connective @ in L is given by its
corresponding connective definition, that is, an equation of the form @ (xy,...,x,) = E, where E
is a L-expression not containing variable symbols apart from xi, ..., x,. For instance, some fuzzy
connective definitions in the lattice ([0, 1], <) are presented in Figure 3 (from now on, this lattice
will be called ¥ along this paper), where labels L, G and P mean respectively Lukasiewicz logic,
Godel logic and product logic (with different capabilities for modeling pessimistic, optimistic
and realistic scenarios, respectively).

This subset of MALP is intended to cope with fuzzy propositional formulae like P A Q —
PV Q, where propositions P and Q are interpreted as values of the lattice. To this end, a program
is defined as a set of rules (also called “facts”) of the form “H with v”’, where H is an atomic
formula or atom (usually called head), and v is its associated truth degree (i.e., a value of L).
More precisely, in our application, heads have always the form “i(v)” and each program rule
looks like “i(v) with v”. It is noteworthy to point out that even when we use the same names for
constants (building data terms) and truth degrees, the Herbrand Universe of each program and
the carrier set of its associated lattice should never be confused, since they are in fact disjoint
sets.

A goal is a formula built from atomic formulas By,...,B, (n > 0 ), truth values of L, con-
junctions, disjunctions and aggregations, submitted as a query to the system. In this subset of
MALP, the atomic formulas of a goal have always the form “i(P)”, being P a variable symbol.
In this way, when running a simple goal like “i(P)” (as done in Figure 4), we could obtain several
answers meaning something like “when P = v, then the resulting truth degree is v”, representing
all possible interpretations in L for proposition P in the original formula.

The procedural semantics of this subset of the MALP language consists of an operational
phase (based on admissible steps that exploits the atoms in the goal), followed by an interpretive
phase (that performs arithmetic operations to interpret the resulting formula on the lattice). In
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the following, €’[A] denotes a formula where A is a sub-expression which occurs in the —possibly
empty— context ¢’[]. Moreover, €’ [A/A’] means the replacement of A by A’ in context ’[].

Definition 1 (Admissible Step) Let 2 be a goal and let ¢ be a substitution. The pair (2;0)
is a state. Given a program &, an admissible computation is formalized as a state transition
system, whose transition relation — 45 is defined as the least one satisfying:

(2A;0) —as ((2[A/V])6;06)

where A is the selected atom in 2, 0 = mgu({H = A})® and “H with v’ in &. An admissible
derivation is a sequence (2;id)—as- - —as(2';0).

If we exploit all atoms of a given goal, by applying admissible steps as much as needed during
the operational phase, then it becomes a formula with no atoms (a L-expression) which can be
then interpreted w.r.t. lattice L as follows.

Definition 2 (Interpretive Step and Fuzzy Computed Answer) Let & be a program, 2 a goal
and o a substitution. Assume that @] is the truth function of connective @ in the lattice (L, <)
associated to 22, such that, for values ry,...,r,, 41 € L, we have that [@]|(ry,...,r,) = rut1.
Then, we formalize the notion of interpretive computation as a state transition system, whose
transition relation — g is defined as the least one satisfying:

(2[@(ry,...,m)li0) —ns (2[@(r1,...,ra)/ras1];0)

An interpretive derivation is a sequence (2;0)—s- - —5(2';0). When 2’ = r € L, the state
(r; o) is called a fuzzy computed answer (f.c.a.) for that derivation.

2.1 The Fuzzy Logic Programming Environment FLOPER

The parser of our FLOPER tool [MMPV 10, MMPV 11] has been implemented by using the Pro-
log language. Once the application is loaded inside a Prolog interpreter, it shows a menu which
includes options for loading/compiling, parsing, listing and saving MALP programs, as well as
for executing/debugging fuzzy goals. Moreover, in [MMPV10] we explain that FLOPER has
been recently equipped with new options, called “lat” and “show”, for allowing the possibility
of respectively changing and displaying the lattice associated to a given program.

A very easy way to model truth-degree lattices for being included into the FLOPER tool is
also described in [MMPV 10], according the following guidelines. All relevant components of
each lattice are encapsulated inside a Prolog file which must necessarily contain the definitions
of a minimal set of predicates defining the set of valid elements (member/1 predicate), the
top and bottom elements (t op/ 1 and bot /1 predicates), the full or partial ordering established
among them (1eq/ 2 predicate), as well as the repertoire of fuzzy connectives which can be used
for their subsequent manipulation. If we have, for instance, some fuzzy connectives of the form
&iaper, (conjunction), |japer, (disjunction) or @, (aggregation) with arities ny, ny and n3 re-
spectively, we must provide clauses defining the connective predicates “and_label;/ (n1+1)”,

3 Here mgu(E) denotes the most general unifier of an equation set E [LMMS8].

7/19 Volume 64 (2013)
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Figure 4: A work-session with FLOPER solving goal i (P) .

“or_label, / (ny+1)” and “agr_labels/ (n3+1)”, where the extra argument of each predicate
is intended to contain the result achieved after the evaluation of the proper connective. Finally,
for the purposes of the current work, we also require for each lattice a Prolog fact of the form
members (L) being the L a list containing the set of truth degrees belonging to the modeled lat-
tice (or at least a representative subset of them when working with infinite lattices) for being used
when interpreting propositional variables of fuzzy formulae. For instance, a lattice defining the
simplest notion of binary lattice should implement predicate member /1 with facts member (0)
and member (1) (including also members ([0, 1])) and the Boolean conjunction could be
defined by the pair of facts and bool (0, _, 0) and and_bool (1, X, X).

Following the Prolog style regulated by the previous guidelines, in Figure 5, we show the set
of clauses modeling the more flexible lattice ¥, which enables the possibility of working with
truth degrees in the infinite space of the real numbers between 0 and 1, offering too a wide range
of conjunction and disjunction operators recasted from the three typical fuzzy logics described
before (i.e., the Lukasiewicz, Gddel and product logics), as well as a useful description for the
hybrid aggregator average and the negation connective. Note that we have included the fact
“members ([0,0.5,1]).” which implies that in our application, propositional variables
involved in fuzzy formulae to be proved, only three values (i.e., real numbers 0, 0.5 and 1,
collected from the infinite unit interval) should be considered for interpreting such formulas, as

Proc. PROLE 2013 8/19



Eg ECEASST

member (X) :— number (X), 0=<X,X=<1. members ([0,0.5,17) .
leq(X,Y) :— X=<Y. bot (0) . top(l).
and_luka(X,Y,Z) :- pri_add(X,Y,Ul),pri_sub(Ul,1,02),pri_max(0,U02,72).

and_godel (X, Y, 2) :
and_prod(X,Y, 2)

pri_min(X,Y,Z).
pri_prod(X,Y,Z).

or_luka(X,Y, 2) :— pri_add(X,Y,Ul),pri_min(Ul,1,7).
or_godel (X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,2) :— pri_prod(X,Y,Ul),pri_add(X,Y,U02),

pri_sub (U2,Ul,Z2).

agr_aver (X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,2).

agr_not (X, Y) :— pri_sub(1,X,Y).

pri_add(X,Y,Zz) :— Z 1is X+Y. pri_min(X,Y,Z) - (X=<Y, 2=X;X>Y, 72=Y) .
pri_sub(X,Y,Z) :— Z 1s X-Y. pri_max(X,Y,Z) :— (X=<Y,Z=Y;X>Y,7Z2=X).
pri_prod(X,Y,Z) :— Z is X x Y. pri_div(X,Y,Z) :— Z 1is X/Y.

Figure 5: Prolog code for representing lattice 7", which models truth degrees in the real interval
[0, 1] with standard fuzzy connectives.

shown in Figure 2.

Note also that we have included definitions for auxiliary predicates, whose names always

begin with the prefix “pri_". All of them are intended to describe primitive/arithmetic operators
(in our case +, —, *, /, min and max) in a Prolog style, for being appropriately called from
the bodies of clauses defining predicates with higher levels of expressivity (this is the case for
instance, of the three kinds of fuzzy connectives we are considering: conjunctions, disjunctions
and aggregations).
Since till now we have considered two classical, fully ordered lattices (with a finite and infi-
nite number of elements, respectively), we wish now to introduce a different case coping with a
very simple lattice where not always any pair of truth degrees are comparable. So, consider the
following partially ordered lattice .% in the diagram of Figure 6, which is equipped with conjunc-
tion, disjunction and implication connectives based on the Gédel logic described in Figure 3, but
with the particularity that now, in the general case, the Gddel’s conjunction must be expressed as
&g (x,y) £ inf(x,y), where it is important to note that we must replace the use of “min” by “inf”
in the connective definition (and similarly for the disjunction connective, where “max” must be
substituted by “sup”).

To this end, observe in the Prolog code accompanying the graphic in Figure 6 that we have
introduced clauses defining the primitive operators “pri_inf/3” and “pri_sup/3” which are
intended to return the infimum and supremum of two elements. Related with this fact, we must
point out the following aspects:

e Note that since truth degrees o and f3 are incomparable, then any call to goals of the form
“?- leqg(alpha,beta) .” or “?- leqg(beta, alpha) .” will always fail.

9/19 Volume 64 (2013)
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member (bottom) . member (alpha) .

T member (beta) . member (gamma) .
member (top) .

! members ( [bottom, alpha, beta, gamma, top]) .

leg(bottom, X) . leg (X, X). leg(alpha, gamma) .
Y leg(beta, gamma) . leg (X, top) . 1(X,X) = 1.
1(X,Y):-1leg(X,Y),!. 1(X,Y):-1leg(X,2),1(2,Y).
/ \ and_godel (X,Y,Z) :— pri.inf(X,Y,2).
or_godel (X,Y,Z) :— prisup(X,Y,Z).
o B agr_impl(X,Y,2Z) :— (1(Y,X),!,Z=top ; Z=X).
priinf(X,Y,X):— 1(X,Y), !.
\ / pri_inf(X,Y,Y):- 1(Y,X), !.
pri_inf (., _,bottom) .
L prisup(X,Y,X):— 1(Y,X), !.

prisup(X,Y,Y):- 1(X,Y), !.
pri_sup (., _, gamma) .

Figure 6: The finite, partially ordered lattice .# modeled in Prolog.

o A goal of the form “?~ pri_inf (alpha,beta, X) .”, instead of failing, successfully
produces the desired result “X=bottom”.

e Note anyway that the implementation of the “pri_inf/3” predicate is
mandatory for coding the general definition of “and_-godel/3” (a similar reasoning fol-
lows for “pri_sup/3” and “or_godel/3”).

2.2 Some Examples

This subset of the MALP language suffices for developing a simple fuzzy theorem prover, where
it is important to remark that our tool can cope with different lattices (not only the real interval
[0,1]) containing a finite number of elements -marked in “membe rs”- maintaining full or partial
ordering among them. Hence, we can use FLOPER for enumerating the whole set of interpreta-
tions and models of fuzzy formulae. To this end, only a concrete lattice L is required in order to
automatically build a program composed by a set of facts of the form “i(c¢) with o, for each
o € L. For instance, the MALP program associated to lattice .%# in Figure 6 looks like:

i(top) with top.

i (gamma) with gamma .
i (alpha) with alpha.
i (beta) with beta.

i (bottom) with bottom.

Once the lattice and the residual program have been loaded into FLOPER, the formula to be
evaluated is introduced as a goal to the system following some conventions:
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Figure 7: A work-session with FLOPER solving formula PV Q (25 interpretations, 9 models).

e If P is a propositional variable in the original formula, then it is denoted as “i (P) ” in the
goal F'.

e If & is a conjunction of a certain logic “label” in the original formula, then it is denoted as
“&label” in goal F.

e For disjunctions, negations and implications, use respectively *
and “@im_label” in F.

”, “@no_label”

e For other aggregators use “@1,pe1” in F.

In what follows we discuss some examples related with the lattice shown in Figure 6 and its
residual MALP program just seen before. Firstly, if we execute goal “i (P)” into FLOPER,
we obtain the five interpretations for P shown in Figure 4. On the other hand, consider now the
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&godel(i(P),laodel(i(P),i(F)))
{}

8gode(top,| itop)) i(alpha))) | itbeta))) i i(hottom)))
{Pitop} {Plgamma) {Pialpha} {Plbata) {Pibottom}

® ¢

i ialpha)) ] i(beta))) &godel(bottor, [godel(bottom,itbottom)))
[Plgamma) {Plalpha} {Plbeta) {Plbottom}

&godelttop [godelitop, i(top)))
{Phop}

[&gode\(ton.lgcde\(ton.wn))] [

aamma)) alpha)) i ,beta)) &godel(bottom,|gadel(hottom, bottom))
{Phap} {Plgamma} {Pfalpha} {Plbeta} {Pihottam}

beta

alpha bottom
{Plalpha} {Pibottom}

[ top gamma
| (Prop} (Plgamma)

{Plbeta)

Figure 8: Full proof tree for formula P A (P V P) with 1 model among 5 interpretations.

propositional formula PV Q, which is translated into the MALP goal “ (1 (P) | 1(Q))” and
after being executed with FLOPER, the tool returns a tree* whose 25 leaves represent the whole
set of interpretations (9 of them -inside blue clouds- are models) as seen in Figure 7. See also
Figure 8 associated to formula P A (P V P).

Consider now the more involved formula P A Q — PV Q which becomes into the MALP goal
“(i(P) & i(Q)) @impl (i(P) | 1i(Q))”. When interpreted by FLOPER, the system
returns the list of answers displayed in Figure 9, having all them the maximum truth degree
“top”, which proves that this formula is a tautology, as wanted.

2.3 Some Hints on Cost Measures

We wish to finish this section by providing some comments about cost measures and efficiency.
So, given a lattice L, a formula F and its associated proof tree 7', we define the following values:

e v is the number of distinct variables in F.

e V' is the number of occurrences (including repetitions) of variables in F.

e cis the number of connectives in F.

e ris the number of (marked) elements in lattice L given by predicate “members”.

And now we have that:

e The width of the tree T, or total number of interpretations of F, is r".

4 Each state contains its corresponding goal and substitution components and they are drawn inside yellow circles.
Admissible steps, colored in blue, are labeled with the program rule they exploit. Finally, those blue circles annotated

with word “is”, correspond to interpretive steps. Sometimes we include blue circles labeled with “result” which
represents a chained sequence of interpretive steps.
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Figure 9: Full proof tree for tautology P A Q — PV Q (25 models).

e The number of admissible steps performed on a single branch of T is V'.
e The number of interpretive steps performed on a single branch of T is c.
e The depth of T, or number of computational (admissible/interpretive) steps for each pos-
sible interpretation of F is V' +c.
14
e An upper bound for the total number of admissible steps in T is |as| < (V' —v)r’ + Z r.
i=1
e An upper bound for the total number of interpretive steps in T is |is| < cr.
¢ An finally, an upper bound for the total number of computational (admissible and interpre-

\4
tive) steps is |T] < (c+V —v)r'+ ) r'.
i=1

Let us come back again to tautology P A Q — PV Q for which FLOPER displays the whole set
of models seen in Figure 9, and assume now a more general version with the following shape
PIN...ANP, — P V...VP, for which we have studied its behaviour in the table of Figure 10. In
the horizontal axis we represent the number n of different propositional variables appearing in the
formula, whereas the vertical axis refers to the number of seconds’ needed to obtain the whole
set of interpretations (all them are models in this case) for the formula. Both the red and blue
lines refers to the method just commented along this paper, but whereas the red line indicates that

5 The benchmarks have been performed using a computer with processor Intel Core Duo, with 2 GB RAM and
Windows Vista.
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Figure 10: Behaviour of the method.

the derivation tree has been produced by performing admissible and interpretive steps according
Definitions 1 and 2, respectively, the blue line refers to the execution of the Prolog code obtained
after compiling with FLOPER the MALP program and goal associated to our intended formula.
The results achieved in the figure show that our method has a nice behaviour in both cases, even
for formulae with a big number of propositional variables. Of course, the method does not
try to compete with SAT techniques (which are always faster and can deal with more complex
formulae containing many more propositional variables), but it is important to remark again that
in our case, we face the problem of finding the whole set of models for a given formula, instead
of only focusing on satisfiability.

3 Conclusions and Future Work

In this paper we have focused on two different, but related problems regarding the automatic
proving of propositional fuzzy formulae. In particular, whereas an SMT solver has been used
for checking satisfiability, an alternative technique based on fuzzy logic programming has been
introduced for finding the whole set of interpretations which are models for a given formula.
In the future we plan to introduce improvements on both methods, regarding the set of truth
degrees collected in the lattice used for interpreting a given formula. In the case of SMT, we plan
to investigate how to cope with lattices equipped with partial ordering among their elements,
whereas for the method based on fuzzy logic programming, it is important to design a much
more flexible technique for dealing with infinite lattices than the one we have used in this paper
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<node>
<rule>R0</rule>
<goal>or_godel (i (P),1(Q))</goal>
<substitution>{}</substitution>
<children>
<node>
<rule>R1</rule>
<goal>or_godel (bottom, i (Q))</goal>
<substitution>{P/bottom}</substitution>
<children>
<node>
<rule>R1</rule>
<goal>or_godel (bottom, bottom)</goal>
<substitution>{Q/bottom,P/bottom}</substitution>
<children>
<node>
<rule>result</rule>
<goal>bottom</goal>
<substitution>{Q/bottom,P/bottom}</substitution>
<children>
</children>
</node>
</children>
</node>

Figure 11: Part of the XML file representing the execution tree shown in Figure 7.

(based on “pointing out” just a few number of truth degrees in the infinite space). In this last
sense, some halting rules and branch cuts should be needed (maybe through alfa cuts) or even it
could be interesting to study how to obtain all models of a formula by a constraint (as x+y =1 for
the example given in the Introduction about the analogical chip) or a set of constraints. Moreover,
we are also interested in reinforcing our techniques by making use of recent advances produced
in the field of (fuzzy variants of) ASP.

Anyway, we are nowadays planning to make use of the standard “XML Path Language” XPath
[BBC*07] in order to automate the process of directly extracting the set of models contained on
proof trees once they have been exported by FLOPER in XML format. In what follows, we sim-
ply draft some key-point ideas which can be very useful when dealing with complex formulae be-
yond the simpler examples seen along this paper since, as formally stated in sub-section 2.3, the
number of interpretations grows exponentially w.r.t. the set of propositions and connectives in-
cluded on fuzzy formulae to be tested. Moreover, in the near future, the method will be reinforced
by means of the “fuzzy XPath” tool developed too with FLOPER as described in [ALMI11,
ALMI12, ALMV13] and which is freely available from http://dectau.uclm.es/fuzzyXPath. So, let
us recall that XPath was designed as a query language for XML text in which the path of the
underlying tree of any XML document is used to describe the query (subsequent nodes on XPath
expressions are separated by a simple slash */’ or a double slash *//’, being this last case
useful for overriding several nodes). Moreover, XPath expressions can be adorned with Boolean
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<root>
<substitution>{Q/top,P/bottom}</substitution>
<substitution>{Q/top,P/alpha}</substitution>
<substitution>{Q/top,P/beta}</substitution>
<substitution>{Q/top,P/gamma}</substitution>
<substitution>{Q/bottom,P/top}</substitution>
<substitution>{Q/alpha,P/top}</substitution>
<substitution>{Q/beta,P/top}</substitution>
<substitution>{Q/gamma,P/top}</substitution>
<substitution>{Q/top,P/top}</substitution>

</root>

Figure 12: XML file obtained after evaluating an XPath query.

conditions (between square brackets * [ ] /) on nodes and leaves to restrict the number of answers
of the query. For instance, we have used the XPath online tool http://www.xpathtester.com/test
for executing the query “//node [goal='top’]/substitution” against the XML file
shown in Figure 11, which was generated by FLOPER when producing the proof tree drawn in
Figure 7, thus returning as output the new XML document listed in Figure 12. As illustrated in
Figure 11, note that the XML files representing proof trees exported by FLOPER, are always
rooted with the node label, whose children are based on four finds of ‘tags’ (this structure is
nested as much as needed):

e rule, which indicates the program rule evaluated to reach the current node (the virtual
rule RO is pointed out only in the initial node),

e goal, which contains the MALP expression under evaluation, that is, the formula that
the system is trying to prove on its current initial/intermediate/final step. Note that, when
in our example such value is t op, then we have found a model, where the values assigned
to the propositional symbols of the formula are collected in the following tag...

e substitution, which accumulates the variable bindings performed along a fuzzy logic
derivation (i.e., chain of computational steps along a branch of the execution tree) and
whose meaning in our target setting, reveals the way of interpreting the propositions con-
tained on a formula for obtaining its models (see Figure 12, where the nine solutions
labeled with this tag and reported in the output XML document, indicate each one the
truth values for the propositional variables that satisfy the formula with the maximum
truth degree), and finally

e children, which contains the set of underlying nodes of the tree in a nested way.

As we have just revealed, the combined use of fuzzy logic programming together with the stan-
dard XPath language for XML data retrieval, admits a challenging feedback applicable to the
automatic search of models of fuzzy formulae for which we plan to introduce extra capabilities
by using the flexible resources of our “fuzzy XPath” system developed with FLOPER.
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