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Abstract: In runtime verification, operational models describing the expected sys-
tem behavior offer some advantages with respect to declarative specifications of
properties, especially when designers are more accustomed to them. However, non-
determinism in the specification usually affects performances of those operational
methods that explicitly represent all the possible conformant states. In this paper, we
tackle the problem of dealing with nondeterminism in an operational runtime verifi-
cation approach based on the use of Abstract State Machines (ASMs). We propose
an SMT-based technique in which ASM computations are symbolically represented
and conformance verification is performed by means of satisfability checking. Ex-
periments show that, in most of the cases, the symbolic approach performs bet-
ter than a technique for ASM-based runtime verification explicitly representing the
conformant states.

Keywords: runtime verification, nondeterminism, Abstract State Machines, SMT

1 Introduction

Runtime verification in the form of conformance monitoring consists in checking during runtime
that the monitored system behaves like specified. Monitors [FHR13] are used to assess the
correctness of a system behavior by checking whether the observed state of the implemented
system is conformant to the expected state provided by an abstract specification of the system.

In most approaches dealing with runtime verification of software, the required behavior of
the system is specified by means of correctness properties [DGR04]. Temporal logic-based for-
malisms are very popular in runtime verification [CDR04], especially variants of linear tem-
poral logic [BLS11]. However, operational notations can be used in runtime verification as
well [AGR12, BS03a, LDSW09]. Operational specifications offer some advantages with respect
to declarative specifications of properties, especially when designers are more accustomed to
them. Since operational models may be executable and easier to write and understand, they can
be used starting from the first stages of the software development both for documentation pur-
poses and validation activities, as simulation and model-based testing [BS03a]. Moreover, oper-
ational approaches usually permit to trace, by means of a step-wise model refinement [BS03b],
the relation between the specification and the implementation.

The Abstract State Machine (ASM) operational method [BS03b] has been used in [AGR12],
where we developed a framework (called CoMA) for runtime verification of Java programs.
The technique proposed for conformance monitoring makes use of Java annotations to link the
concrete implementation to its ASM formal model.
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In case of not fully predictable systems, models specifying system behaviors are nondeter-
ministic. Nondeterminism in the specification can also be due to underspecification, when some
implementation choices are left abstract, or model abstraction used to reduce complexity. ASMs
permit to model nondeterministic behaviors in a concise and natural way, thanks to the built-
in choose operator that allows to nondeterministically select a computation path among all
possible ones. However, nondeterminism poses further challenges to the ASM-based runtime
monitoring approach. In [AGR13], we extended CoMA in order to deal with nondeterminism
by explicitly building and keeping track of all the possible next states: that approach becomes
very inefficient when the number of next states is high. Although this limitation is unavoidable
if one needs to keep track of all the nondeterministic choices performed, techniques can be de-
veloped to mitigate this shortcoming. For example, symbolic representation can help to specify
in a concise way the relation between a state and the set of reachable next states.

Following our ongoing research on ASM-based runtime verification of Java programs, to over-
come the limits of CoMA, we here present an approach exploiting a symbolic representation of
a machine computation [VBGS09], similarly to what is done in bounded model checking where
a program trace is represented by means of a propositional formula [Bie09].

Starting from the theoretical framework we presented in [AGR12, AGR13], we here provide
a novel definition of conformance in the presence of nondeterminism, and propose CoMA-SMT,
an SMT-based technique in which ASM computations are symbolically represented and the con-
formance verification is performed by means of satisfability checking.

The devised approach requires the designer to write an ASM specification of the system and
to link it to the implementation to be monitored. The specification is automatically translated
into an SMT logical context. During runtime, the SMT context is step by step extended with the
current transitions, and the values observed in the monitored system are asserted. The imple-
mentation behaves correctly as long as the SMT context stays satisfiable: if the context becomes
unsatisfiable, a runtime fault is observed.

We have compared CoMA-SMT with CoMA, and our preliminary experiments show that, in
most of the cases, the symbolic approach performs better than techniques based on explicit state
representation. Moreover, other experiments show that CoMA-SMT can handle a more general
notion of conformance, not supported by CoMA, that is much more difficult to check.

Section 2 presents a background about ASMs, nondeterminism in runtime monitoring, and
CoMA. In Section 3, to deal with conformance in case of nondeterminism, we improve the the-
oretical framework CoMA is based on. How to symbolically represent an ASM is described in
Section 4. Section 5 presents the proposed runtime monitoring approach. Preliminary exper-
iments are reported in Section 6. Some related work is presented in Section 7, and Section 8
concludes the paper.

2 Background

2.1 ASMs

Abstract State Machines (ASMs), whose complete presentation can be found in [BS03b], are
an extension of FSMs, where unstructured control states are replaced by states with arbitrary
complex data. The states of an ASM are multi-sorted first-order structures, i.e., domains of
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objects with functions and predicates defined on them. ASM states are modified by transition
relations specified by “rules” describing the modification of the function interpretations from one
state to the next one. There is a limited but powerful set of rule constructors that allow to express
guarded actions (if-then), simultaneous parallel actions (par) or sequential actions (seq).
Appropriate rule constructors also allow modeling nondeterminism (existential quantification
choose) and unrestricted synchronous parallelism (universal quantification forall).

An ASM state s is represented by a set of couples (location, value). ASM locations, namely
pairs (function-name, list-of-parameter-values), represent the abstract ASM concept of basic
object containers (memory units). Location updates represent the basic units of state change and
are given as assignments, each of the form loc := v, where loc is a location and v its new value.

Functions are classified as derived, i.e., those coming with a specification or computation
mechanism given in terms of other functions, and basic which can be static (never change during
any run of the machine) or dynamic (may change as a consequence of agent actions or updates).
Dynamic functions are distinguished between monitored (only read by the machine and modified
by the environment), and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence s0,s1, . . . ,sn, . . . of states of the
machine, where s0 is an initial state and each sn+1 is obtained from sn by simultaneously firing
all the transition rules which are enabled in sn. The (unique) main rule is a transition rule and
represents the starting point of the computation. An ASM can have more than one initial state.
It is possible to specify state invariants which are checked during simulation.

For our purposes, we use a definition of ASM adapted from [BS03b]: ASM = < signature,
funcDefs, funcInit, r_main >, where signature contains the function declarations, funcDefs the
derived functions definitions, funcInit the definitions of initials values for the controlled func-
tions, and r_main is the main rule.

2.2 Runtime monitoring and nondeterminism

Runtime verification of nondeterministic behaviors using state-based specifications, like ASMs,
is particularly complex since the specification takes into account all the possible correct sys-
tem evolutions. The nondeterminism due to monitored quantities (e.g., the system inputs or
external actions), called external, is still easy to monitor: once these quantities are fixed by the
environment, the system behaves deterministically. However, in most cases, the specification is
internally nondeterministic, sometimes even when the system is deterministic. The following
scenarios can be identified:
• The system has a nondeterministic behavior (for instance a Java program containing a call

to a method in the class java.util.Random), as well as the abstract specification.
• The system has a deterministic behavior, while the specification is nondeterministic. This

situation arises when the model is more abstract (with less implementation details) than the
corresponding system, and is frequent in the object oriented context. Bekaert and Steeg-
mans [BS01] have shown that nondeterminism in the behavioral specifications of object
oriented conceptual models can simplify the representation of complex functionalities and
achieve a better separation of concerns.
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Figure 2: CoMA: Conformance monitoring through ASM

level

isFull

Figure 1: A tank

A simple example of nondeterministic system As running case
study, we consider a tank that can be either filled or emp-
tied (see Fig. 1). At every instant, the level cannot be in-
creased/decreased more than fifty units of product. The tank
is full when it contains one thousand units of product. Such
tank can be modeled by a simple ASM, as shown in Code 1.

asm tank
signature:

controlled level: Integer
derived full: Boolean

definitions:
function full = (level = 1000)

main rule r_main =
choose $x in {−50..50} with level + $x >= 0 and level + $x <= 1000 do

level := level + $x

default init s0:
function level = 0

Code 1: ASM model of the Tank case study

The controlled function level records the number of units in the tank; in the initial state the tank is
empty. The boolean function full signals whether the tank is full: it is a derived function because
its value depends on the value of function level. In the main rule, a choose rule nondeterminis-
tically increments/decrements the level of the tank of at most fifty units at a time, not exceeding
the maximum capacity.

2.3 CoMA: Conformance Monitoring through ASMs

CoMA [AGR12] is a technique for runtime monitoring of Java programs through ASMs; Fig. 2
shows the structure of the framework. The runtime monitor observes the behavior of a Java code
and determines its correctness w.r.t. the ASM specification working as an oracle of the expected
behavior: while the software system is executed, the monitor checks conformance between the
values of the observed elements and the expected state. A link between a Java class and an ASM
is established using a set of Java annotations (1). The Observer detects when the Java object
observed state is changed (2), and leads the corresponding ASM to perform a machine step (3).
The Analyzer evaluates the conformance between the Java execution and the ASM behavior (4).

A complete description of CoMA can be found in [AGR12]. Here only some basic definitions
are reported.

Let C be a Java class, OC an object of C, and ASMC an ASM model of the expected behavior
of any object of C.

OS(C) is the set of observed elements, i.e., all public fields, and pure1 public methods of the
class C the user wants to observe. Observable elements are linked to ASM functions by the
function link : OS(C)→ Funcs.
1 A method is pure when its execution does not affect the program state.
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Changing methods, CM(C), are the non-pure methods whose execution can change the ele-
ment values of OS(C) and that the user wants to monitor. A changing step is defined by the triple
(s,m,s′), being m a method in CM(C), and s and s′ the states of an object OC before and after the
method execution.

Definition 1 (State and step conformance) A state s of OC conforms to a state S of ASMC if
all observed elements of C have values in OC conforming to the values of the functions in ASMC

linked to them, i.e.,

conf (s,S)≡ ∀e ∈ OS(C) : valJava(e,s)
con f
= valASM(link(e),S)

A change step (s,m,s′) of an instance OC, with m a method of CM(C), conforms with a step
(S,S′) of ASMC if conf (s,S)∧ conf (s′,S′).

ASMC S
simulation step // S′

OC s
conf
OO

invocation of method m // s′
conf
OO

Definition 2 Univocal runtime conformance A class C is univocally runtime conforming to
its specification ASMC if the following conditions hold:
1) the initial state s0 of the computation of OC conforms to one and only one initial state S0 of

the computation of ASMC, i.e., ∃!S0 initial state of ASMC such that conf (s0,S0);
2) for every change step (s,m,s′) with s the current state of OC, ∃!(S,S′) step of ASMC with S

the current state of ASMC, such that (s,m,s′) is step conforming with (S,S′).

Univocal runtime conformance requires that the next step of OC is state-conforming with one
and only one of the next states of the specification. Therefore, in case of nondeterminism, during
the runtime monitoring CoMA chooses, among the next states of the ASM, the unique state that
conforms to the Java state. Fig. 3a depicts this situation.

Since CoMA represents the states in an explicit way, as in explicit state model checkers (e.g.,
SPIN), we will refer to it as an explicit state monitoring approach.
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Example Let’s consider the Tank case study. If the conformance between the ASM specifica-
tion and the Java program is based on the value of the level, then the conformance is univocal.
At each step, the ASM has between fifty and a hundred one possible next states; such states,
however, are uniquely identified by the value of level. So, if the implementation is correct, only
one of the possible next ASM states is conformant.

3 Dealing with multiple conformance

Definition 2 assumes that, at every time, there is only one possible current ASM state which
is conformant to the current Java state. However, the implementation should be considered
conformant also when there exists at least one conformant state.

Definition 3 Conformant set Given a Java object OC, let sn be the state obtained after n exe-
cutions of changing methods. We call confSet(sn) the set of ASM states reachable in n steps and
conformant with sn.

Definition 4 Multiple runtime conformance A class C is multiply runtime conforming to its
specification ASMC if the following conditions hold:
1) the initial state s0 of the computation of OC conforms to at least one initial state S0 of the

computation of ASMC, i.e., ∃S0 initial state of ASMC such that conf (s0,S0);
2) for every change step (s,m,s′) with s the current state of OC, ∃(S,S′) step of ASMC, S ∈

confSet(s), such that (s,m,s′) is step conforming with (S,S′).

Multiple runtime conformance can be depicted as in Fig. 3b: The current Java state s is confor-
mant with the ASM states confSet(s) = {S1, . . . ,Sk}; the Java state s′ is produced by the execution
of the method m at the state s; ASM states S′1, . . . ,S

′
n are reachable in one step from confSet(s);

the Java state s′ is conformant with ASM states {S′i, . . . ,S′j} ⊆ {S′1, . . . ,S′n}.

Example Let’s consider the Tank case study. If the conformance between the ASM specifica-
tion and the Java program is only based on the value of function full, then the conformance is
multiple. As seen before, at each step the ASM has between fifty and a hundred one possible
next states; at most one next state can have value true for full. Therefore, if the implementation
is correct and the value of full is false, more than one of the possible next ASM states can be
conformant with the implementation.

Supporting multiple runtime conformance in monitoring Dealing with multiple confor-
mance in an explicit state runtime monitoring approach as CoMA, would require to keep track of
all the possible states to which the monitored system can be conformant. At the ith step of mon-
itoring, the framework should record in the set confSet(si) (see Def. 3) the ASM states reachable
in i steps of simulation that are conformant with the current Java state (as proposed in [FHR13]).
If confSet(si) becomes empty, then an error is found. In our approach, instead, we would like to
represent such reachable and conformant states in a symbolic way.

In order to do this, we describe how to symbolically represent the set of states RSi reachable
in i steps of the ASM execution, and the transition relation induced by the ASM transition rules
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between states in RSi and their successor states in RSi+1. These formulae establish a logical
context.

At runtime, in order to perform the conformance checking, we extend the context by asserting
a set of formulae stating the values of the observed elements in the implementation current state.
A Satisfiability Modulo Theories (SMT)2 solver can be used to check the satisfiability of the ob-
tained context. If the context becomes unsatisfiable, then the implementation is not conformant.
As SMT solver we use Yices [DM06].

Note that we could use BDDs to symbolically represent ASM states; however, it has been
shown that for bounded model checking a SAT/SMT approach scales better [Bie09, Kur08]. So,
since the approach we are proposing has several commonalities with BMC, we adopt the SMT
approach.

Example Let’s consider the Tank case study. The ASM states reachable in one step can be
symbolically described as level = 0 ∧ (level − 50 ≤ level′ ≤ level + 50), where level′ represents
the updated version of level.

4 ASM symbolic representation

This section describes how to build the logical context, symbolically representing any computa-
tion of length n of a given ASM. Section 4.1 describes how to represent the set of states RSi at
level i of the ASM computation – i.e., those reachable by the machine in i steps – and the transi-
tion relation induced by the ASM transition rules between states in RSi and their successor states
in RSi+1. Some mapping functions permit to obtain, from an ASM model, a sequence of Yices
definitions and assertions (commands) parameterized with the index i. In order to symbolically
represent ASM computations of depth n, the Yices commands must be instantiated n times with
concrete values for i (i.e., i = 0, . . . ,n−1), as described in Section 4.2.

4.1 Mapping from ASM to Yices

For the lack of space, we do not report the mapping of ASM domains to Yices types, that,
however, is not relevant for the understanding of the work. The signature symbols are defined by
applying the mapping reported in Table 1 (Tf), being i the current level; note that, for each ASM
function, a fresh Yices constant is created at every step. Function definitions are asserted by
applying the correspondence given in Table 2 (Td), at level i. Transition rules are symbolically
represented by a formula describing the transition relation between states in RSi and those in
RSi+1. This formula is asserted by recursively applying the mapping reported in Table 3 (Tr),
starting from the main rule.

Both function definitions and transition rules contain terms: the symbolic representation of
terms in states of RSi is given in Table 4 (Tt).

Note that in an update rule (first row of Table 3) the location term on the left-hand side of the
rule refers to states in RSi+1, while the term on the right-hand side of the rule refers to states in

2 An SMT problem is a decision problem for logical formulae with respect to combinations of background theories
expressed in classical first-order logic with equality. An SMT instance is a generalization of a boolean SAT instance
in which various sets of variables are replaced by predicates from a variety of underlying theories.
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ASM function declaration Yices
funcType ∈ {controlled, monitored, derived, static}

funcType f: Dom (define fi :: Dom)
funcType f: D1 −> D2 (define fi :: (−> D1 D2))
funcType f: Prod(D1, . . ., Dn) −> D with n≥ 2 (define fi :: (−> D1 . . . Dn D))

Table 1: Tf: Mapping schema of the ASM function declarations to Yices at step i

ASM function definition Yices
function f = fd (assert (= fi Tt(fd, i)))

function f(x1 in D1, . . ., xn in Dn) =
fd[x1, . . ., xn]

with n≥ 1 and
D1={d1

1, . . ., d1
m1

} . . . Dn={dn
1, . . ., dn

mn
}

(assert (and (= Tt(f(d1
1, . . ., dn

1), i)
Tt(fd[x1 7→ d1

1, . . ., xn 7→ dn
1], i) )

. . . (= Tt(f(d1
m1

, . . ., dn
mn

), i)
Tt(fd[x1 7→ d1

m1
, . . ., xn 7→ dn

mn
], i) ) ) )

Table 2: Td: Mapping schema of ASM function definitions to Yices at step i

ASM transition rule Yices
updLoc := updTer Tt(updLoc, i+1) = Tt(updTer, i)
par R1 . . . Rn endpar (and Tr(R1, i) . . . Tr(Rn, i))
if guard then Rthen else Relse endif (if Tt(guard, i) Tr(Rthen, i) Tr(Relse, i))
if guard then Rthen endif (=> Tt(guard, i) Tr(Rthen, i))

forall x1 in D1, . . ., xn in Dn

with guard[x1, . . ., xn] do
R[x1, . . ., xn]

(and r1 . . . rm) with m = ∏
n
j=1 |D j|

where for each dk = (d1, . . ., dn) ∈ D1 × . . .× Dn

rk = (=> Tt(guard[x1 7→ d1, . . ., xn 7→ dn], i)
Tr(R[x1 7→ d1, . . ., xn 7→ dn], i) )

choose x1 in D1, . . ., xn in Dn

with guard[x1, . . ., xn] do
R[x1, . . ., xn]

for each x j: (define cvi
j :: D j)

(=> (exists (d1:: D1 . . . dn:: Dn)
Tt(guard[x1 7→ d1, . . ., xn 7→ dn], i))

(and Tt(guard[x1 7→ cvi
1, . . ., xn 7→ cvi

n], i)
Tr(R[x1 7→ cvi

1, . . ., xn 7→ cvi
n], i) ) )

main rule r_main = mainBody (assert Tr(mainBody, i))

Table 3: Tr: Mapping schema of ASM transition rules to Yices at step i

RSi. For this reason, the term on left-hand side is mapped with parameter i+1, whereas the term
on the right-hand side is mapped with parameter i.

In order to guarantee the semantics of ASM steps, we must impose that locations that are not
updated by the computation step keep their value unchanged. The formula obtained by applying
the mapping function Tr to the transition rules (Table 3) does not guarantee such condition.
Therefore, for each controlled location fi, we need to add to the context the following formula

(=> (not (or guard1 . . . guardn)) (= fi+1 fi) )

Proc. AVoCS 2014 8 / 15
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ASM term Yices
Location term: f fi

Location term: f(a1, . . ., an) with n≥ 1 (fi Tt(a1, i) . . . Tt(an, i))
Boolean term: b with b ∈ {true, false} b
Integer term: h with h ∈ Z h
Natural term: hn with h ∈ N h
Enumeration term: E E
if guard then Tthen else Telse endif (if Tt(guard, i) Tt(Tthen, i) Tt(Telse, i))

(forall x1 in D1, . . ., xn in Dn with
cond[x1, . . ., xn])

(and c1 . . . cm) with m = ∏
n
j=1 |D j|

where for each dk = (d1, . . . ,dn) ∈ D1× . . .×Dn:
ck = Tt(cond[x1 7→ d1, . . . ,xn 7→ dn], i)

(exists x1 in D1, . . ., xn in Dn with
cond[x1, . . ., xn])

(or c1 . . . cm) with m = ∏
n
j=1 |D j|

where for each dk = (d1, . . . ,dn) ∈ D1× . . .×Dn:
ck = Tt(cond[x1 7→ d1, . . ., xn 7→ dn], i)

Table 4: Tt: Mapping schema of ASM terms to Yices at step i

being guard1, . . ., guardn the conditions upon which fi is updated, and fi+1 the location in the
next state. The conditions are statically derived from the transition rules leading to the updates
of the location. Let unchLocsi be the assertion of the set of formulae obtained by instantiating
the previous formula for all the controlled locations of the ASM model at level i.

4.2 Building the logical context

The logical context is initialized and then extended at every level i along the ASM computation.
Context initialization consists of a set of formulae symbolically representing the ASM initial

state(s), i.e., signature, and function definitions and initializations. Context initialization contInit
is built as follows

contInit = Tf(signature,0),Td(funcDefs,0),Td(funcInit,0)

where the comma is to be intended as a sequential concatenation operator.
Context extension consists of a set of formulae representing the transition relation between

states in RSi and their successor states in RSi+1. This requires to define the signature at level
i+1. Context extension contExti at level i is built as follows

contExti = Tf(signature, i+1),Td(funcDefs, i+1),Tr(r_main, i),unchLocsi

At every step, Tf(signature, i+1) represents a fresh copy of the signature and it must be added
to the context before the assertion of the rules Tr(r_main, i), because Tr(r_main, i) describes the
relation between states in RSi and states in RSi+1.

Code 2 reports the context initialization and context extension at level 0 of the Tank case study.
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;; Tf(signature,0): Functions declarations − state 0
(define level0::int)
(define full0::bool)
;; Td(funcDefs,0): Derived functions definitions − state 0
(assert (= full0 (= level0 1000)))
;; Td(funcInit,0): Initial state definition
(assert (= level0 0))

;; Tf(signature,1): Functions declarations − state 1
(define level1::int)
(define full1::int)
;; Td(funcDefs,1): Derived functions definitions − state 1
(assert (= full1 (= level1 1000)))
;; Tr(r_main,0): Transition rules − from state 0 to state 1
(define cv0::(subrange −50 50)) ;; Declaration of a variable for the choose rule
(assert (=> (exists (x::(subrange −50 50)) (and (>= (+ level0 x) 0) (<= (+ level0 x) 1000)) )

(and (and (>= (+ level0 cv0) 0) (<= (+ level0 cv0) 1000)) (= level1 (+ level0 cv0)) ) ) )
;; unchLocs0: Unchanged controlled locations − from state 0 to state 1
(assert (=> (not (and (>= (+ level0 cv0) 0) (<= (+ level0 cv0) 1000))) (= level0 level1) ) )

Code 2: Tank case study – Context initialization and context extension at level 0

5 SMT-based Runtime Verification

We here describe an approach to perform runtime monitoring of Java programs, in which the
expected behavior is given in terms of ASMs; the approach, called CoMA-SMT, exploits the
symbolic representation of ASMs introduced in Section 4. We keep the overall architecture of
the CoMA framework (Fig. 2). The technique, described in Section 2.3, for linking an ASM
specification to a Java class is the same. However, the way to simulate the ASM (the simulator
in Fig. 2) and to perform the conformance checking (the analyzer in Fig. 2) differ. The approach
is also able to check multiple runtime conformance (see Def. 4), not supported by CoMA.

Alg. 1 depicts the monitoring procedure of the proposed approach. In order to ease the de-
scription, Alg. 1 reports both the execution of the monitored Java program (reported in a frame
in the algorithm) and the execution of the monitoring framework. When a Java object of the
monitored class is created (line 1), the framework creates a logical context (line 2) and add the
context initialization to it (line 3). The monitoring consists in a never ending loop in which,
when a Java changing method m is executed (line 6), the following actions are executed:
• the context is extended for describing the transition relation between ASM states at the

current level i and the possible next states at level i+1 (line 7);
• from the Java state sJava, obtained after the changing method execution (line 8), and from

the linking between the specification and the code, the framework builds the formula
javaValuesConstr in which the linked ASM locations are forced to assume the actual val-
ues of the corresponding Java elements (line 9). Let f i+1

1 , . . . , f i+1
g be the locations linked

to Java fields or methods (i.e., the observed elements) and v1, . . . ,vg the values of the linked
fields and methods at state i+1. Formula javaValuesConstr is built as follows:

(assert (and (= fi+1
1 v1) . . . (= fi+1

g vg)))
• formula javaValuesConstr is asserted in the logical context (line 10);
• the logical context is checked for satisfiability (line 11):
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Algorithm 1 CoMA-SMT: monitoring procedure

1: oC← new C() . Monitored program: Java object instantiation
2: ctx← mk_context() . Logical context creation
3: add_to_context(contInit,ctx) . Context initialization
4: i← 0
5: while true do
6: oC.m() . Monitored program: execution of a changing method m
7: add_to_context(contExti,ctx) . Context extension at level i
8: sJava← [|oC|] . Observed Java state after step i
9: javaValuesConstr← getValues(sJava) . Observed elements values

10: add_to_context(javaValuesConstr,ctx) . Assertion of the observed values
11: if check(ctx) = UNSAT then . Is SAT?
12: return NotConformantException . The Java state is not conformant
13: end if
14: i← i+1
15: end while

– if the context is unsatisfiable, it means that the implementation is not conformant
with the specification. In this case, the monitoring is interrupted by throwing an
error message (line 12);

– otherwise, if the context is still satisfiable, it means that the implementation is con-
formant and the monitoring can continue.

Example Let’s consider a Java implementation of the Tank case study, having a pure method
getLevel() returning the level of the tank, and a boolean pure method isFull () reporting whether
the tank is full; the two methods are respectively linked (by means of the Java annotation
@MethodToFunction) with ASM functions level and full. The implementation has also a chang-
ing method add(int quantity) (annotated with @RunStep) that permits to increase/decrease the
tank level of a given quantity. After having detected the object instantiation and a call of method
add, the monitoring framework has built the logical context as shown in Code 2. Let’s suppose
that the values returned by the observed elements getLevel and isFull are respectively 23 and
false. The formula built by the framework for checking the conformance is (and (= level1 23)(=
full1 false)).

6 Experiments

We run all the experiments on a Linux PC, Intel(R) Core(TM) i7, and 8 GB of RAM. The result
of each experiment is the average of 20 runs.

6.1 Comparison with CoMA

As first experiment, we have successfully executed CoMA-SMT on all the case studies provided
by the CoMA benchmarks. We have used univocal conformance, since it is the only kind of
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(a) Tank case study (b) Tic-tac-toe

Figure 4: Univocal conformance – CoMA-SMT and CoMA

conformance supported by CoMA.
Then, we have compared the two frameworks in terms of execution times. Fig. 4a shows

the time taken for monitoring a Java implementation of the Tank case study in the presence of
univocal conformance (i.e., linking both level and full functions) using the two frameworks. We
have executed the Java code by calling the method add an increasing number of times. We can
see that, in both frameworks, the execution time grows linearly with the number of steps. How-
ever, CoMA-SMT always performs better than CoMA, and the gain increases with the number
of steps. We have observed that, for the case studies in which the number of possible next con-
formant states is always high, CoMA-SMT always performs better than CoMA. This means that,
when the number of reachable states is high, a symbolic representation is more performant than
an explicit representation.

Nonetheless, we found that, when the number of possible reachable states is low, CoMA may
perform better than CoMA-SMT. We took the Tic-tac-toe case study introduced in [AGR13] as
an example of nondeterministic system; it models the Tic-tac-toe game in which, at each step,
the user and the computer alternatively make a move. The user makes a move by calling a given
method (the actual parameters of the method represent the move coordinates); the computer
makes a move by nondeterministically choosing an empty cell of the board. The linking between
the implementation and the specification is based on the configuration of the board. Fig. 4b shows
the comparison of the monitoring times in the two frameworks: CoMA-SMT performs better for
less than around 15 moves, while, for more than 15 moves, CoMA is advantageous. Notice that,
when a player has won or there is a tie, there is always only one possible next state because
the game has terminated and any method invocation cannot change the board configuration;
therefore, we can argue that after around 15 moves the game is very likely terminated. So, the
results in Fig. 4b suggest that the explicit state representation is advantageous when the number
of reachable states is low; using the symbolic representation, instead, always requires to check
for satisfiability at each step, and so the monitoring time grows linearly in any case. As future
work, we could devise some optimization techniques able to detect states in which the monitoring
could be stopped (since no violation can be found in the future) or, at least, in which the logical
context could be simplified.

Proc. AVoCS 2014 12 / 15



ECEASST

(a) Tank case study (b) Tic-tac-toe

Figure 5: Univocal and multiple conformance – CoMA-SMT

6.2 Univocal and multiple conformance

We have then experimented the influence of multiple conformance in monitoring; since CoMA
does not support multiple conformance, we have performed the experiments only using CoMA-
SMT. We have monitored the Java implementation of the Tank case study in the presence of
univocal conformance (i.e., linking both level and full functions) and in the presence of multiple
conformance (i.e., linking only function full). We have executed the Java code by calling the
method add an increasing number of times. Fig. 5a shows the results in terms of execution times.
We have also executed the Tic-tac-toe implementation in the presence of univocal conformance
(i.e., the linking is based on the board configuration) and in the presence of multiple conformance
(i.e., the linking is only based on a boolean flag specifying whether the game is terminated).

As expected, the runtime monitoring is more computationally onerous in the presence of mul-
tiple conformance rather than in the presence of univocal conformance. Indeed, in univocal
conformance only one state is selected when asserting the values of the Java values (line 10 in
Alg. 1): therefore the solver, when checking for satisfiability, must handle a logical context in
which most of the variables are fixed. In multiple conformance, instead, the solver must handle
a logical context that is much more complex.

7 Related work

Extended literature exists about runtime verification [FHR13, DGR04]. Declarative specifica-
tions are more used in runtime monitoring [BLS11, CDR04, KLHN09] and they also deal with
nondeterminism. Some attempts to use operational specifications exist and we relate to them;
however, as far as we know, using SMT for doing runtime verification through operational spec-
ifications has never been proposed.

In [LDSW09], a formal specification-based software monitoring system is presented. In that
approach the behavior of a concrete implementation (a Java code) is checked for compliance
with a Z specification. The execution of a program is monitored by a debugger and the formal
specification is executed in parallel with a specification animator. Although the approach is
similar to ours in the use of an operational specification, it does not support nondeterminism.

Operational approaches based on Abstract State Machines can be found in [AGR12, BS03a].
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CoMA [AGR12] has been already described in Section 2.3 and we have extensively compared
to it. The approach in [BS03a] handles runtime verification of .NET programs. It uses AsmL,
a dialect of ASMs, to describe the expected behavior. As CoMA, that approach only supports
univocal conformance (the authors say that the choices must be angelical), whereas we also
support multiple conformance. Moreover, the technique adopts an explicit state approach to do
the conformance checking, while we use a symbolic one.

Several works handle the problem of runtime verification of concurrent programs, in which
nondeterminism derives from threads’ interleaving [BENS11]; instead, we focus on single thread
programs that can be internally nondeterministic.

Symbolic representation of ASMs has already been presented in [VBGS09], for doing bounded
model checking of AsmL models (a concrete syntax for ASMs). The main difference with our ap-
proach is that the transformation in [VBGS09] requires an intermediate representation as model
program (i.e, a collection of guarded update rules), while we directly support ASM models.

8 Conclusions and Future work

We have proposed CoMA-SMT, an approach for runtime monitoring of nondeterministic Java
programs using the ASM formal method. The approach improves an existing framework (CoMA),
based on the explicit representation of ASM states. The new approach proposes a symbolic rep-
resentation of the ASM computation, and exploits an SMT solver for checking the conformance
between the monitored Java program and its ASM specification. While CoMA requires that, at
each step, only one of the next ASM states is conformant with the observed Java state, CoMA-
SMT is also able to monitor Java programs that, at a given step, are conformant with more than
one ASM state. Preliminary experiments show that the symbolic approach can sometimes per-
form better than CoMA, but we plan to apply CoMA-SMT to more complex case studies.

As future work, we plan to devise some optimization techniques for dealing with the complex-
ity of formulae in multiple conformance. A context simplification could be achieved by asserting,
during monitoring, further constraints on the set of conformant states; in case of unsatisfiability,
backtracking techniques should be necessary, although backtracking has never been used in run-
time monitoring so far [FHR13]. Moreover, we could adapt some techniques of BMC [Bie09]
for defining stopping monitoring policies able to detect situations in which any possible further
system evolution cannot violate the conformance relation.
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