Electronic Communications of the EASST

Volume 69 (2013)

Proceedings of the
Sth International Workshop on
Formal Methods for Interactive Systems
(FMIS 2013)

Lightweight Interaction Modeling in Evolutionary Prototyping
Anke Dittmar and Reik Schachtschneider

12 pages

Guest Editors: Judy Bowen, Steve Reeves

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Lightweight Interaction Modeling in Evolutionary Prototyping

Anke Dittmar and Reik Schachtschneider

[anke.dittmar|reik.schachtschneider] @uni-rostock.de
Department of Computer Science
University of Rostock, Germany

Abstract: The paper discusses a systematic integration of evolutionary and ex-
ploratory prototyping of interactive systems by a lightweight use of formal meth-
ods. Formal models guide the development of the underdesigned evolutionary pro-
totype. In combination with techniques from Design Rationale, they implement the
exploration and assessment of possible solutions to open design questions. Mod-
els and corresponding tool support are used to express design options and to make
them more accessible to a broader audience by the creation of parallel model-guided
throwaway extensions of the current evolutionary prototype. They are also used to
describe design constraints (for example, in terms of tasks or in terms of actions on
artifacts) and to assess design options against these criteria. The suggested approach
is demonstrated through an example design scenario that shows an intertwining of
different design activities and discusses the role of formal models. In particular, the
scenario describes a coupling of HOPS models, QOC diagrams, and Java prototypes.

Keywords: Interaction design, formal modeling, design rationale, prototyping

1 Introduction

Formal approaches have been used in HCI since the 1980ies to specify and produce interactive
systems and to reason about them. Interactor concepts such as [Abo91] are early examples of
formalisms for specifying the relation between the internal and the observable behavior of inter-
active software systems. The GOMS family are well-known approaches relying on formal meth-
ods to analyze human computer interaction from a cognitive perspective [JohO3]. The formaliza-
tion of general design principles supports a better understanding of systems, and in some cases,
allows to automate reasoning processes (e.g. [MRO™13]). Model-based design approaches ex-
ploit formal task and domain models in a prescriptive way to produce user interfaces [Pat00] and
SwingStates [ABO8] is an example for integrating a formal notation into programming practices
of advanced interaction techniques. Formal methods help to abstract from implementation de-
tails and to focus on those properties of an interactive system that are of particular interest in a
certain design context. “A formal model may suggest new ways of looking at a system design,
new ways of evaluating it, new ways of inventing features and new ways of improving human
computer interaction” state the authors in [HT90].

Like with any other approach in interactive systems design, the application of formal methods
has limitations as well. It is pointed out in [BH94] that HCI requirements are complex and not
always amenable to formal investigation. If they are amenable corresponding models can entail
assumptions about a systems’ behavior which undermine the benefits of the chosen abstraction.

1/12 Volume 69 (2013)

mailto:$[$anke.dittmar$\mid $reik.schachtschneider$]$@uni-rostock.de

Lightweight Interaction Modeling E}

Another limitation is that not all participants in multidisciplinary design teams are familiar with
formal notations and that formal approaches are often perceived as limiting the creativity of in-
teraction designers [Dix91]. A deliberate integration of formal methods into design processes is
often suggested to mitigate these limitations and to increase the acceptance of formal approaches
beyond domains such as the domain of safety-critical systems.

The paper investigates a lightweight use of formal interaction modeling in an evolutionary
prototyping process of interactive systems. It is assumed that some of the design issues that
emerge during such processes require an in-depth exploration and assessment of options. An
integrated use of design rationale, formal methods and prototyping is suggested to support these
exploration steps. Formal models are applied for different purposes in this process. They serve
to specify alternative extensions of the evolutionary prototype and to implement corresponding
parallel model-guided prototypes, but they can also be used as a means for assessing options and
for planning next steps in the design process.

The tight coupling between different design representations supports the members of a (multi-
disciplinary) design team in developing a shared understanding of the design space and in making
decisions on how to extend the current prototype. For example, a potential user may not be able
to fully express some desired temporal behavior of the system, but another team member would
respond by creating two or three possible formal models and by mapping them to the evolu-
tionary prototype. During model animation, a model would partly control the behavior of the
prototype. These alternative model-guided prototypes are accessible to all members.

The paper continues our work presented in [DP13] where a coupling scheme between QOC
diagrams (Questions, Options, and Criteria), HOPS models (Higher Order Processes Specifica-
tions), and Java implementations is introduced to demonstrate the applicability of the proposed
co-evolution of design representations for Design Rationale, formal HCI models, and prototypi-
cal implementations for analytical and empirical design space exploration. This paper puts more
emphasis on the consideration of the overall design process and the various roles formal mod-
eling can play in it. Section2 gives an overview of the suggested approach and describes its
background in related work. In Section 3, a small design scenario is developed to explain the
approach in more detail. The paper closes with a summary and future work.

2 Background

According to [Dia04], design is a goal-directed activity requiring models of both the current and
the envisaged world. The paper particularly considers design processes that involve a tight inter-
play between problem setting and problem solving [Sch83]. It is suggested that a co-evolution
of models describing aspects of the current and the envisaged world and of prototypical imple-
mentations of the interactive system under design supports this interplay.

2.1 Overview of the Design Approach

In our approach, the overall design process is supplemented by exploratory prototyping activities,
that again, are guided by the creation and use of formal models. An evolutionary prototype has
to be deliberately underdesigned with respect to design issues where a clearer understanding of

Proc. FMIS 2013 2/12

Eg ECEASST

: Models of envisaged world
e Reflection
ol
a e G ool Altemative G ol
Initial require- (B hons Revised il
ments Subest of - Decision requirements dilbaet of
—| Prototype 0 —=pen design Co— ——| Prototype 1 ——gpen design
Open design ‘. G Revised open L i
. ‘ O o . ‘
issues e designissues »
""""" Models of current world
Reflection

Timeline

Figure 1: Overview of the model-guided prototyping approach. The evolutionary prototype is
depicted in the boxes labeled ‘Protoype 0’ and ‘Prototype 1°.

the problem and possible solutions needs to be obtained. Such design questions are explored by
the development and assessment of alternative solutions to extend the evolutionary prototype.
Formal models are used in exploration steps for the following main purposes:

- to specify those aspects of the evolutionary prototype that are addressed by a design question,

- to specify essential aspects of a suggested solution more precisely and at a conceptual level,

- to specify aspects of the current and envisaged world that constrain the solution space,

- to compose models according to the coupling scheme in [DP13].

Throughout this paper, we will use the coupling scheme for QOC models, Java implementa-
tions and HOPS models that is introduced in [DP13] to support an integration of design rationale
activities and evolutionary prototyping by formal modeling. However, any other formal notation
with similar features and tool support like HOPS and with corresponding implementation lan-
guages is a candidate for the suggested approach. In particular, it should be possible to compose
models, to map them to prototypical implementations, and to animate them in order to facilitate
model-guided prototyping [DP13]. Similar to [DH10], model composition and the animation
tool is also used for assessing design ideas against design constraints.

Figure 1 depicts the development of an interactive system as result of the suggested intertwined
shaping of models and the artifact itself. Initial requirements and open design problems are
derived from initial models of the current and envisaged world (C-models) which describe goals
and tasks, artifacts and activities in the domain, or other design constraints (A). Then, a first
prototype is implemented that is underdesigned with respect to the open design questions (B).
A subset of these questions is selected, and for each question, a formal model (Q-model) is
created specifying the focus on the existing prototype by a corresponding mapping (C). Now,
alternative solutions (options) for the selected design issues are developed and specified (O-
models). The applied coupling scheme [DP13] provides a means to compose Q-models and O-

3/12 Volume 69 (2013)

Lightweight Interaction Modeling E}

models in such a way that model animation implements parallel model-guided prototypes which
can be evaluated analytically and empirically by using (formal and informal) C-models of the
current and envisaged situation (D). In addition, an O-model can be enriched by implementation
details which do not need to be considered at a conceptual level but which make the model-
guided throwaway extension of the evolutionary prototype more accessible.

On the one hand, C-models influence the creation of the evolutionary prototype. On the other
hand, the exploration of new design ideas changes the view on the problem setting and encour-
ages further analysis of the current world and of possible design goals and constraints. The
designers refine their understanding of the usage context of the artifact and consequences of de-
sign decisions (revision of C-models). A decision for one alternative has to be made (E), the
requirements and the set of open design issues have to be revised (F), the evolutionary proto-
type has to be enhanced accordingly and so on. It is essential in this iterative process to avoid
premature commitments to particular solutions and to explore alternatives.

A small design scenario is used in Section 3 to provide a more detailed picture of the ap-
proach. It demonstrates how the interactive artifact under design (in the example, an interactive
puzzle game) emerges from coupling three types of design representations: QOC diagrams for
exploring and evaluating design options, prototypical Java implementation, and HOPS models.
In particular, the central role of formal models will be discussed more thoroughly. The scenario
will illustrate an intertwining of exploratory, analytical, empirical, and implementation activities.

2.2 Related Work

Our approach draws on a variety of sources. In User-Centered Design, iterative approaches
and prototyping are generally recommended to achieve active involvement of users and other
stakeholders. However, a systematic development of the prototypes in use is often missing. As
a consequence, it can be difficult, for example, to overcome bad initial design decisions. In
[DFABO3], the use iterative design “in conjunction with other, more principled approaches to
interactive system design” is recommended. Operational prototyping [Dav92] is an interesting
approach even if the focus is more on ‘classical’ software engineering practices. Davis suggests
to lay throwaway prototyping dealing with poorly understood requirements atop an evolutionary
base which implements well-understood requirements. In this paper, a better integration be-
tween evolutionary prototyping and exploratory steps is proposed by the concept of deliberate
underdesign.

Dow et al. show that iterative prototyping refines ideas, but can also give rise to design fix-
ation. Parallel prototyping helps designers to discover unseen design constraints, to produce
better results and to gain more task-specific self-confidence [DGK™ 10]. This paper puts parallel
prototyping into a systematic exploration and evaluation of design spaces for selected design is-
sues by applying the QOC notation that is well-known from Design Rationale (DR) [MYBMO91].
HOPS models are used as means to couple the representations of argumentation processes and
throwaway extensions of the current prototype [DP13].

The integration of formal methods and DR in interactive systems design is suggested, for
example, in [Bra95], [Joh96] and [LPB"06]. According to [Bra95], the emergence of options
during the formal development process has already been noticed in the 1970ies but there was no
support by formal notations. The Design Question Notation (DNQ) is introduced to structure,

Proc. FMIS 2013 4/12

ECEASST

(a) Lifting a tile (b) Rotating a group of tiles (c) Shuffling

Figure 2: A person playing with the cardboard version of the puzzle.

manipulate and reason about design options within a formal development process [Bra95]. A
perhaps less rigor approach is taken in [Joh96]. Here, Z specifications are related to options in
the QOC notation. On the one hand, design questions and criteria of QOC diagrams provide a
rationale for these specification fragments. On the other hand, the specifications provide precise
descriptions of possible solutions. The Dream-Team tool [LPB"06] aims to support the trace-
ability of design decisions. QOC diagrams can be enriched by task models related to options and
scenarios of task models can be associated to criteria. It is not quite clear, though, whether the
task models in [LPB"06] are not rather system models. In the suggested approach, the emphasis
is not on the integration of formal methods and design rationale but on a systematic development
of underdesigned prototypes. Formal models are used to describe and to prototype possible ex-
tensions without modifying the existing evolutionary prototype. This can help to avoid premature
design decisions. The HOPS tool extends the idea of model animation and allows to selectively
control Java prototypes by animating HOPS models. In model-guided prototyping [DP13], only
those aspects of interaction are formalized that need to be discussed at a more conceptual level.
The HOPS formalism has roots in task notations and related animation tools (e.g. [Pat00]),
but additionally provides means to describe interactive systems as compositions of sub-systems
[BMDDO0O0]. Model composition enables the reflection of a system from different viewpoints
[DH10] which is needed for the formal description of design questions, options, and criteria of
QOC diagrams. Our approach supports the idea of multidisciplinary modeling [BSMH95].

3 Model-Guided Prototyping Processes

In this section, a design scenario is described to explain the above ideas in more detail. Figure 2
depicts a person playing with a puzzle called “The mad starry sky”. Given are nine square tiles
made of cardboard. The diagonals of the tiles divide their corners into eight partitions with each
containing one, two, or three stars. The tiles have to be arranged in a 3x3 grid so that for every
two neighbor tiles each pair of adjacent partitions has the same number of dots. The design goal
is to create an interactive version of the puzzle which is similarly engaging.

5/12 Volume 69 (2013)

Lightweight Interaction Modeling E}

3.1 Initial Representations

Let us assume that, in a first analysis of the current cardboard version of the puzzle, the focus
has been on the actions that players perform on single tiles and on groups of tiles. They rotate
tiles, they drag them on the table, and sometimes they lift and drop a tile. They also drag or
rotate groups of tiles or divide them, and Figure 2(c) shows a player shuffling a group. The
HOPS model in Listing 2 describes this action-oriented view on the current world. There are
operations specifying actions on tiles and operations specifying actions on groups of tiles. In the
model, no temporal constraints are imposed on the execution of these actions. In contrast, the
model in Listing 1 reflects a more task-oriented perspective. It describes that players achieve the
goal of the task SolvePuzzle by positioning tiles in two ways in the 3x3 target grid. They
either first select a place in the grid and then look for a matching tile or vice versa (sub-processes
FillGridPlace and FindGridPlace lines 15-16). Let us assume that these are the models
of the current world that initially guide the design.

For the interactive version of the puzzle, there are at least three issues that should be explored
more deeply: (1) the design of the playing area, (2) the behavior of single tiles (in terms of user
actions), and (3) user actions on groups of tiles. The first prototype has to be underdesigned with
respect to these design questions in order to avoid premature commitments to solutions.

Listing 1: Task-oriented view Listing 2: Action-oriented view
1 PROCESS Current_1 1 PROCESS Current_2
2 OPS 2 OPS
3 selectTile(), 3 drag (e:string),
4 lookForPlace(), 4 500
5 selectPlace(), 5 SUB PROCESSES
6 lookForTile(), 6 Current_2 IS
7 removeTile (), 7 MoveTile ||| MoveGroup,
8 solved(), 8 MoveTile IS (liftDrop("t")
9 giveUp (), 9 [1 drag("t")
10 SUB PROCESSES 10 [l rotate("t")
11 Current_1 IS SolvePuzzle, 11 [] dragRotate("t")
12 SolvePuzzle IS (LayOutTile [] removeTile())* 12 [] liftDropRotate ("t")) x,
13 [> (solved() [] giveUp()), 13 MoveGroup IS (rotate("g")
14 LayOutTile IS (FindGridPlace [] FillGridPlace), 14 [] drag("g")
15 FindGridPlace IS selectTile() ; lookForPlace(), 15 [] divide("g")
16 FillGridPlace IS selectPlace() ; lookForTile(), 16 [1 shuffle("g")) x,
17 END PROCESS 17 END PROCESS

3.2 Underdesigned Prototype and Selected Design Questions

The class diagram in Figure 3 presents the overall structure of the first version of the evolutionary
Java prototype (set and get methods are omitted). It implements tiles on a playing area but
abstracts from a concrete structure of the area and from concrete user actions on tiles and groups
of tiles. The abstract classes AbstractArea and AbstractTileBehavior are used for
underdesign and have to be specialized in later extensions of the prototype.

In the next exploration step, only above questions (1) and (2) are discussed because it is as-
sumed that design decisions on the interactive behavior of single tiles need to be considered
when designing the interaction with tile groups (e.g., for reasons of consistency). Class Area
(Figure 3) serves to couple the evolutionary prototype and throwaway extensions that imple-

Proc. FMIS 2013 6/12

Eﬁ ECEASST

AnalogRotate
Structure of JPanel + drag+ Lift&drop
Prototype 0 FreeBehavior :
Howto place II)ISCI'EIIER..OIEIE
Sk Free single tiles? + drag + hft&drop
¥ groups unstructured S
Abstractirea area RotateWhileLiftDrop
-
currentPosition : Point TR =
tateWhileDraggin;
tiles initT fes) SEing
0.9 e oetTileAtPosition(Point) : Tie
hasSpace(Tie) | bookan 1 area e =
Tile] pREASIS) 2 Pr—— = NxN (n=3.4.5)
Segmen 5
‘postion : Point 0.1 | Area g piling or swapping of tiles
e seleced At Hosshaviors (M oY
rotation : double 9 stucture Dynamic (no piling of tiles)
cormers : List<Point> AbstractTileBehavior e
isSelected | boolean Grid
golr- Leolor constrainedM ove(intinf) Design Dlurele
contains(Point ; boolean . mave(in,inf) Question movingby keys
overlapping(Tile) : boolean rotate(double) SegmentBehavior
updateComers(seleciTie() : bookan Howto place single Dragging
tiles?
LiftDrop
Options with consequent
Pointing

questions i
totile andtarget segment

Figure 3: Class diagram of the initial Java prototype (on the left) and question-option structure
of an associated QOC diagram (on the right)

ment possible solutions to the selected design questions. It is responsible for setting concrete
sub-classes of AbstractArea and AbstractTileBehavior. The coupling is controlled
by a composition of HOPS models which is illustrated at examples in the next subsection and
described in detail in [DP13].

3.3 Exploration of Design Options

The key question in the QOC diagram on the right of Figure 3 is: How to structure the playing
area? Two options (labeled by ‘Grid’ and ‘Free’) are given. For reasons of simplicity, criteria are
not shown in Figure 3 and will be discussed later. Consequent questions concern the way how the
area should be segmented (fixed or dynamic number of segments) and how tiles should behave
in free areas and in grids. Corresponding options can be formalized by HOPS models. For
example, the following sub-process specifies separate and analog rotating and dragging actions
on tiles that are performed over a period of time.
AnalogRotate IS
((startRotate () ; stopRotate()) [] (startDrag() ; stopDrag()))=

Questions, options and, optionally, criteria are represented by HOPS models which are com-
posed according to the structure of the QOC diagram. In addition, the HOPS model that repre-
sents the key question (labeled by ‘Area’ in the example) is mapped to the ‘coupling’ class of
the underdesigned prototype (class Area in the example). Now, the HOPS tool allows to switch
between different design options and to animate them on top of the existing prototype. Listing 3
shows the model composition that was generated for the exploration of discrete tile behavior in
dynamically sized grids (see lines 21-22 and Figure 3).

Listing 4 contains the HOPS model of option ‘Discrete’. The model is linked to a concrete
Java sub-class of AbstractTileBehavior (lines 1,2) by mappings of HOPS operations to

7/12 Volume 69 (2013)

Lightweight Interaction Modeling E}

Java methods (lines 6-12) and by mappings of Java events to HOPS operations (lines 14 ff). The
animation of the model in Listing 3 results in a model-guided prototype. Only those aspects
of the prototype are controlled by the HOPS model that are specified in the options. Figure 4
depicts an animation run with the Java prototype in the foreground and the HOPS animation
tool in the background. The composition tree in the bottom part of the animator visualizes
the current model composition with selected options ‘Discrete’ and ‘Dynamic’ (compare with
Figure 3). As another example, the composition in Figure 5 extends the existing prototype by
the option ‘RotateWhileDragging’ in unstructured playing areas. Back to Figure 4, the model
controls the users’ movements in the grid, the rotation of tiles, the selection of a tile and its target
segment. These interactions and their sequencing are specified in an abstract way by HOPS
operations (lines 6-13 in Listing 4) and sub-processes (lines 18-23). Enriching implementations
are provided by the mapped Java class. For example, arrow keys are used to move in the grid
and tiles are rotated in 90 degree steps.

Listing 3: Generated model composi- Listing 4: HOPS model of option Discrete
tion for animating option Discrete

PROCESS Discrete (area: COMP (Area))

1

| PROCESS Prototype_1 2 -> options.beh.SegmentedDiscreteBehavior

2 BASIC COMPS 3 VAR lifted: INT = O,

3 // key question 4 BASIC COMPS e: MouseEvent,

4 area: Area, 5 OPS

s // selected option 6 move () IS void.FCall ("move",e),

6 area_opt: Grid(area), 7 click()

7 8 COND (lifted==0)

8 9 IS lifted.FCall ("detSource")

9 PROCESS Area -> question.Area 10 COND (lifted==1)

10 OPS 11 IS void.FCall ("detTarget"); lifted.set (0),

11 // connect to initial prototype 12 rotate() IS void.FCall("rotateInSlot"),

12 init () IS FCreate(), 13 ...

13 14 EVENT MAPPINGS

14 15 area : keyPressed(37) -> move(),

15 PROCESS Grid(area: COMP (Area)) 16 ...

16 BASIC COMPS 17 SUB PROCESSES

17 // follow up questions 18 Discrete IS init () ;

18 segments: Segments, 19 ((move () [] rotate())=* ; click() ; Cont)=x
20 [> quit (),

19 segmentBehavior: SegmentBehavior,
20 // selected options
21 segments_opt: Dynamic (area), 22 Cont COND (lifted==1) IS move()x* ; click()

22 segmentBehavior_opt: Discrete (area) 23 OTHERWISE IS Skip,
»; S 24 END PROCESS

3.4 Assessment of Design Options

Models of current and envisaged worlds such as those given in subsection 3.1 have multiple
functions. On the one hand, they enable the generation of ideas because they help designers to
constrain their view of a design problem. For example, the options in the scenario that rely on
segmented areas may have emerged from a task-oriented perspective while those for unstructured
areas closely follow currently observed actions with the cardboard puzzle. On the other hand,
these models are means for assessing alternative solutions and for changing perspectives. In
other words, they can also be used as criteria in a QOC representation.

Formalized criteria are not obligatory in the suggested approach. For example, there may be no

Proc. FMIS 2013 8/12

@ ECEASST

Figure 4: Model-guided prototyping of option ‘Discrete’ in dynamic grids. The animation tree in
the top part of the HOPS tool shows the performed operations: (1) selection of a tile - click, and
(2) go to the left - move, as well as the currently enabled operations (3) that can also be activated
in the Java prototype by using keys. In the current state, the rotation of tiles is not enabled by the
model (see also Listing 4).

need to formalize a criterion ‘all tiles are visible’ to see that it is not supported by options where
tiles can be piled and that it is not fully supported if tiles can be moved in a lift-drop metaphor (as
to be seen in Figure 5). In the model fragment below sub-process MoveTi 1e of Listing 2 is used
to assess option ‘RotateWhileDragging’ (compare Figure 3). Again, model composition is used
and operations from the criterion process (in bold) are mapped to HOPS operations describing
appropriate user actions in the design solution. This mapping and the animation run of Figure 5
reveal that not every action on tiles that is possible in the current world is supported by the
design option (in the figure, (5) marks unbound operations of the criterion process). However,
analogical transfer is not always desirable in design.

PROCESS RotateWhileDragging (area:COMP (Area))

-> options.beh.RotateWhileDragging

BASIC COMPS
criterion: MoveTile>>Current 2,

OPS

liftDrop ()

COND (lifted == 0) IS lifted.FCall("1lift",e)

COND (lifted == 1) IS void.FCall("drop",e)... ; criterion.liftDrop("t"),
startRotateDragging() ...,
stopRotateDragging() IS ... ; criterion.dragRotate("t"),

END PROCESS

As mentioned in the introduction, there are aspects of human computer interaction that are not
amenable to formalization at all or not at the current stage of the design process. This applies
to both the design options and the criteria. The integration of formal modeling and prototyping
can be useful here, as illustrated in the example in Figure 5. In analogy to the cardboard version,

9/12 Volume 69 (2013)

Lightweight Interaction Modeling Eﬁ

area_opt. freeBiehavior_opt.iftDrop() 9

area_opt.freeBehavior_opt.criteria.drag(t) |

area_opt.freeBehavior_opt.aiteria.iftDropRotate(t) |

—

MouseEvent ™|

ok e [current_2() ‘
J MtDropRatate(t) \

|

|

e rotate(t)
drag(t)

Figure 5: Model-guided prototyping of option ‘RotateWhileDragging’. Lifted tiles cannot be
rotated: (2) to (3). Tiles can be rotated during dragging but may collide with other tiles (4).

dragging is specified to be a constrained movement that does not allow overlapping tiles. When
a dragged tile collides with another tile (indicated by (4) in Figure 5), the latter keeps its position
in the associated throwaway prototypes. However, while testing the prototype one can easily find
out that such constrained movements may be convenient for positioning tiles in a (not visible)
solution grid but can be experienced as annoying when tiles are just dragged in the free space.
This observation may lead to a refined view on current practices and design constraints.

3.5 Refined View on Problem and Design Space

A more detailed picture of the different meanings of tile movements in the example may include
that players also drag, lift, drop, rotate tiles to bring them into or out of focus, to study their
structure or to order them. Moreover, the interaction with the prototype in Figure 5 may reveal
an assumption in the initial prototype. While the player in Figure 2 uses both his hands to push
together two tiles, the design in Figure 3 considers one current position only, e.g. the current
mouse pointer (attribute currentPosition inclass AbstractArea).

Finally, let us assume that option ‘RotateWhileDragging’ (Figure 5) is the preferred one and
will be integrated in the evolutionary prototype. Then, this option will impose new constraints on
how to design interactions with groups of tiles and the corresponding HOPS model or fragments
of this model may be useful now as a criterion for considering consistency between the behavior
of interactive single tiles and tile groups.

Proc. FMIS 2013 10/12

Eg ECEASST

4 Summary and Future Work

The paper aims at supporting interaction design processes requiring a deep interplay between
problem setting and problem solving activities, between understanding current practices and
changing them. An integration of evolutionary and exploratory prototyping is suggested which
is guided by formal models and a systematic exploration and assessment of design ideas as it
is practiced in design rationale. Formal models describe the interactive system from different
user-centered viewpoints and couple the design representations in use.

The approach that was demonstrated at the example of HOPS models, Java prototypes, and
QOC diagrams counterbalances well-known effects such as design fixation in iterative proto-
typing or overspecification in formal modeling. The specification and actual implementation of
design options for selected questions may prevent an unhealthy growth of the solution space, and
the assessment of alternatives helps to think about assumptions made in the design process. It
should be emphasized, though, that the consideration of design alternatives is not a dogma.

One question we would like to investigate in the future concerns the quality of evolutionary
prototypes from an engineering point of view. While the combination of abstract models with
enriching implementations results in more accessible models, it may also make implementations
more accessible for a better structuring by developers. We would also like to gain more experi-
ence with the techniques of underdesign and model-guided prototyping from this perspective.

Bibliography

[ABO8] C. Appert, M. Beaudouin-Lafon. SwingStates: adding state machines to Java and
the Swing toolkit. Softw. Pract. Exper. 38(11):1149-1182, Sept. 2008.

[Abo91] G. D. Abowd. Formal Aspects of Human-Computer Interaction. PhD thesis, Oxford
University Computing Laboratory, 1991.

[BH94] J. P. Bowen, M. G. Hinchey. Seven More Myths of Formal Methods: Dispelling
Industrial Prejudices. In Proc. of the 2nd Int. Symposium on Formal Methods. 1994.

[BMDDO0O] P. Barnard, J. May, D. Duke, D. Duce. Systems, interactions, and macrotheory.
ACM Trans. Comput.-Hum. Interact. 7(2):222-262, June 2000.

[Bra9s] C. Bramwell. Formal Development Methods for Interactive Systems: Combining
Interactors and Design Rationale. PhD thesis, University of York, UK, 1995.

[BSMH95] V. Bellotti, S. B. Shum, A. MacLean, N. Hammond. Multidisciplinary modelling
in HCI design... in theory and in practice. In Proc. of CHI ’95. Pp. 146-153. ACM
Press/Addison-Wesley Publishing Co., 1995.

[Dav92] A. M. Davis. Operational Prototyping: A New Development Approach. /IEEE
Softw. 9(5):70-78, Sept. 1992.

[DFABO3] A. Dix, J. Finlay, G. Abowd, R. Beale. Human-Computer Interaction. Prentice-
Hall, 3rd edition, 2003.

11/12 Volume 69 (2013)

Lightweight Interaction Modeling Eﬁ

[DGK'10]

[DH10]

[Dia04]

[Dix91]

[DP13]

[HT90]

[Joh96]

[JohO03]

[LPBT06]

[MRO™"13]

[MYBMOI1]

[Pat00]

[Sch8&3]

S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, S. R. Klemmer. Paral-
lel prototyping leads to better design results, more divergence, and increased self-
efficacy. ACM Trans. Comput.-Hum. Interact. 17(4):18:1-18:24, 2010.

A. Dittmar, M. Harrison. Representations for an iterative resource-based design
approach. In Proc. of EICS ’10. Pp. 135-144. ACM, New York, NY, USA, 2010.

D. Diaper. Understanding Task Analysis for Human-Computer Interaction. In Dia-
per (ed.), The handbook of task analysis for human-computer interaction. Lawrence
Erlbaum Associates, Inc., 2004.

A. Dix. Formal Methods for Interactive Systems. Academic Press, 1991.

A. Dittmar, S. Piehler. A Constructive Approach for Design Space Exploration. In
Proc. of EICS 2013, to appear. 2013.

M. Harrison, H. Thimbleby. The role of formal methods in human-computer in-
teraction. In Harrison and Thimbleby (eds.), Formal Methods in Human-Computer
Interaction. Pp. 1-8. Cambridge University Press, 1990.

C. W. Johnson. Literate specification: using design rationale to support formal
methods in the development of human-machine interfaces. Hum.-Comput. Inter-
act. 11(4):291-320, 1996.

B. John. Information Processing and Skilled Behavior. In Carroll (ed.), HCI Mod-
els, Theories, and Frameworks: Toward a multidisciplinary science. Pp. 55-101.
Morgan Kaufman Publishers, 2003.

X. Lacaze, P. Palanque, E. Barboni, R. Bastide, D. Navarre. From DREAM to Re-
ality: Specificities of Interactive Systems Development With Respect To Rationale
Management. In Dutoit et al. (eds.), Rationale Management in Software Engineer-
ing. Pp. 155-172. Springer Berlin Heidelberg, 2006.

P. Masci, R. Ruknas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
H. Thimbleby. The benefits of formalising design guidelines: a case study on the
predictability of drug infusion pumps. Innovations in Systems and Software Engi-
neering, pp. 1-21, 2013.

A. MacLean, R. M. Young, V. M. E. Bellotti, T. P. Moran. Questions, options, and
criteria: elements of design space analysis. Hum.-Comput. Interact. 6(3):201-250,
1991.

F. Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer, 2000.

D. Schon. The reflective practitioner: how professionals think in action. Harper
Collins, New York, 1983.

Proc. FMIS 2013 12/12

	Introduction
	Background
	Overview of the Design Approach
	Related Work

	Model-Guided Prototyping Processes
	Initial Representations
	Underdesigned Prototype and Selected Design Questions
	Exploration of Design Options
	Assessment of Design Options
	Refined View on Problem and Design Space

	Summary and Future Work

