
Electronic Communications of the EASST

Volume 70 (2014)

Proceedings of the

14th International Workshop on

Automated Verification of Critical Systems (AVoCS 2014)

Symbol Elimination for Automated Generation of Program Properties

Laura Kovács

2 pages

Guest Editors: Marieke Huisman, Jaco van de Pol

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Symbol Elimination for Automated Generation of Program
Properties

Laura Kovács∗

Chalmers University of Technology

Abstract: Automatic understanding of the intended meaning of computer programs

is a very hard problem, requiring intelligence and reasoning. In this talk we de-

scribe applications of our symbol elimination methods in automated proram ana-

lysis. Symbol elimination uses first-order theorem proving techniques in conjunc-

tion with symbolic computation methods, and derives nontrivial program properties,

such as loop invariants and loop bounds, in a fully automatic way. Moreover, symbol

elimination can be used as an alternative to interpolation for software verification.

Keywords: program analysis, symbolic computation, automated reasoning, inter-

polation, invariant generation

Extended Abstract

Individuals, organizations, industries, and nations are increasingly depending on software and

systems using software. This software is large and complex and integrated in a continuously

changing complex environment. New languages, libraries and tools increase productivity of

programmers, creating even more software, but the reliability, safety and security of the software

that they produce is still low. We are getting used to the fact that computer systems are error-

prone and insecure. Software errors cost world economies billions of euros. They may even

result in loss of human lives, for example by causing airplane or car crashes, or malfunctioning

medical equipment. To improve software and methods of software development one can use a

variety of approaches, including automated software verification and static analysis of programs.

The results summarised in this abstract describe how the combination of automated reasoning

and symbolic computation methods can be used for automatic program analysis. Program anal-

ysis aims to discover program properties preventing programmers from introducing errors while

making software changes and can drastically cut the time needed for program development,

making thus a crucial step to automated verification.

The common method of all results presented here is the so-called symbol elimination method.

Although the symbol elimination terminology has been introduced only recently by us, we argue

that symbol elimination can be viewed as a general framework for software verification. That is,

various techniques used in software verification, such as Gröbner basis computation or quantifier

elimination, can be seen as application of symbol elimination to safety verification of programs.

In a nutshell, symbol elimination is based on the following ideas. Suppose we have a program

P with a set of variables V . The set V defines the language of P. We extend the language P to

∗
This work was partially supported by Swedish VR grant D0497701 and the Austrian reserach projects FWF S11410-

N23 and WWTF ICT C-050.

1 / 2 Volume 70 (2014)



Symbol Elimination for Automated Generation of Program Properties

a richer language P0 by adding functions and predicates, such as loop counters. After that, we

automatically generate a set Π of first-order properties of the program in the extended language

P0, by using techniques from symbolic computation and theorem proving. These properties are

valid properties of the program, however they use the extended language P0. At a last step

of symbol elimination we derive from Π program properties in the original language P, thus

“eliminating” the symbols in P0 \P.

The work summarized in this abstract is concerned with the algorithmic treatment of symbol

elimination for generating computer program properties such as loop invariants, loop iteration

bounds, interpolants, and postconditions.

We start by first presenting how symbol elimination is used in symbolic computation for

analysing program loops and inferring loop invariants and postconditions. Our work uses algo-

rithmic combinatorics and algebraic techniques, namely solving linear recurrences with constant

coefficients, computing algebraic relations among exponential sequences, and eliminating vari-

ables from a system of polynomial equations using Gröbner basis computation and quantifier

elimination techniques. We also describe applications of symbol elimination in the timing anal-

ysis of programs, or, more generally, for analysing the worse-case execution times of programs.

We further extend our work and present how symbol elimination is applied in first-order the-

orem proving for generating quantified loop invariants and interpolants. Unlike all previously

known techniques, our method allows one to generate first-order invariants containing alterna-

tions of quantifiers. The method is based on automatic analysis of the so-called update predicates

of loops. We observe that many properties of update predicates can be extracted automatically

from the loop description and loop properties obtained by other methods such as a simple analysis

of counters occurring in the loop, recurrence solving and quantifier elimination over loop vari-

ables. The key ingredient of symbol elimination for generating quantified program properties is

then first-order saturation theorem proving. After observing that symbol-eliminating inferences

extracted from first-order proofs of program properties can be used for automatic invariant gen-

eration and that interpolants obtained from proofs seem to be better for predicate abstraction

and invariant generation than those obtained by quantifier elimination, we conclude that symbol

elimination can be a key concept for applications of program analysis and verification.

Acknowledgements: The results described in this abstract are based on a joint work with Ioan

Dragan (TU Vienna), Jens Knoop (TU Vienna), Andrei Voronkov (U. Manchester), and Jakob

Zwirchmayr (IRIT).

Proc. AVoCS 2014 2 / 2


