
Electronic Communications of the EASST
Volume 69 (2013)

Proceedings of the
5th International Workshop on

Formal Methods for Interactive Systems
(FMIS 2013)

Developing and Verifying User Interface Requirements for Infusion
Pumps: A Refinement Approach

Rimvydas Rukšėnas, Paolo Masci, Michael D. Harrison, and Paul Curzon

12 pages

Guest Editors: Judy Bowen, Steve Reeves
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Developing and Verifying User Interface Requirements for Infusion
Pumps: A Refinement Approach

Rimvydas Rukšėnas1, Paolo Masci1, Michael D. Harrison1,2 and Paul Curzon1

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, London, UK

2 School of Computing Science
Newcastle University, Newcastle upon Tyne, UK

Abstract: It is common practice in the description of criteria for the acceptable
safety of systems for the regulator to describe safety requirements that should be
satisfied by the system. These requirements are typically described precisely but in
natural language and it is often unclear how the regulator can be assured that the
given requirements are satisfied. This paper is concerned with a rigorous refinement
process that demonstrates that a precise requirement is satisfied by the specification
of a given device. It focuses on a particular class of requirements that relate to the
user interface of the device. For user interface requirements, refinement is made
more complex by the fact that systems can use different interaction devices that
have very different characteristics. The described refinement process recognises an
input/output hierarchy.

Keywords: safety, human reliability, medical devices, refinement, user require-
ments, Event-B

1 Introduction

Demonstrating that interactive devices are acceptably safe is a significant and important element
in their development. For example, design errors in medical devices have an impact on patient
safety and contribute to health-care costs. Because of this, medical device regulators require
manufacturers to provide sufficient evidence that the risks associated with the device are as low
as reasonably practicable as well as being fit for purpose before entering the market. This process
is known as the premarket review process.

The level of scrutiny in the pre-market review generally depends on the risks inherent in the
use of the device. For new medical devices it involves submitting sufficient engineering and
clinical evaluation evidence that the device can be safely deployed in the field. To expedite
the premarket review process, faster routes exist for devices providing functionalities that are
similar to those of already legally marketed products. For such devices, manufacturers need to
demonstrate “substantial equivalence to a predicate device”, that is they need to demonstrate that
the new device has the same intended use of and is as safe and effective as an already legally
marketed device (the predicate device). In the US, for instance, this process is defined in the
Premarket Notification document known as 510(k) [LF09].

1 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

Regulators and manufacturers depend on these faster routes for cost reasons. Recent figures
suggest that the majority of devices are approved this way. In the US alone, over five thousand
new devices require 510(k) review each year. In its current form, the pre-market approval pro-
cess involves the analysis of tens of thousands of printed pages [MAC+13] rather than a direct
evaluation of the product. The structure and content of the provided documents are not standard-
ised, which makes the review process hard for regulators since they must substantively review
the documents within a relatively short time frame (e.g., 90 calendar days of the filing date for
510(k) applications).

The US Food and Drug Administration (FDA), the regulator for medical devices in the US,
is promoting approaches based on the use of formal methods as a means to reduce the amount
of paperwork and enable the submission of more succinct and rigorous evidence. For instance,
at the FDA’s Office of Science and Engineering Labs (OSEL), engineers are experimenting with
usage models [JPJ06] for the verification of software. A usage model is a formal representation
that describes the common characteristics and behaviour of software for broad classes of devices.
The approach is based on the idea of developing usage models that satisfy core sets of safety
requirements that can mitigate against typical hazards. This way, usage models can be used as
a reference by manufacturers – it they are able to show that their product is compliant with the
behaviours of the usage models, then regulators have evidence that the manufacturer’s device
meets minimum safety conditions.

The FDA currently specifies usage models as state machines. These models are developed
manually starting from safety requirements, verifying the models against these requirements
through model checking techniques. This paper shows how stepwise refinement and the Event-
B/Rodin platform can be conveniently used to develop usage models that are correct by con-
struction. The first problem with the FDA’s approach is to express requirements so that they are
sufficiently precise to be effectively operationalised. The second is to provide, by operational-
ising requirements, the means for encompassing the range of input/output technologies that are
likely to be encountered in interacting with the systems. Event-B is used here to express the
high level requirements such as those proposed by the FDA. Refinement is used to demonstrate
that the requirement can be cascaded into a hierarchy that encompasses potential input/output
technologies.

To illustrate the approach, we focus specifically on infusion pumps. We take as a starting point
a particular sample set of requirements specified by the FDA. These are specified by the FDA in
natural language. We give abstract formal specifications of these requirements. We then show
how they can be refined to a more concrete version. This version can then be verified against
the formal specification of specific pump designs. Here we concentrate on a particular infusion
pump design based on a commercially available pump.

2 Outline of the Approach

The proposed approach is based on three layers: requirements hierarchy, interface hierarchy and
concrete interfaces, each described below.

The requirements hierarchy layer, which is directly relevant to regulators, concerns the de-
velopment of user interface requirements. The regulator will be interested in the satisfaction of

Proc. FMIS 2013 2 / 12

ECEASST

these requirements to assure them of the device’s safety. A minimal set of such requirements,
relevant to some usability aspect of device interfaces, is developed. The aim is that these require-
ments should be sufficiently abstract to encapsulate the behaviour of the largest class of possible
devices. Refinements are then used to detail these requirements in a sequence of steps. It is also
possible that refinement can lead to alternative interface requirements that also provide assur-
ance of the safety of the device. These modified requirements would be developed as a contract
between regulator and manufacturer. The requirements hierarchy layer is discussed in Section 5.

The concrete interface layer focuses on the user interfaces of specific devices. This layer is
most relevant to manufacturers as they demonstrate that the user interfaces of their devices satisfy
the requirements developed in the requirements hierarchy layer. This is discussed in Section 6.

The middle layer, the interface hierarchy, aims to facilitate the dialogue between regulators and
manufacturers in order to demonstrate that a specific user interface adheres to the relevant set of
user requirements. It develops a refinement based hierarchy (classification) of user interfaces.

The aim is that user requirements are verified once for most abstract classes of interfaces.
More concrete classes of interfaces at the lower levels of this hierarchy are then guaranteed
to satisfy the requirements by construction. This simplifies the process of demonstrating that
a specific interface satisfies the relevant user requirements. Instead of directly verifying the
interface against the requirements it suffices simply to demonstrate that it is an instance of some
concrete class of user interfaces. This approach, discussed in Section 7, correlates with the FDA
pre-market approval process.

3 Sample User Interface Requirements from FDA

The regulator’s aim is to be assured that risks associated with the use of a device are as low
as reasonably practicable. As previously discussed part of this assurance is achieved through a
credible demonstration that safety requirements are true of the device. Before showing how this
demonstration can be achieved in the proposed framework a set of safety requirements developed
by the FDA is described. These requirements relate to the usability of the data entry systems
for infusion pumps. They will form the basis for the illustration contained in this paper. The
safety requirements are taken from a larger set produced by the FDA (see Safety Requirements
for the Generic PCA pump, obtained from rtg.cis.upenn.edu/gip.php3 on 4th April 2013). This
set is intended specifically for PCA (Patient Controlled Analgesic) pumps. As a result there
is more emphasis on patient tampering than clinician errors, and therefore the focus is slightly
different than is relevant to the volumetric infusion pump used by clinicians that forms the basis
of the example contained in this paper. The aim is to show how these independently determined
properties can be framed in our framework.

The requirements in the FDA document related to data entry interfaces are listed below:

R1 The flow rate for the pump shall be programmable. This safety requirement aims to mitigate
hazards due to incorrectly specified infusion parameters (e.g., flow rate is too high or low).

R2 The VTBI (Volume to be infused) settings shall cover the range from vmin to vmax ml.

R3 The user shall be able to set the VTBI in j ml increments for volumes below x ml.

R4 The user shall be able to set the VTBI in k ml increments for volumes above x ml.

3 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

4 Background

4.1 Interface refinement approaches

Several previous projects on formal refinement for interface design had different foci to our work.
For example, the main focus of Bowen and Reeves [BR09] is on a description of the actions
that the user can engage with and how these actions can be refined. The refinement process
involves actions being replaced by more concrete actions in terms of more concrete structures.
The refinement described by them is more akin to trace refinement. Although they argue that
their interest is in ensuring that requirements are true of the more refined system, there is less
concern with how the requirements are transformed through the levels of refinement. Duke and
Harrison [DH95] are concerned with data refinement. They note that abstract representations of
objects can be refined in two directions, into what is perceivable and into the architecture of the
device. Darimont and van Lamsweerde [DL96] are concerned with requirements described in
terms of the refinement of goals using the KAOS language. The interesting innovation in their
proposal is that the formal refinement process may be achieved through a set of patterns. The
approach we take here has most in common with the work of Yeganefard and Butler [YB11] who
demonstrate a similar refinement process, in this case for control systems, using Event-B.

4.2 Event-B/Rodin framework

Event-B specifications are discrete models that consist of a state space and state transitions. A
state includes constants and variables that describe the system. State transitions are specified
as events. A specification of an event consists of two parts. The first one is a list of guards.
Each guard is a predicate over the state variables and constants. The guards define the necessary
conditions for the event to occur. The second part is a list of actions which describe how the state
variables are modified as a result of event execution.

Specifications are structured in terms of machines and contexts. Machines specify the dynamic
aspects of systems, whereas contexts specify its static aspects. A machine includes state variables
and events. Invariant properties are expressed as machine invariants, i.e., predicates that must
hold in all machine states. A context includes constants defined by a set of axioms. A machine
may reference constants from the contexts it ‘sees’.

Intuitively, machine execution means that one of the events, with all guards being true, is
chosen. The machine variables are modified as specified by the actions of that event. The basic
syntactic form of an event is given below, other features of Event-B are introduced when needed.

Event E =̂ when G(v) then T(v) end

Here v is a list of variables. G(v) denotes the guards of E and T(v) denotes the actions associated
with E. A detailed description of Event-B can be found in [Abr10].

5 The requirement hierarchy

The informal requirements R1 and R2 from Section 3 provide a basis for the abstract specifica-
tion of user requirements relevant to data entry. R3 and R4 are introduced in a later refinement.

Proc. FMIS 2013 4 / 12

ECEASST

5.1 Requirements R1 and R2

The requirement R1 (The flow rate for the pump shall be programmable) is expressed as the
following machine in Event-B. This abstract description simply requires that a variable called
data has the attribute that it is programmable. The requirement asserts that data commences with
a value named source and describes the event programmable as changing the value to target. The
possible values of data are given as the set Numbers. All three constants, Numbers, source and
target, are defined in the context ReqParams1 below. Nothing is contained in the requirement to
indicate that it relates to flow rate. The requirement as specified could be applied to, e.g., VTBI.

MACHINE Reqs1 SEES ReqParams1
VARIABLES data INVARIANTS data ∈ Numbers
EVENTS
Initialisation begin data := source end
Event programmable =̂ begin data := target end
END

The invariant of Reqs1 simply gives typing of data. The initialisation event assigns the source
value to it. Since the programmable event expresses an abstract requirement, its guard is assumed
to be always true, and the when clause is omitted in the above specification.

The requirement R2 (The VTBI settings shall cover the range from vmin to vmax ml) is specified
in the context ReqParams1 which defines the corresponding constants Min, Max. It is assumed
that Max exceeds Min and that Min is non-negative. The set constant (type) Numbers is assumed
to be the interval 0 ..Max. The context defines a number of other constants: RefValues, source
and target. It is assumed that the source value belongs to the interval Numbers and it is assumed
that target is a member of the set of reference values (RefValues) that covers the required range
of settings. At this stage, no other assumptions are made as to what these values are.

CONTEXT ReqParams1
CONSTANTS Min Max Numbers Re f Values source target
AXIOMS

Min ≥ 0 Max > Min Numbers = 0 ..Max
Re f Values ⊆ Numbers∩ {x|x ≥ Min} source ∈ Numbers target ∈ Re f Values

END

Because the R1 requirement is specified in a non-operational form it is necessary to refine the
machine. Informally, machine refinement means verifying three constraints. The first concerns
event refinement: a concrete event must refine the corresponding abstract one (new events must
refine an implicit event that does nothing). The second constrains new events: they must ‘con-
verge’ (i.e., not run forever on their own). The third states that the concrete machine must not
deadlock before the machine it refines.

The following refinement of Reqs1 provides guidance about how R1 can be implemented. The
operational version of R1 has a number of new characteristics. Two new variables are introduced:
entry and disp. Whether a number is being entered is indicated by entry, whereas disp gives the
displayed value of the number entered. The initial state requires that data and disp are both

5 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

initialised to the source value and entry is false, indicating that entry of the target number has
not commenced. The new requirement decomposes the event representing R1 into three events.
The first one (choose) is used to elect to enter the target value, while the second one models
the modification of the display value (this is not necessarily the data value). The final event is
triggered when the display and target values are equal. At this step the data value is set to be
equal to the display value and entry becomes false. This operational requirement indicates more
about the programming process but says little about how the value is entered.

MACHINE Reqs11 REFINES Reqs1 SEES ReqParams1
VARIABLES data disp entry INVARIANTS disp ∈ Numbers entry ∈ BOOL
EVENTS
Initialisation begin data := source disp := source entry := FALS E end
Event choose =̂ Status anticipated

when entry = FALS E then disp := data entry := TRUE end
Event modify =̂ Status anticipated when entry = TRUE then disp :∈ Numbers end
Event set =̂ refines programmable

when disp = target entry = TRUE then data := disp entry := FALS E end
END

The machine Reqs11 specifies that set refines the abstract event programmable (intuitively,
both events assign target to data). The other two events, choose and modify, are new. Rather than
requiring their convergence, the specification assumes, as indicated by the keyword ‘anticipated’,
that choose and modify will not run forever. If necessary, this assumption can be proven later.

5.2 Requirements R3 and R4

In the case of R3 (The user shall be able to set the VTBI in j ml increments for volumes be-
low x ml) and, similarly, R4, the requirements are expressed in a sufficiently concrete form to
proceed directly to their operationalised versions. They are captured in the following context
ReqParams11 which extends ReqParams1 by adding three relevant constants—Threshold (x in
R3 and R4), j and k—with three associated axioms:

CONTEXT ReqParams11 EXTENDS ReqParams1 CONSTANTS Threshold j k
AXIOMS

Threshold ∈ Min + 1 ..Max−1 j < Threshold k ≤ Threshold
Re f Values ⊆ {x·x > 0∧ j∗ x ≤ Threshold | j∗ x} ∪ {x·x > 0 | Threshold + k ∗ x}

END

The fourth axiom restricts the reference set (RefValues) to the values obtained using the incre-
ments j and k. This context is used by Reqs111 which is the same machine as Reqs11 otherwise:

MACHINE Reqs111 REFINES Reqs11 SEES ReqParams11

The last step in the refinement of requirements has a more technical nature. It decomposes
Reqs111 so that the assumptions about to the user behaviour are removed from the requirements

Proc. FMIS 2013 6 / 12

ECEASST

for the pump interfaces. In particular, one guard (disp = target)) in the event set encompasses the
notion of a target. Though the latter is relevant to the user behaviour, it would be meaningless
to apply it to the pump interface. The decomposition introduces the machine Reqs111 Pump11
which replaces the constant target by a variable that represents the display value ‘passed’ to the
user. The details are omitted here, since this does not affect the actual data entry.

6 The interface hierarchy

Having produced an operational but abstract definition of the requirements, the next stage is to
make sense of the requirement in terms of the particular device that the developer wishes to cer-
tify. This section develops a refinement-based classification of user interfaces that is relevant for
various modes of data entry in infusion pumps. Each refinement step introduces specific features,
thereby creating a hierarchy of user interface classes. The aim is to verify safety requirements
for the classes at the top of the hierarchy. If those requirements are satisfied at that level, then
the interface classes at the lower levels are guaranteed to preserve them by construction.

There are a number of different data entry systems that are already used in infusion pumps
[OTC11] and there is future scope for many more. To illustrate the approach, two types are
considered in this paper: chevron based interfaces and five-key interfaces.

6.1 Chevron interfaces

In chevron based interfaces, the current data value is updated by pressing the ‘up’ (increase)
and ‘down’ (decrease) chevron keys. These interfaces always include at least one ‘up’ and one
‘down’ chevron, however more chevrons could be used to speed up data entry. For example, a
fast ‘up’ chevron may increase the current value by a larger amount compared to a slow ‘up’ one.

Interface specification. An abstract specification of the chevron based interface, machine
Chevron Entry1 defines two events for updating data values: increase and decrease. The first in-
creases the current value (disp) by an unspecified (non-deterministically chosen) amount, while
the second similarly decreases it. Both events are only enabled when the pump is in data entry
mode (entry = TRUE). The increase event is specified as follows:

Event increase =̂ ... when entry = TRUE then disp : | disp′ ∈ Numbers∧disp′ ≥ disp end

Verifying requirements. The abstract specification of the chevron based entry, Chevron Entry1,
is easily verified against the set of interface requirements. The verification is formally encoded as
an assertion that the machine Chevron Entry1 refines Reqs111 Pump11. In particular, the events
increase and decrease both refine the modify event specified in the abstract machine relating to
the operationalised requirement R1:

MACHINE Chevron Entry1 REFINES Reqs111 Pump11 SEES ReqParams11 ...
Event increase =̂ Status anticipated refines modify ...
Event decrease =̂ Status anticipated refines modify ...
END

7 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

Interface refinement. As an example of how more concrete layers can be added to the inter-
face hierarchy, we consider a chevron entry interface with two ‘up’ and ‘down’ keys. The slow
‘up’ and fast ‘up’ chevrons are modelled by the up and UP events, respectively. The up event
(specified below) increases the current value by delta at least, whereas UP increases it by Delta.

Event up =̂ ...
when entry = TRUE then disp : | disp′ ∈ Numbers∧disp′ ≥ min({disp + delta,Max}) end

The dn and DN events are specified similarly. In each case, delta/Delta is the minimum al-
lowed update amount. This permits implementations of this interface where the actual update
depends on the current data value. It is assumed that Delta is greater than delta to guarantee that
the fast ‘up’ and ‘down’ chevrons are indeed faster than the slow ones:

CONTEXT ChevronDefinitions11 EXTENDS ReqParams11 ...
AXIOMS delta ∈ Numbers Delta ∈ Numbers delta > 0 Delta > delta
END

This specification of a chevron based interface is a refinement of the interface with single ‘up’
and ‘down’ chevrons. In particular, the up and UP events refine the more abstract increase event,
whereas dn and DN (omitted here) refine decrease:

MACHINE Chevron Entry11 REFINES Chevron Entry1 SEES ChevronDefinitions11 ...
Event up =̂ Status anticipated refines increase ...
Event UP =̂ Status anticipated refines increase ...
END

6.2 Five-key interfaces

In the case of five-key interfaces, numbers are modified by combining up and down keys with
movement of the cursor keys. The size of the increment or decrement is measured by the position
of the cursor that can be manipulated using the left and right keys. The up and down keys nor-
mally operate on the single digit indicated by the cursor (e.g., up key modifies 5 to 6). However,
there is a lot of variation [CGT+12] in the behaviour of five-key interfaces at the ‘edges’ (e.g.,
when pressing up on the digit 9). Two main variations are to simply wrap the digit (e.g., 9 is
modified to 0) and to modify the whole number according to the rules of arithmetic (e.g, 9 is
modified to 0 and the digit to the left is increased by 1).

Interface specification. The context specified here describes the properties relevant to an
abstract cursor and up/down keys. The constant wrapCursor indicates whether the cursor is
wrapped at the edges (positions 0 and maxPos) when the corresponding cursor key is pressed.
The axioms capture that the maximal position (maxPos) is greater than 0 and the limits in the cur-
sor movement (min cursor and max cursor) which generally may depend on the current value.
They also define the starting position of the cursor (startPos), the size of the increment or decre-
ment (delta), and the signatures and behaviour of the left and right cursor keys. Further axioms
concerning variations in the behaviour of the up and down keys are discussed below.

Proc. FMIS 2013 8 / 12

ECEASST

CONTEXT FiveKeyDefinitions EXTENDS ReqParams11
CONSTANTS

maxPos min cursor max cursor startPos wrapCursor
delta le f t right round up round dn mem up mem dn

AXIOMS
maxPos > 0
min cursor ∈ Numbers→0 ..maxPos max cursor ∈ Numbers→0 ..maxPos
∀x·x ∈ Numbers⇒min cursor(x) ≤ max cursor(x)
startPos ∈ min cursor(source) ..max cursor(source) wrapCursor ∈ BOOL
delta ∈ 0 ..maxPos→1 ..10maxPos ∀i·i ∈ 0 ..maxPos⇒ (delta(i) = 10i)
le f t ∈ 0 ..maxPos→0 ..maxPos right ∈ 0 ..maxPos→0 ..maxPos
∀i, x·i ∈ 0 ..maxPos∧ x ∈ Numbers⇒

(i < max cursor(x)⇒ le f t(i) = i + 1)∧
(i = max cursor(x)∧wrapCursor = TRUE⇒ le f t(i) = 0)∧
(i = max cursor(x)∧wrapCursor = FALS E⇒ le f t(i) = i)

round up ∈ Numbers→BOOL round dn ∈ Numbers→BOOL
∀x·x ∈ Numbers⇒ (round up(x) = (x = Max∨ x = Min))
∀x·x ∈ Numbers⇒ (round dn(x) = (x = Min))
mem up ∈ Numbers→BOOL mem dn ∈ Numbers→BOOL
∀x·x ∈ Numbers⇒ (mem up(x) = (x < delta(maxPos)))
∀x·x ∈ Numbers⇒ (mem dn(x) = (x > Max−delta(maxPos))) ...

END

The behaviour of the up/down and left/right keys is specified as the machine FiveKey Entry1.
It defines the relevant events left, right, up and down, all possible when the pump is in data entry
mode (entry is true). The specifications of the left (given below) and right events are based on the
functions defined above. They both modify cursor which represents the position of the cursor:

Event left =̂ ... when entry = TRUE then cursor := le f t(cursor) end

The specifications of the up (given below) and down events can potentially be refined into
both types of five-key interfaces described earlier: arithmetic and wrapping. They also take
into account rounding behaviour at the minimal and maximal values allowed by the interface
as specified by the predicates round up and round dn. For example, round up states that such
rounding can yield either the maximal value Max or the minimal value Min. Furthermore, both
events permit the implementations of five-key interfaces with memory. For that the predicates
mem up and mem dn define ranges of values that can be recalled from memory by pressing the
up and down keys.

Event up =̂ ... when entry = TRUE then
disp : | disp′ ∈ Numbers ∧
(disp′ = disp + delta(cursor)∨disp′ = disp−9∗delta(cursor)∨ round up(disp′)∨mem up(disp′))

end

Verifying requirements. The FiveKey Entry1 machine refines the set of requirements devel-
oped. In particular all four events, left, right, up and down, refine the same abstract event modify
in the requirements:

9 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

MACHINE FiveKey Entry1 REFINES Reqs111 Pump11 SEES FiveKeyDefinitions1 ...
Event left =̂ Status anticipated refines modify ...
END

The final stage of the process is to show how these interface classes, still abstract in the sense
that they have potential to be implemented as a number of different chevron or five key interfaces,
can be refined into a particular design.

7 Verification of concrete interfaces

The aim of this section is to show how an interface specification of a specific device is shown to
satisfy user requirements. Ideally, such a specification would be provided by the manufacturer.
Alternatively, it can be reverse engineered by interactively exploring the actual device [Thi07].

Having an interface hierarchy already shown to satisfy the user requirements, there is no need
to verify a specific interface against those requirements. It suffices to show that the interface is
an instance of some class in the hierarchy. This section demonstrates the principle for a concrete
device with four chevrons as its number entry mechanism (Alaris GP Volumetric Pump [Car06]).

A specification of the Alaris number entry mechanism has been reverse engineered in PVS and
SAL [MRO+11]. The specification given below is its direct translation to Event-B. The purpose
of using this translation is to demonstrate that our interface hierarchy can be used to verify the
relevant user requirements for the independently developed specifications of concrete interfaces.

In the PVS and SAL versions, the behaviour of the Alaris chevrons (slow and fast up/down
keys) is captured using functions that specify how the current value is modified by pressing
each chevron. In Event-B, the corresponding functions, alaris up, alaris dn, alaris UP and
alaris DN, are defined in the following context. It extends RealDefinitions which provides an
Event-B model for the real numbers supported by the Alaris pump. The definitions of alaris dn,
alaris UP and alaris DN (omitted here) are similar to that of alaris up:

CONTEXT AlarisDefinitions EXTENDS RealDefinitions
CONSTANTS trim alaris up alaris dn alaris UP alaris DN init
AXIOMS

trim ∈ Z→ realq alaris up ∈ real→ realq init ∈ real
∀x·(x < minAlaris⇒ trim(x) = minAlaris)∧

(x > maxAlaris⇒ trim(x) = maxAlaris)∧
(x ≥ minAlaris∧ x ≤ maxAlaris⇒ trim(x) = x)

∀x·x ∈ real⇒ (x < r100⇒alaris up(x) = trim((f loor(x ∗10) + r1)/10))∧
(x ≥ r100∧ x < r1000⇒alaris up(x) = trim(x + r1))∧
(x ≥ r1000⇒alaris up(x) = trim((f loor(x/10) + r1)∗10)) ...

END

The machine Alaris Rate1 specifies the behaviour of the four chevrons when entering infusion
rates. This behaviour is described by the events up, dn, UP and DN. E.g., up is specified below:

Event up =̂ Status anticipated when rmode = TRUE then display := alaris up(display) end

Proc. FMIS 2013 10 / 12

ECEASST

Here the display variable represents the displayed rate and rmode indicates whether the pump is
in the rate entry mode.

Now, the demonstration that the Alaris rate entry interface is an instance of the class of chevron
interfaces specified in Section 6.1 boils down to proving refinement between Chevron Entry11
and Alaris Rate1. For such a proof, the generic parameters (such as delta or Threshold) specified
in ChevronDefinitions11 must be instantiated with the concrete values from the Alaris specifica-
tion (context AlarisDefinitions). This instantiation is specified as the folowing context:

CONTEXT ChevronAlarisParams EXTENDS ChevronDefinitions11 AlarisDefinitions
AXIOMS

Min = minAlaris Max = maxAlaris Threshold = r100
j = r01 delta = j k = r1 delta = j source = init

END

Furthermore, the four chevron events in Alaris Rate1 must refine the corresponding events
in Chevron Entry11, and the invariants of Alaris Rate1 must include a ‘glueing’ invariant that
specifies the connection between the state spaces of both machines:

MACHINE Alaris Entry1 REFINES Chevron Entry11 SEES ChevronAlarisParams ...
INVARIANTS (data = rate)∧ (disp = display)∧ (entry = rmode) ...
EVENTS
Event up =̂ Status anticipated refines up
when rmode = TRUE with disp′ : disp′ = display′ then display := alaris up(display) end ...
END

8 Conclusions

The paper has demonstrated how Event-B can be used to support manufacturers as they aim
to demonstrate that regulator requirements are satisfied by their products. All the refinements
described have been proven using the Rodin platform. The refinement hierarchies thus devel-
oped for requirements and user interfaces enable developers to trace the regulator requirements
down to the specialised classes that match the physical characterisation of their device. Such an
approach fits well with the FDA pre-market review process which involves providing evidence
that a new device is ‘substantially equivalent’ to already approved and legally marketed medical
devices.

This work is in its early stages but it would be envisaged that demonstration that the device sat-
isfies these requirements would involve the development of specification fragments that provably
demonstrate that the requirements are satisfied. It then remains as an open question as to how it
could be demonstrated that these components are consistent with each other and how they might
fit into a larger specification. This is future work. It would aim to explore work on composition
[SB09] and product lines [GPS09] in Event-B being carried out at Southampton. The advantage
of using Event-B is that the approach is tool supported. It is feasible to consider the possibility
that standard refinement processes such as these can be made easier for developers to use.

11 / 12 Volume 69 (2013)

User Interface Requirements for Infusion Pumps

Acknowledgements: This work was partly funded by the CHI+MED research project on the
design and safe use of interactive medical devices (UK EPSRC Grant EP/G059063/1).

Bibliography
[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, 2010.
[BR09] J. Bowen, S. Reeves. Refinement for user interface designs. Formal Aspects of Computing

21:589–612, 2009.
[Car06] Cardinal Health Inc. Alaris GP Volumetric Pump: directions for use. Technical report, Cardi-

nal Health, 1180 Rolle, Switzerland, 2006.
[CGT+12] A. Cauchi, A. Gimblett, H. Thimbleby, P. Curzon, P. Masci. Safer ”5-key” number entry

user interfaces using differential formal analysis. In Proceedings of the 26th Annual BCS
Interaction Specialist Group Conference on People and Computers. BCS-HCI ’12, pp. 29–
38. British Computer Society, Swindon, UK, 2012.

[DH95] D. J. Duke, M. D. Harrison. Mapping user requirements to implementations. Software Engi-
neering Journal 10(1):13–20, 1995.

[DL96] R. Darimont, A. van Lamsweerde. Formal refinement patterns for goal-driven requirements
elaboration. In Proceedings 4th ACM Symposium on the Foundations of Software Engineering
(FSE’03). Pp. 179–190. ACM Press, 1996.

[GPS09] A. Gondal, M. Poppleton, C. Snook. Feature composition - towards product lines of Event-B
models. In 1st International Workshop on Model-Driven Product Line Engineering (MD-
PLE’09). CTIT Workshop Proceedings, 2009. http://eprints.soton.ac.uk/267547/

[JPJ06] R. Jetley, S. Purushothaman Iyer, P. Jones. A formal methods approach to medical device
review. Computer 39(4):61–67, 2006. doi:10.1109/MC.2006.113

[LF09] W. Lin, X. Fan. Software Development Practice for FDA-Compliant Medical Devices. In In-
ternational Joint Conference on Computational Sciences and Optimization, 2009. CSO 2009.
Volume 2, pp. 388–390. 2009. doi:10.1109/CSO.2009.191

[MAC+13] P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, O. Sokolsky, H. Thimbleby. Verification
of interactive software for medical devices: PCA infusion pumps and FDA regulation as
an example. In Proceedings ACM Symposium Engineering Interactive Systems (EICS 2013).
ACM Press, 2013.

[MRO+11] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, H. Thimbleby.
On formalising interactive number entry on infusion pumps. Electronic Communications of
the EASST 45, 2011.

[OTC11] P. Oladimeji, H. Thimbleby, A. Cox. Number entry and their effects on error detection. In
Campos et al. (eds.), Interact 2011. Lecture Notes in Computer Science 6949, pp. 178–185.
Springer Verlag, 2011.

[SB09] R. Silva, M. Butler. Supporting reuse mechanisms for developments in Event-B: Composi-
tion. Technical report, University of Southampton, 2009.

[Thi07] H. Thimbleby. Interaction walkthrough: evaluation of safety critical interactive systems. In
Doherty and Blandford (eds.), Interactive Systems: Design, Specification and Verification.
Lecture Notes in Computer Science 4323, pp. 52–66. Springer Verlag, 2007.

[YB11] S. Yeganefard, M. Butler. Structuring Functional Requirements of Control Systems to Facil-
itate Refinement-based Formalisation. In Proceedings of the 11th International Workshop on
Automated Verification of Critical Systems (AVoCS 2011). Volume 46. Electronic Communi-
cations of the EASST, 2011.

Proc. FMIS 2013 12 / 12

http://eprints.soton.ac.uk/267547/
http://dx.doi.org/10.1109/MC.2006.113
http://dx.doi.org/10.1109/CSO.2009.191

	Introduction
	Outline of the Approach
	Sample User Interface Requirements from FDA
	Background
	Interface refinement approaches
	Event-B/Rodin framework

	The requirement hierarchy
	Requirements R1 and R2
	Requirements R3 and R4

	The interface hierarchy
	Chevron interfaces
	Five-key interfaces

	Verification of concrete interfaces
	Conclusions

