
Electronic Communications of the EASST
Volume 69 (2013)

Proceedings of the
5th International Workshop on

Formal Methods for Interactive Systems
(FMIS 2013)

Automated theorem proving for the systematic analysis of an infusion
pump

M.D. Harrison,, P. Masci, J. C. Campos, P. Curzon

12 pages

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Automated theorem proving for the systematic analysis of an
infusion pump

M.D. Harrison1,2, P. Masci2, J. C. Campos3, P. Curzon2

1 School of Computing Science, Newcastle University, Newcastle-upon-Tyne, UK
michael.harrison@ncl.ac.uk

2 Queen Mary University of London, School of Electronic Engineering & Computer Science,
Mile End, London E1 4NS, UK

paolo.masci@eecs.qmul.ac.uk paul.curzon@eecs.qmul.ac.uk

3 Dep. Informática / Universidade do Minho Braga and HASLab / INESC TEC
Braga, Portugal

jose.campos@di.uminho.pt

Abstract: This paper describes the use of an automated theorem prover to analyse
properties of interactive behaviour. It offers an alternative to model checking for
the analysis of interactive systems. There are situations, for example when demon-
strating safety, in which alternative complementary analyses provide assurance to
the regulator. The rigour and detail offered by theorem proving makes it possible to
explore features of the design of the interactive system, as modelled, beyond those
that would be revealed using model checking. Theorem proving can also speed up
proof in some circumstances. The paper illustrates how a theory generated as a basis
for theorem proving (using PVS) was developed systematically from a MAL model
used to model check the same properties. It also shows how the CTL properties used
to check the original model can be translated into theorems.

Keywords: interactive systems, formal verification, medical devices, model check-
ing, MAL, PVS

1 Introduction

The scaleable analysis of interactive devices using model checking techniques is now feasible
[CH09, HCM13] and potentially fruitful. Formal methods have the capability to demonstrate
that safety requirements, as prescribed by regulators, are true of a candidate design. However
a number of barriers prevent formal methods from being the technology of choice during the
development and certification of interactive systems. These barriers include difficulty of use
of the techniques and the time taken to prove properties of realistic models. Work previously
presented [HCM13] has demonstrated the use of the IVY tool to analyse a set of properties of
interactive systems. The tool supports a relatively intuitive notation for specification and also
supports template properties that can be easily instantiated to the specified model. There are
limitations to the use of model checking however. One is performance. The state space generated

1 / 12 Volume 69 (2013)

mailto:michael.harrison@ncl.ac.uk
mailto:paolo.masci@eecs.qmul.ac.uk
mailto:paul.curzon@eecs.qmul.ac.uk
mailto:jose.campos@di.uminho.pt

Automated theorem proving for the systematic analysis of an infusion pump

while model checking can become extremely large and therefore properties can take so long to
check that an iterative approach to analysis becomes impossible.

Harrison and others [HCM13] describe how model checking can be used to reveal inconsis-
tencies in the interactive behaviour of two infusion pump designs. The focus of that analysis
was a systematic consideration of information that was displayed in response to action and how
the mode structures of the two interfaces affect their use. The two analysed designs were medi-
cal infusion pumps commonly used in hospitals. The results provide support for human factors
specialists by raising potential design issues that result from exhaustive analysis. They provide
evidence that the design satisfies requirements that, if true, would mitigate interaction failures.

The IVY tool uses Modal Action Logic (MAL) to specify the effect of actions on state at-
tributes, given preconditions. The MAL is translated into SMV to be analysed using NuSMV
[CCG+02]. The models were checked against a set of property patterns. These patterns use tem-
plates that concern: the consistency of actions, the visibility of feedback, the effect of modes,
and the existence of actions that enable reversal of the effect of previous actions. The templates
are instantiated to the state and actions of a particular model. If a property fails to be true of the
model then the checker generates a trace that indicates a sequence of actions where (according
to the model) the device fails to be consistent. The trace can then be analysed from a human
factors and domain perspective. While this approach is valuable, in order to make model check-
ing tractable for systems of this size it is necessary to make radical state abstractions. In the
case of [HCM13] the domains used in number entry were abstracted for the two medical infu-
sion pumps so that it was possible to focus on interface mode structures. This paper explores
the complementary role that interactive theorem proving can play. In some cases it can improve
performance. It can also identify features in the model or in the design that would not have been
noticed through a model checking approach. It provides a second approach to analysis that can
be used to assure of the safety of a proposed design. Analysis can be used as part of an argument
that risks are as low as reasonably practicable. Since there are no theorem provers for MAL or
for SMV, the models were translated into PVS.

This paper takes the MAL model of a version of the Alaris infusion pump that was presented in
[HCM13] and demonstrates that theorem proving based on PVS can be used to complement the
analysis. The paper indicates how MAL models can be translated into PVS, and CTL properties
can be translated into PVS theorems. It is not the purpose of this paper to generate a formal
mapping and to prove the equivalence. For this reason it should be seen as an initial exploration.
The paper is structured as follows. In section 2 research on complementary approaches is briefly
discussed. In section 3 the translation from MAL to PVS is described. In section 4 the CTL
properties are translated into theorems over the PVS models.

2 Background

Motivation for this analysis has been a concern with the safety, particularly in relation to user
interaction failure. The U.S. Food and Drug Administration (FDA) [US 10] is now encouraging
the use of safety arguments based on formal justifications to provide evidence of the safety of
medical devices. They have launched the Generic Infusion Pump project to investigate solutions
to safety problems in infusion pump software. Their aim is to develop a set of safety reference

Proc. FMIS 2013 2 / 12

ECEASST

models that can be used to assess safety of infusion pump software. An important element in
safety arguments is to provide alternative arguments that a system is acceptably safe. Multiple
arguments increase confidence. In addition the need to abstract aspects of the model to assist
tractability means that some feature of the design, for example the number entry, cannot be
explored.

Recent developments in model checking have made the technique easier to use relative to other
formal approaches as briefly discussed in the introduction. A range of property templates (see,
for example, [DAC99]) have been developed, empirically based on typical practice, that can be
instantiated to the particular requirements of a device model.

Recent formal modelling work, relevant to medical devices, has focused on a number of as-
pects of their programming. For example, Bolton and Bass [BB10] use SAL to analyse a model
of the Baxter iPump which takes into account user goals, tasks and aspects of the environment.
They explore the packaging of an automated reasoning tool so that human factors engineering
practitioners can specify a realistic interactive system and verify a variety of tasks. They per-
formed the verification on a simplified model of the pump, as the state space of the full model
exceeded the capabilities of the model checker.

2.1 Complementary analysis approaches

The integration of model checking with automated theorem proving has been a topic of research
for many years. Rajan and others [RSS95], for example, discussed how useful logic fragments
can be proved using decision procedures and Graf and Saidi [GS97] discussed how PVS could
be used to construct abstract graphs. The focus of their work was to simplify proof by model
checking parts of it, or using counter-examples, generated by the failure to check properties, to
change the assumptions in the theorem that is being attempted (see Kong and others [KOSF05]
and the automated verification approaches based on counterexample-guided refinement of ab-
stractions [CGJ+00], for example). Our approach takes a different view. Although the proofs
are structurally complex, they can be proved with a fairly simple proof strategy based on case
exploration and expansion of definitions for many cases. Because of this, checking a proof by
theorem proving can be much quicker (given relevant skills to control “case explosion”) than
would be possible with a model checker.

2.2 The PVS language

The automated theorem prover used in this paper is Prototype Verification System
(PVS) [SORS99]. It combines an expressive specification language based on higher-order logic
with an interactive prover. PVS has been used extensively in several application domains. It is
based on higher-order logic with the usual basic types such as boolean, integer and real.
New types can be introduced either in a declarative form (these types are called uninterpreted),
or through type constructors. Examples of type constructors that will be used in the paper are
function and record types. Function types are denoted [D -> R], where D is the domain type
and R is the range type. Predicates are Boolean-valued functions. Record types are defined by
listing the field names and their types between square brackets and hash symbols.

Predicate subtyping is a language mechanism used for restricting the domain of a type by

3 / 12 Volume 69 (2013)

Automated theorem proving for the systematic analysis of an infusion pump

using a predicate. An example of a subtype is {x:A | P(x)}, which introduces a new type
as the subset of those elements of type A that satisfy the predicate P. The notation (P) is an
abbreviation of the subtype expression above. Predicate subtyping is useful for specifying partial
functions. Dependent subtypes can be defined, e.g., the range of a function or the type of a field
in a record may depend on the value of a function argument or the value of another field in the
record, respectively.

Specifications in PVS are expressed as a collection of theories, which consist of declarations
of names for types and constants, and expressions associated with those names. Theories can be
parametrised with types and constants, and can use declarations of other theories by importing
them. The prelude is a standard library automatically imported by PVS. It contains a large
number of useful definitions and proved facts for types, including among others common base
types such as Booleans (bool) and numbers (e.g., nat, integer and real), functions, sets,
and lists.

3 The PVS model of the infusion pump

The MAL models of the infusion pumps, referred to as A and B, in [HCM13] have been trans-
lated into PVS. The focus here is not rigorous translation, rather it is concerned with an intuitive
description of how the approach works. For brevity this paper focuses on infusion pump A.

3.1 Overview of the infusion pump

Most infusion pumps have three basic states: infusing, holding and off. In the infusing state the
volume to be infused (vtbi) is pumped into the patient intravenously at a pre-determined infusion
rate. While in the infusing state the vtbi can be exhausted, in which case the pump continues
in KVO (Keep Vein Open) mode and sets off an alarm. When the pump is in holding state,
values and settings can be changed using a combination of function keys and chevron buttons
(for the device layout, see Figure 1). A subset of the features can also be changed when infusing.
Number entry is achieved by means of chevron buttons. These buttons are used to increase or
decrease entered numbers incrementally. Depending on current mode the chevron buttons can
be used to change infusion rate, volume to be infused and time, or alternatively allow the user
to move between options in a menu, for example in bag mode and in query mode. Bag mode
allows the user to select from a set of infusion bag options, thereby setting vtbi to a predetermined
value. Query mode, which is invoked by pressing the query button, generates a menu of set-up
options. These options depend on how the device is configured by the manufacturer, and include
the means of locking the infusion rate, or disabling the locking of it, or setting vtbi and time
rather than vtbi and infusion rate. There is also the possibility of changing the units of volume
and infusion rate. The device allows movement between display modes via three function keys
(key1, key2 and key3). Each function key has a display associated with it, indicating its present
function.

The infusion process can be captured in MAL using an invariant over the state transition
process.

infusionrate > 0 → infusionrateaux = infusionrate (1)

Proc. FMIS 2013 4 / 12

ECEASST

Figure 1: The pump user interface and actions

infusionrate > 0 → time = (vtbi/infusionrateaux)
infusionrate = 0 → time = 0

This invariant asserts a relationship between vtbi, infusion rate and time to completion of the
process. infusionrateaux, which takes values in the range 1..maxrate, is introduced to ensure
division by zero cannot happen. To indicate the level of detail provided by the MAL model a
couple of sample axioms are included and translated into PVS. The tick action describes the steps
in the process, and the alarms that occur when the volume to be infused is exhausted, or when
the device has been left in a hold state for too long. As illustration the normal conditions for tick
are described.

(infusionstatus = infuse) & (infusionrate < vtbi)→ [tick] vtbi′ = vtbi− infusionrate & (2)
elapsedtime′ = elapsedtime+1 & volumeinfused′ = volumeinfused+ infusionrate &
keep(kvorate,kvoflag, infusionrate, infusionstatus)

This axiom specifies what happens when the pump is infusing (that is infusionstatus = infuse)
and when vtbi exceeds the rate, that is it will not be exhausted in this step. The axiom describes
the action (in square brackets); the conditions that must be satisfied for the action to have the
stated effect (left side of the implication) and the result of the action under these conditions.
The priming of attributes indicates the value that will be determined in the next state. keep
specifies those attributes that keep their values in the next state, otherwise the value is randomly
determined. The PVS function tick, which is the translation of this action under the specified
conditions, has domain that is a sub-type of the pump state that satisfies the same conditions. The
range of the function is the set of all states. The attributes vtbi, time and volumeinfused

are updated in a way that is analogous to axiom 2. The following describes that part of the tick
function that is analogous to axiom 2.

tick_case_infuse_and_infusionrateLvtbi
(st: {st: pump | infusing?(st) & vtbi(st) - infusionrate(st) > 0}): pump =

st WITH [vtbi := vtbi(st) - infusionrate(st),

5 / 12 Volume 69 (2013)

Automated theorem proving for the systematic analysis of an infusion pump

time := COND infusionrate(st) = 0 -> 0
ELSE -> floor((vtbi(st) - infusionrate(st))/infusionrate(st)) ENDCOND,

volumeinfused := COND volumeinfused(st) + infusionrate(st) <= maxinfuse
-> volumeinfused(st) + infusionrate(st),

ELSE -> volumeinfused(st) ENDCOND,
elapsedtime := COND elapsedtime(st) < maxtime -> elapsedtime(st) + 1,

ELSE -> elapsedtime(st) ENDCOND]

The invariant axiom 1 is replaced by an explicit specification: floor((vtbi(st) -

infusionrate(st)) / infusionrate(st)). The floor function ensures that the result
is the truncated integer value associated with the quotient. The tick function in PVS describes
the behaviour that is captured by a number of MAL axioms defining [tick], given a variety of
pre-conditions, including tick case infuse and infusionrateLvtbi defined above.

tick(st: {st: pump | per_tick(st)}): pump =
COND infusing?(st) & infusionrate(st) < vtbi(st)

-> tick_case_infuse_and_infusionrateLvtbi(st),
infusing?(st) & infusionrate(st) >= vtbi(st) & NOT kvoflag(st)

-> tick_case_infuse_and_infusionrateGEvtbi_NOTkvoflag(st),
infusing?(st) & infusionrate(st) >= vtbi(st) & kvoflag(st)

-> tick_case_infuse_and_infusionrateGEvtbi_kvoflag(st),
NOT infusing?(st) & elapse(st) >= timeout

-> st WITH [elapse := 0],
NOT infusing?(st) & elapse(st) < timeout

-> st WITH [elapse := elapse(st) + 1] ENDCOND

3.2 Specifying the interface

As discussed in [HCM13], the display is specified in the model as having three parts as shown
in Figure 1. topline describes the contents of the top line. This is represented in MAL by a type
that describes an enumeration of possible top line displays.

iline = {holding, infusing,volume,dispvtbi,attention,vtbidone,dispkvo,
setvtbi, locked,options,dispinfo,vtbitime,dispblank}

middisp is a Boolean array indicating which pump or other state attributes are visible (for ex-
ample it indicates whether a menu is visible). fndisp1, fndisp2 and fndisp3 are state attributes that
describe what is indicated by the three soft keys. Further fragments of the original specification
are now described to indicate the complexity of the model. The MAL specification of the soft
key 2, when the top line of the device shows “holding” (see Figure 1), has two components. The
first is a permission that describes when action key2 is permitted. If the condition is not true then
the action cannot be invoked. The modal axiom describes what happens when key2 is invoked
and topline indicates either holding or infusing.

per(key2)→ (fndisp2 ! = fnull)& (3)
topline in {holding, infusing,volume,dispvtbi} & device.poweredon

This permission asserts that key2 can be invoked when the soft key has a value other than
null, and the top line is one of holding, infusing, volume, dispvtbi, and the device is powered on.
The effect of key2, when top line shows holding or infusing and vtbi has not been exhausted (as
indicated by the fact that kvoflag is false), is as follows:

Proc. FMIS 2013 6 / 12

ECEASST

(topline in {holding, infusing}) & !kvoflag→ [key2] (4)
topline′ = dispvtbi & oldvtbi′ = vtbi & middisp[dvtbi]′ & !middisp[dvol]′ &
!middisp[dtime]′ & !middisp[dbags]′ & !middisp[dkvorate]′ & !middisp[dquery]′ &
fndisp1′ = fok & fndisp2′ = fbags & fndisp3′ = fquit & entrymode′ = vtmode &
effect(device.resetElapsed) & keep(onlight,runlight,pauselight,rdisabled,rlock)

The translated PVS description includes the type definition for iline, the definition of the
permission per key2, and the description of the effect in the particular situation described in
the MAL axiom. Finally, to indicate the context of this particular condition, the top level cases,
including the one that has been specified, are described in the function key2. The translations of
the axioms for key2 from MAL into PVS can be achieved systematically.

iline: TYPE = { holding, infusing, volume, dispvtbi, attention, vtbidone, dispkvo,
setvtbi, locked, options, dispinfo, vtbitime, dispblank, clearsetup }

per_key2(st: alaris): bool =
NOT(fndisp2(st) = fnull) & (topline(st) = holding OR topline(st) = infusing

OR topline(st) = volume OR topline(st) = dispvtbi) & (device(st)‘powered_on?)

key2_case_holding_infusing(st: (per_key2)): alaris =
st WITH [topline := dispvtbi, oldvtbi := device(st)‘vtbi,

middisp := LAMBDA(x: imid_type)
COND x = dvtbi -> TRUE, x = dvol -> FALSE, x = dtime -> FALSE,

x = dbags -> FALSE, x = dkvorate -> FALSE, x = dquery -> FALSE,
x = drate -> FALSE ENDCOND,

fndisp1 := fok, fndisp2 := fbags, fndisp3 := fquit, entrymode := vtmode,
device := resetElapsed(device(st))]

The key2 function combines all the individual MAL axioms.The domain of this function is
that set of states that are permitted by per key2.

key2(st: (per_key2)): alaris =
COND (topline(st) = holding OR topline(st) = infusing)

-> key2_case_holding_infusing(st),
(topline(st) = volume)

-> key2_case_volume(st),
(topline(st) = dispvtbi OR topline(st) = vtbitime)

-> key2_case_dispvtbiORvtbitime(st),
(topline(st) = setvtbi)

-> key2_case_setvtbi(st) ENDCOND

4 Proving the property templates as theorems

The model checking analysis was performed using an Intel Core rated at 3.2 GHz per processor
with 24GB of RAM. The PVS analysis used an Intel Core i5 rated at 2.4 GHz with 8 GB of
RAM. Given the PVS version of the interactive device, sketched in the previous section, it is
possible to prove the same properties that have been proved already using the IVY tool. These
were described as being concerned with a number of characteristics of the device:

• Checking that the process represented in the innermost pump layer is visible through the
device interface (mirroring the process in the interface).

7 / 12 Volume 69 (2013)

Automated theorem proving for the systematic analysis of an infusion pump

• Checking that modes can be determined unambiguously from the interface (mode clarity).

• Checking that actions provide appropriate feedback, for example when they change mode
or change the values of pump attributes.

• Ensuring consistency of use of the display, or of action (consistency of the interface).

• Checking ease of recovery from an action.

• Ensuring that activities described in the outer layer are supported (supporting activities).

These properties have all been translated into PVS and proved of the translated specification
using structural induction. Proving that a property is true for all reachable states AG p is achieved
by: showing first that it is true of the initial state of the device; and second that if the property is
true of a state then it is true of any state that can be reached from that state by a single action. For
space reasons only a sample of these CTL properties are considered to illustrate the approach.
All the properties shown in [HCM13] have been proved, although in some cases it has involved a
tightening of the MAL model (which reflected a weakness of the MAL model rather than a lack
of tractability of the PVS approach).

4.1 Mirroring the process in the interface

The first set of properties to be considered determine how the underlying modes and variables of
the pump process are reflected in the interface. For example, a question considered was whether
the top line of the display adequately determined whether the mode of the device was infusing
or holding. Two properties were used to explore this.

AG(device.poweredon & (5)
(topline in {infusing,dispkvo,vtbidone}

→ device.infusingstate))

This proof generated a system diameter of 53. It reached 239.4686 states out of 292.1771. Veri-
fication was completed in 1 hour 52 minutes. The costs of proof using model checking for the
other properties are similar to this example. The run time associated with theorem proving will
be indicated with each theorem. It must be emphasised that in some cases the real time, including
human time, associated with theorem proving involved guiding the proof strategy and making
sense of the cases where a proof failed. Dealing with counter-examples when model checking is
a much simpler task than the comparable activity when theorem proving. It has not been possible
in this case to quantify the time involved, including the learning curve involved, in a first serious
use of PVS by the first author.

Property 5 shows that when the top line displays “infusing”, “vtbi done” or “KVO” the pump
is infusing. Other top lines can appear in both infusing and holding states. For this reason
property 6 that is concerned with hold excludes top lines of locked, volume, options, dispinfo
and dispvtbi.

AG(device.poweredon & (6)

Proc. FMIS 2013 8 / 12

ECEASST

!(topline in {locked,volume,options,dispinfo,dispvtbi})
→ (topline in {holding,setvtbi,attention,vtbitime,clearsetup}

↔ device.infusionstatus = hold))

The structural induction is achieved using alaris transitions, a function that relates
pre: alaris to all states that can be reached through an action.

alaris_transitions(pre, post: alaris): boolean =
(per_sup(pre) & post = sup(pre)) OR (per_fup(pre) & post = fup(pre)) OR
(per_sdown(pre) & post = sdown(pre)) OR (per_fdown(pre) & post = fdown(pre)) OR
(per_tick(pre) & post = tick(pre)) OR (per_key1(pre) & post = key1(pre)) OR
(per_key2(pre) & post = key2(pre)) OR (per_key3(pre) & post = key3(pre)) OR
(per_query(pre) & post = query(pre)) OR post = on(pre) OR
(per_run(pre) & post = run(pre)) OR (per_pause(pre) & post = pause(pre))

Note that the conjunction per action(pre) & post = action(pre) is required be-
cause the actions are defined in PVS with a domain that is a subtype of the alaris state. Therefore
any pre: alaris that is not in the subtype that is the domain of action produces an unde-
fined value. Properties 5 and 6 can be proved using the following predicates that transform the
CTL properties.

tlinfusionstatusinfuse(st: alaris): bool =
(device(st)‘powered_on? AND topline(st) = infusing

AND topline(st)=dispkvo AND topline(st) = vtbidone) => device(st)‘infusing?

tlinfusionstatushold(st: alaris): bool =
(device(st)‘powered_on? AND NOT(topline(st) = locked OR topline(st) = volume OR

topline(st) = options OR topline(st) = dispinfo OR topline(st) = dispvtbi)) =>
((topline(st) = holding OR topline(st) = setvtbi OR topline(st) = attention

OR topline(st) = vtbitime OR topline(st) = clearsetup) <=> NOT device(st)‘infusing?)

The theorem combines the two properties. The PVS proof is much quicker than the equivalent
property checked using model checking. The standard tactic is to skolemise the property, split it
so that the initial condition can be proved separately, expand alaris transitions and then
split this into a case for each possible transition. These cases can then be proved relatively
simply, or if they fail, the particular decomposition makes diagnosis of the problem relatively
straightforward.

% QED Run time = 44.38 secs. 12/3/2013
tlinfusionstatus: THEOREM

FORALL (pre, post: alaris):
((init?(pre) => tlinfusionstatusinfuse(pre) AND tlinfusionstatushold(pre)) AND

((alaris_transitions(pre, post) AND tlinfusionstatusinfuse(pre)
AND tlinfusionstatushold(pre))
=> tlinfusionstatusinfuse(post) AND tlinfusionstatushold(post)))

In proofs of this kind it was occasionally necessary to add a number of details to the theory.
These were mainly in the form of additional permissions on actions to limit the states that could
be in the domain of the action. This could be achieved while continuing to capture the properties
of the device. There is not sufficient space in this preliminary paper to discuss the details of these
additions.

9 / 12 Volume 69 (2013)

Automated theorem proving for the systematic analysis of an infusion pump

4.2 Checking consistency of action

The second illustration is concerned with consistency in the use of the soft function keys. The
IVY analysis explores two types of consistency: whether the same key is always associated
with the same function and whether a particular soft display only appears associated with the
same key. The first property is only true in some circumstances as can be specified by the CTL
property.

AG((((topline = dispvtbi)&(entrymode = vtmode)) | (7)
((topline = vtbitime)&(entrymode = vttmode)) |
topline in {options,volume,dispinfo})↔ fndisp3 = fquit)

Property 7 can also be translated into a property in PVS and proved using structural induction.
conditions_for_quitequiv(st:alaris) : bool =

((((topline(st) = dispvtbi) AND (entrymode(st) = vtmode)) OR
((topline(st) = vtbitime) AND (entrymode(st) = vttmode)) OR
(topline(st) = options) OR (topline(st) = dispinfo) OR (topline(st) = volume))
<=> (fndisp3(st) = fquit))

with corresponding theorem:

%QED Run time = 77.97 secs. 15/5/2013
alwaysquitequiv: THEOREM FORALL (pre, post: alaris):
(init?(pre) => conditions_for_quitequiv(pre)) AND (alaris_transitions(pre, post)
AND conditions_for_quitequiv(pre) => conditions_for_quitequiv(post))

The second type, illustrated by Property 8, ensures that quit can only appear when it is a soft
key for key3:

AG(fndisp1! = fquit & fndisp2! = fquit) (8)

The translation of this property is:
never_key1_key2_quit?(st:alaris): bool =

fndisp1(st) /= fquit AND fndisp2(st) /= fquit

%QED 18.85 secs 27/2/13
onlykey3quit1x: THEOREM FORALL (pre, post: alaris):
(init?(pre) => never_key1_key2_quit?(pre)) AND (alaris_transitions(pre, post) AND
never_key1_key2_quit?(pre) => never_key1_key2_quit?(post))

The final consistency illustration, property 9, requires that if the top line is volume then the
same soft function keys always appear.

AG(topline = volume↔ (fndisp1 = fnull & fndisp2 = fclear& fndisp3 = fquit)) (9)

This is translated into:

topline_volume_fndisp?(st:alaris): bool =
topline(st)=volume <=> (fndisp1(st)=fnull AND fndisp2(st)=fclear AND fndisp3(st)=fquit)

% Q.E.D. Run time = 70.79 secs. 12/3/13
toplinevolumedisplaysx: THEOREM FORALL (pre, post: alaris):
(init?(pre) => topline_volume_fndisp?(pre)) AND (alaris_transitions(pre, post) AND
topline_volume_fndisp?(pre) => topline_volume_fndisp?(post))

Proc. FMIS 2013 10 / 12

ECEASST

4.3 Checking ease of recovery

The last illustrated property is concerned with ease of recovery. The MAL model uses a much
simplified domain of numbers (0 . . .7) to make analysis tractable. In the case of the PVS model,
the actual number space of the infusion device is modelled and the chevron keys have behaviour
as implemented in the device. The standard form of the property is illustrated in CTL as property
10.

AG(attribute = value → AX(action1 → EX(action2) & (10)
AX(action2 → (attribute = value)))))

Two theorems illustrate instantiations of the general form. It was possible to prove the prop-
erties over all states. Two illustrations are translated into PVS as follows:

% Q.E.D. Run time = 5.91 secs. 27/2/13
undoinfusionratesupsdown: THEOREM
(NOT rlock(st) AND entrymode(st) = rmode AND (topline(st) = holding OR
topline(st) = infusing) AND (device(st)‘infusionrate > 0) AND (per_sdown(st) AND
per_sup(sdown(st)))) => device(sup(sdown(st)))‘infusionrate = device(st)‘infusionrate

% Q.E.D. Run time = 7.03 secs. 27/2/13
undoinfusionratesdownsup: THEOREM
(NOT rlock(st) AND entrymode(st) = rmode AND (topline(st) = holding OR
topline(st) = infusing) AND (device(st)‘infusionrate < maxrate) AND (per_sup(st) AND
per_sdown(sup(st)))) => device(sdown(sup(st)))‘infusionrate = device(st)‘infusionrate

5 Conclusion

This paper has illustrated exploration of a currently informal process, transforming MAL mod-
els into PVS [HCM13]. Proof using interactive theorem proving for models of this kind is
straightforward. However, when a proof fails, diagnosis requires expertise. The advantage of
model checking is that properties can be explored by considering an ideal property and then
restricting it by exploring a counter-example as discussed in [KOSF05]. Another mode in
which the model checker can be used, that is difficult to achieve using the theorem prover, is
to explore paths that achieve specific goals, considering counter-examples of properties such as
AG(device.volumeinfused ! = n).

Future work will be particularly concerned with demonstrating how models satisfy regulatory
requirements, demonstrating how an approach that combines MAL with PVS can be used to
prove systematically that these requirements can be proved. It is also concerned with adding
tools to the IVY toolkit to enable the automatic development of PVS specifications based on
MAL models and assistance with the proofs of these properties.
Acknowledgements. CHI+MED, EPSRC research grant EP/G059063/1

Bibliography

[BB10] M. L. Bolton, E. J. Bass. Formally verifying human-automation interaction as part
of a system model: limitations and tradeoffs. Innovations in System and Software
Engineering 6(3):219–231, 2010.

11 / 12 Volume 69 (2013)

Automated theorem proving for the systematic analysis of an infusion pump

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella. NuSMV 2: An Open Source Tool for Symbolic Model Check-
ing. In Larsen and Brinksma (eds.), Computer-Aided Verification (CAV ’02). Lecture
Notes in Computer Science 2404. Springer-Verlag, 2002.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-guided abstraction
refinement. In Computer aided verification. Pp. 154–169. Springer Berlin Heidel-
berg, 2000.

[CH09] J. C. Campos, M. D. Harrison. Interaction engineering using the IVY tool. In Calvary
et al. (eds.), Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. Pp. 35–44. ACM Press, 2009.

[DAC99] M. Dwyer, G. Avrunin, J. Corbett. Patterns in Property Specifications for Finite-
State Verification. In 21st International Conference on Software Engineering, Los
Angeles, California. Pp. 411–420. May 1999.

[GS97] S. Graf, H. Saidi. Construction of Abstract State Graphs with PVS. In Computer
Aided Verification. Springer Lecture Notes in Computer Science 1254, pp. 72–83.
Springer-Verlag, 1997.

[HCM13] M. Harrison, J. Campos, P. Masci. Reusing models and properties in the analysis of
similar interactive devices. Innovations in Systems and Software Engineering, 2013.
doi:10.1007/s11334-013-0201-3

[KOSF05] W. Kong, K. Ogata, T. Seino, K. Futatsugi. A Lightweight Integration of Theorem
Proving and Model Checking for System Verification. In Proceedings of the 12th
Asia-Pacific Software Engineering Conferende (APSEC’05). Pp. 8 pp.–. 2005.

[RSS95] S. Rajan, N. Shankar, M. K. Srivas. An Integration of Model Checking with Auto-
mated Proof Checking. In Computer Aided Verification. Springer Lecture Notes in
Computer Science 939, pp. 84–97. Springer-Verlag, 1995.

[SORS99] N. Shankar, S. Owre, J. M. Rushby, D. Stringer-Calvert. PVS System Guide, PVS
Language Reference, PVS Prover Guide, PVS Prelude Library, Abstract Datatypes
in PVS, and Theory Interpretations in PVS. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, 1999. Available at http://pvs.csl.sri.com/documentation.
shtml.

[US 10] US Food and Drug Administration. Infusion Pump Improvement Initiative. Techni-
cal report, Center for Devices and Radiological Health, April 2010.
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/
GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm

Proc. FMIS 2013 12 / 12

http://dx.doi.org/10.1007/s11334-013-0201-3
http://pvs.csl.sri.com/documentation.shtml
http://pvs.csl.sri.com/documentation.shtml
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm

	Introduction
	Background
	Complementary analysis approaches
	The PVS language

	The PVS model of the infusion pump
	Overview of the infusion pump
	Specifying the interface

	Proving the property templates as theorems
	Mirroring the process in the interface
	Checking consistency of action
	Checking ease of recovery

	Conclusion

