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Abstract: Stochastic timed automata are an expressive formal model for hard and
soft real-time systems. They support choices and delays that can be deterministic,
nondeterministic or stochastic. Stochastic choices and delays can be based on ar-
bitrary discrete and continuous distributions. In this paper, we present an analy-
sis approach for stochastic timed automata based on abstraction and probabilistic
model checking. It delivers upper/lower bounds on maximum/minimum reachabil-
ity probabilities and expected cumulative reward values. Based on theory originally
developed for stochastic hybrid systems, it is the first fully automated model check-
ing technique for stochastic timed automata. Using an implementation as part of
the MODESTTOOLSETand four varied examples, we show that the approach works
in practice and present a detailed evaluation of its applicability, its efficiency, and
current limitations.

Keywords: stochastic timed automata, probabilistic reachability, expected rewards

1 Introduction

Proper consideration of quantitative aspects is crucial to formally model and analyse many com-
plex safety-critical or economically vital systems. Key quantities aretime, to represent e.g.
timeouts and delays, andprobabilities, to model the quantified uncertainty that appears, for ex-
ample, in randomised algorithms, as disturbances like random failures, and as randomised delays.
Additionally, nondeterminism is a key feature for verification that enables abstraction, concur-
rency, and the specification of unquantified uncertainty. We need to analyse properties like the
probability of (un)desired behaviour, the expected time to success, or the probability of an error
within a given amount of time.

A suitable model for these kinds of systems are stochastic timed automata (STA). They al-
low nondeterministic decisions, real time aspects, continuous and discrete probabilistic choices,
and any combination thereof. STA had been introduced as the original formal semantics of the
high-level compositional modelling language MODEST [BDHK06]. They are at the heart of a
large spectrum of compositional models, summarised in Figure1, rooted in labelled transition
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318490 (SENSATION), the DFG Transregional Collaborative Research Centre SFB/TR 14 AVACS, the CAS/SAFEA
International Partnership Program for Creative Research Teams, the Chinese Academy of Sciences Fellowship (grant
no. 2013Y1GB0006), and the research fund for International Young Scientists (grant no. 61350110518).
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Figure 1: Stochastic timed automata and related models

systems and Markov chains. MODESThas since been extended with support for continuous dy-
namics [HHHK13] based on the model of stochastic hybrid automata [FHH+11]. The compos-
itionality properties of STA in turn rest on results established by Strulo, Bravetti and especially
D’Argenio [BD04, BG02, DK05, HS00]. STA can also be viewed as generalised semi-Markov
processes (GSMP) extended with discrete and continuous nondeterminism.

The MODEST TOOLSET, which is available atwww.modestchecker.net, provides analysis
tools for a variety of these models [HH14]. However, so far it did not support the genuine
analysis of full STA models with nondeterministic decisions, and that is what this paper is about:
We present an algorithm to compute upper/lower bounds on maximum/minimum reachability
probabilities and expected cumulative reward values in a given STA. It uses abstraction to con-
vert the STA into a PTA, which can then be analysed using existing PTA model checking tech-
niques [NPS13]. We show the correctness of the abstraction for the considered properties. The
underlying theory was originally developed for stochastic hybrid systems [FHH+11, Hah13];
we explain how we take advantage of the specialisation to timed systems to improve scalability,
usability and applicability. We implemented the new approach in the MODESTTOOLSET, which
allows us to investigate its effectiveness and efficiency using four different example models.

Related work. Kwiatkowska et al. [KNSS00] have pioneered the foundational basis of STA
model checking with their work on timed automata with generally distributed clocks, verified
against properties in probabilistic timed CTL. They use a semantics based on the region graph
where regions are further partitioned to cater for the stochastic behaviour. The main differences
to what we present in this paper are that our approach can handle distributions with unbounded
support (e.g. the exponential and normal distributions), supports expected rewards, and that we
avoid the region construction. We also show a working implementation, which instead currently
uses a digital clocks semantics, but this can be interchanged with other approaches. In case an
STA only uses bounded-support distributions (e.g. the continuous uniform one), our approach
provides the same error bounds. However, we do not provide error bounds for the general case.

Other related approaches that we find are based on statistical model checking [DLL+11], nu-
merical discretisation [LHK01], discrete event simulation [HS00], or state classes [BBH+13] (on
a different model also called STA). However, all of these either implicitly or explicitly exclude
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the presence of nondeterminism, and thus work in the GSMP realm instead. As an example,
consider the “STA” model of [BBJM12] (which is closely related to the one of [BBH+13]):
There, a single distribution is sampled on every edge, the result being the exact sojourn time in
the following location. In comparison, our model of STA also supports continuous and discrete
nondeterminism as well as multiple samplings per edge and multiple sampled variables that can
memorise their values over several edges/locations.

In particular, the method we present in this paper is geared towards correctly handling the
general combination of stochastics and nondeterminism. Dedicated approaches for deterministic
models provide better precision or performance for that special case. We return to this tradeoff
in our evaluation in Section6, where we look at two deterministic models for comparison, and
two nondeterministic case studies that can only be handled correctly with our new approach.

2 Preliminaries

We useR+
0 to denote the set of nonnegative real numbers andN+ for the positive natural num-

bers. For a setS, P(S) denotes its powerset. We assume familiarity with general notions and
constructions from probability theory. Due to space constraints, we do not consider possible
measurability issues (see e.g. [Hah13, Chapter 5] for discussions concerning a more general
model). For all probability distributions, we assume an according (Borel) space to be given. By
Prob(Ω) we denote the set of all probability measures on the sample spaceΩ. TheDirac dis-
tribution D(x) ∈ Prob(Ω) is s.t. we haveD(x)(A) = 1 if x∈ A andD(x)(A) = 0 otherwise. By
[∀i : xi 7→ pi ] or [x1 7→ p1, . . . ,xn 7→ pn] we denote the distribution∑i piD(xi).

Given a setVar of variableswhere each variablex has an associated domain (or type) Dom(x),
we letVal denote the set of variablevaluations, i.e. of functionsVar→

⋃
x∈Var Dom(x) wherev∈

Val⇒∀x∈Var: v(x)∈Dom(x). 0∈Val assigns zero to every variable. ByExpwe denote the set
of expressionsover the variables inVar. We writee(v) for theevaluationof expressione in valu-
ationv. We consider three restricted classes of expressions: Boolean expressionsBxp, arithmetic
expressionsAxpand sampling expressionsSxp) Axpthat may include probability distributions.
The set ofassignmentsis Asgn=Var×Sxpsuch that〈x,e〉 ∈ Asgn⇒∀v∈Val: e(v) ∈ Dom(x).
The modification ofv∈Val according tou∈ Asgnis written as as[[u]](v). A set of assignments is
called an update, and notation for assignments can be lifted to updates. Asymbolic probability
distribution for a setS is a function f ∈ S→ Axp that maps elements ofS to weights s.t. the
support{s∈ S | f (s) 6= 0} is countable. Given a valuation for the variables appearing in these
weights, a symbolic distribution can be turned into the concrete probability distribution given
by the ratios of individual weights over the sum of all weights in the support. We only consider
propersymbolic distributions: those where all weights evaluate to positive numbers and the sum
of all weights is finite (i.e. convergent) and nonzero, for all relevant valuations.

3 Stochastic Timed Automata

As a generalisation of timed automata, stochastic timed automata deal with time throughclock
variables(or clocks). Clocks take values inR+

0 and advance synchronously over time with rate 1.
If v∈Val andt ∈ R+

0 , thenv+ t denotes the valuation where all clocks have been incremented
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Figure 2: An example stochastic timed automaton

by t. Clock constraintsare expressions inBxpof the form

CC ::= b | CC ∧CC | CC ∨CC | c∼ e | c1−c2 ∼ e

where∼ ∈ {>,≥,<,≤,=, 6=}, c, c1, c2 are clocks andb∈ Bxp, e∈ Axpare clock-free expres-
sions. If alle are of integer type, we have anintegerclock constraint. A clock constraint that
does not contain the last case (where two clocks are compared) isdiagonal-free. If all compar-
ison operators∼ used in a clock constraint are in{≥,≤,=}, it is closed.

Definition 1 A stochastic timed automaton(STA) is a 6-tuple〈Loc,Var,A,E, linit , Inv〉 where
Loc is a countable set of locations,Var⊇ C is a finite set of variables with a subset of clocksC ,
A is the automaton’s finite alphabet,E ∈ Loc→ P(CC ×A×Wxp) is the edge function,linit ∈
Loc is the initial location, andInv ∈ Loc→ CC is the invariant function. An edge consist of
a guard that determines when the edge is enabled, an action label, and a symbolic probability
distribution over updates and target locations inWxp= P(Asgn)×Loc→ Axp. We also write
l g,a−→ W for 〈g,a,W 〉 ∈ E(l). The invariant function maps each location to an expression that
allows time to pass as long as it evaluates totrue.

We can equip STA withrewards, which can be seen as real-valued variables available to
external observers only (i.e. they can be used during verification, but not be read in guards etc.).
They advance at a certain rate in locations and can be increased when taking an edge:

Definition 2 A reward r= 〈RewLoc,RewE〉 ∈ (Loc→ Axp)× (E → Axp) for an STA as above
assignsrate rewardsto its locations andedge rewardsto edges.

Example1 The graphical representation of an example STA with rewardr is shown in Figure2.
Locations contain their name, invariant and rate reward (when not zero). Edges are shown either
as simple arrows labelled with guard, action and update if they lead to a single update/location
pair with probability1, or as split arrows with an intermediate node otherwise. Edge rewards
are included in updates. The example automaton contains a probabilistic choice on the edge
labelleda. Out of l2, the edge tol4 can only be taken after a deterministic delay of16 time
units, while the one back tol0 can be taken after any delay nondeterministically chosen out
of [8,16]. After 16 time units, the choice of edge inl2 thus becomes nondeterministic. The delay
incurred inl1, on the other hand, is stochastic:x := EXP(λ ) assigns tox a value sampled from
the exponential distribution with rateλ , thus the delay is exponentially distributed with rateλ .
The rewardr keeps track of the time spent inl1, and is increased by16upon enteringl4.
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The semantics of STA is given in terms of timed probabilistic transition systems [BDHK06]:

Definition 3 A timed probabilistic transition system(TPTS for short) is a 4-tuple〈S,A,T,sinit〉
whereS is an (uncountable) set of states,A = R+

0 ]A′ is the system’s (uncountable) alphabet
that can be partitioned into delays inR+

0 and discrete actions inA′, T ∈ S→ P(A×Prob(S)) is
the transition function, andsinit ∈ S is the initial state. We also writes a−→ μ for 〈a,μ〉 ∈ T(s).
For every delay-labelled transition〈x,μ〉 ∈ T(s), x ∈ R+

0 , we require that∃s′ ∈ S: μ = D(s′),
〈x,μ ′〉 ∈ T(s)⇒ μ = μ ′ (time determinism), and〈x+x′,D(s′)〉 ∈ T(s)⇔∃s′′ ∈ S: 〈x,D(s′′)〉 ∈
T(s)∧〈x′,D(s′)〉 ∈ T(s′′) for x′ ∈ R+

0 (time additivity).

Definition 4 A reward structurefor a TPTS is a function rew∈ T → R+
0 assigning a nonneg-

ative reward to each of its transitions.

Definition 5 The semantics of an STAM = 〈Loc,Var,A,E, linit , Inv〉 is defined as the TPTS
[[M]] = 〈Loc×Val,R+

0 ]A,TM,〈linit ,0〉〉 whereTM is the smallest function that satisfies

l
g,a
−→E W g(v)

〈l ,v〉
a
−→TM μv

W

(jump)
t ∈ R+ ∀ t ′ ≤ t : (Inv(l))(v+ t ′)

〈l ,v〉
t
−→TM D(〈l ,v+ t〉)

(delay)

where forl ′ ∈ Locand measurableV ′ ⊆Val we have
μv

W (〈l ′,V ′〉) def= ∑l∈Loc,U∈P(Asgn) πv
W (〈U, l〉) ∙μv

U(V ′)

whereπv
W is the discrete probability distribution for the symbolic distributionW in valuationv

andμv
U(V ′) returns the probability ofV ′ corresponding to the sampling expressions in updateU .

The jump inference rule creates action-labelled transitions for the discrete jumps correspond-
ing to taking an edge in the STA. These transitions therefore go from a state into a continuous
distribution over target states according to the sampling expressions in the assignments. Infer-
ence ruledelaycreates real-labelled transitions that represent the passage of time whenever this
is allowed by the invariants. They always lead into Dirac distributions, i.e. a single target state.

Definition 6 The semantics of a rewardr for an STAM is a reward structure[[r]] : TM →R+
0 for

the TPTS semantics[[M]]. For transitions labelled with time actionst ∈ R+
0 , it assigns a reward

of t times the location reward rate according toRewLoc. For A-labelled transitions, the reward
value is as defined byRewE for the STA edge inducing the TPTS transition.

3.1 Reachability Probabilities and Expected Rewards

For a given STA, we want to answer questions of the form “what is the probability of reaching
a certain set of states from the initial state” and “what is the expected accumulated reward when
a certain set of states is reached for the first time”. Thesepropertiesask for the computation
of reachability probabilities and expected rewards. Since STA may be nondeterministic, we
quantify over the resolutions of nondeterminism by asking formaximumor minimumvalues. For
a given TPTSM = 〈S,A,T,sinit〉, we now define paths and schedulers:

Definition 7 The set offinite pathsis Pathsfin
M

def= S× (A×Prob(S)×S)∗. The last state of the
finite pathβ = s0a0μ0s1a1μ1 . . .sn is last(β ) def= sn. A scheduleris a functionσ ∈ Pathsfin

M →
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Prob(A×Prob(S)) so that for eachβ ∈ Pathsfin
M we haveσ(β )(A×Prob(S) \T(last(β ))) = 0.

A schedulerσ induces the stochastic processesXσ
M(∙) of the current state ofM andYσ

M (∙) of the
transition chosen byσ in the current state. It istime-divergentif Prob(∑∞

i=0 f (Yσ
M (i)) = ∞) = 1

for f (s a−→ μ) = a if a∈R+
0 and f (s a−→ μ) = 0 otherwise. We denote the set of all time-divergent

schedulers ofM bySM.

A scheduler assigns probabilities to sets of enabled action-distribution pairs depending on
the history seen so far. It resolves the nondeterminism in a TPTS so as to obtain probability
measures, allowing to derive according stochastic processes. The semantics of the two kinds of
properties we consider for STA can then be defined on the TPTS semantics in the usual way using
measurable sets of paths and the cylinder construction. Given a set of statesB, we are interested
in minimal/maximal values, that is infima/suprema over allσ ∈SM. Thereachability probability
induced byσ is defined as Prob(∃ i ≥ 0: Xσ

M(i) ∈ B), i.e. the measure of paths with a state inB.

The expected accumulated rewardis E(∑Xσ
M(i)∈B

i=0 [[r]](Yσ
M (i))) if Prob(∃ i ≥ 0: Xσ

M(i) ∈ B) = 1
and∞ otherwise. It is thus the expected reward accumulated along paths providedB is reached
eventually; otherwise the expected value is infinity. As the values of clocks are explicit in TPTS,
timed properties can be specified by referring to these values directly in the characterisation ofB,
e.g. referring to an extra clock that is never reset to specify time bounds.

Example2 We are interested in the probability of reachingl3 or l4 within at mostt time units
in the STA of the previous example. The minimum probability is0 because the invariant ofl0
allows us to stay there forever. Ift < 8, we can only reachl3 and thus compute the maximum
probability using the cdf of the exponential distribution: it isp= 1

2 ∙ (1−e−λ t). If t ≥ 16, we can
also reachl4 and the result isp+ 1

2. Fort ∈ [8,16), we getp′ = 1
2 ∙ (1−e−λ t)+ 1

4 ∙ (1−e−λ (t−8))
by going back tol0 from l2 as soon as possible. Observe thatp = p′ for t = 8, but for t = 16,
p′ 6= 1

2 + p: here, the nondeterministic choice available inl2 makes an important difference.
Now, let us look at the (time-unbounded) minimum and maximum expected rewardr when

we reachl3 or l4. By definition, since there is a scheduler that reaches those locations with prob-
ability less than1 (by staying inl0 forever), the maximum value is∞. If λ ≥ 1

16, the minimum
value that we can achieve is1λ by always returning tol0 from l2; otherwise, it is1

2 ∙ (16+ 1
λ ).

3.2 Model Context

STA are related to many other automata models (cf. Figure1). Of particular interest for this paper
are stochastic hybrid automata(SHA) andprobabilistic timed automata(PTA): The analysis
technique we present is based on an existing one for SHA, and it involves the transformation of
STA into PTA that are subsequently model checked using the digital clocks approach for PTA.

SHA [FHH+11] add continuous variables to STA. These can change over time according to
differential (in)equations specified by the invariants. In contrast to clocks, they can also appear
on the right-hand side of assignments, in particular in sampling expressions. SHA thus combine
hybrid system behaviour (as in hybrid automata) with stochastic sampling and delays (as in STA).

PTA are the special case of STA where all clock constraints are integer and no continuous
probability distributions are used. All delays and choices are thus based on discrete (usually
finite-support) distributions, or nondeterministic. A number of techniques to model check PTA
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exist [NPS13]. In this paper, we use thedigital clocksapproach because it supports both reach-
ability probabilities and expected rewards: Clocks are replaced by (bounded) integer variables,
and self-loop edges are added to increment them synchronously as long as the location invariant
is satisfied. This turns the PTA into a (finite)Markov decision process(MDP) where reachability
probabilities and expected rewards can be computed using standard techniques. The results are
correct for the original PTA whenever all clock constraints are closed and diagonal-free.

4 Checking Reachability and Rewards

We use a combination of abstraction and probabilistic model checking to compute bounds on
reachability probabilities and expected reward values for STA. This works as follows: First,
the continuous distributions that occur in the STA are abstracted by a combination of discrete
probabilistic choices and continuous nondeterminism. The result is a PTA. The digital clocks
approach is used to convert that into a finite MDP. Standard techniques like value iteration can
now be used to derive maximum/minimum reachability probabilities and expected rewards. The
results are upper/lower bounds on the corresponding values in the original STA. This approach
is a special case of a technique developed for SHA safety verification [FHH+11] and reward-
based analysis [Hah13], which was (partly) implemented in theprohver tool [HHHK13]. By
specialising for STA, we gain scalability, improve usability by requiring less user input and
improving automation, and are able to compute useful lower bounds on minimum probabilities.

4.1 Abstracting Continuous Distributions

In the first step, the support of a continuous distribution is divided into a number of intervals and
the probability of each interval is computed. The continuous sampling is then replaced by a prob-
abilistic choice over the intervals with the computed probabilities, followed by a nondetermin-
istic choice of which concrete value to pick from the chosen interval. When usingprohver, the
probabilities for the intervals had to be concrete real values due to the PHAVER backend used.
In our new approach, we can map to PTA with probabilities that depend on state variables (but
not on clocks or variables that were previously sampled). Since PTA allow only integer clock
constraints, the choice of intervals is limited to those with integer bounds. We always overap-
proximate continuous distributions with intervals of unit width 1 aligned on integer bounds in the
current implementation; all integer time points are anyway enumerated in the resulting MDP’s
state space. For distributions with unbounded support, such as the exponential or normal distri-
bution, we generate as many unit width intervals as needed to cover a probability mass of 1−ρ
and then add half-open intervals for the residual of the support. Instead of a set of intervals as
with prohver, the only parameter of our approach therefore is thisresidual probabilityρ . We use
a default ofρ = 0.05 unless stated otherwise.

Example3 For the STA of Example1, we show the PTA overapproximation for the case that a
single unit-width interval is sufficient to cover1−ρ probability in Figure3. With ρ = 0.05, this
is ensured providedλ ≥ 3. We use≥∃ and≤∃ to denote interval comparisons. They are satisfied
whenever there exists some value in the interval such that the concrete comparison is satisfied.
This amounts to a comparison with the upper bound for≤∃ and with the lower bound for≥∃

7 / 15 Volume 70 (2014)



Reachability and Reward Checking for Stochastic Timed Automata

l0,
true

la1,
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Figure 3: A PTA abstraction of the example STA

when the interval operand is on the right-hand side.

4.2 Correctness

We now show that, in the PTA that is constructed as described above, the maximum/minimum
reachability probabilities and expected reward values are indeed upper/lower bounds for the cor-
responding values in the original STA. We first define the effect of abstraction more formally:

Definition 8 Consider an STAM = 〈Loc,Var,A,E, linit , Inv〉 and a (potentially infinite) family
of setsA = 〈Bi〉i∈I . Each abstract stateBi ⊆ Loc×Val subsumes certain concrete states of[[M]],
we have

⋃
i Bi = Loc×Val so that all states are covered. We require that an abstract state only

subsume concrete states of the same location. AssumeBinit 3 〈linit ,0〉, andBi , Bj with i 6= j
disjoint. Theabstraction TPTSis defined as abs(M,A ) def= 〈A ,A]R+

0 ,Tabs
M ,Binit〉 whereTabs

M is
defined similar to Definition5 with the jumprule being

l
g,a
−→E W 〈l ,v〉 ∈ Bi g(v)

Bi
a
−→Tabs

M
[∀ j : Bj 7→μv

W (Bj)]

whereμv
W is as in Definition5. We requireA to be defined s.t. all induced[∀ j : Aj 7→μv

W (Aj)]
have finite support. Timed transitions are defined accordingly. We assign rewards to abstract
states according to the rate for its location and the rewards of the edges originating from there.

In the context of this paper,A is obtained by splitting the possible values sampling variables
can take into unit width or half-open intervals. This construction ensures the finite-support re-
quirement. For instance, for a single sampling variablex, all concrete states wherex is sampled
to take values between 1 and 2 are subsumed by a single abstract state. For multiple sampling
variables, abstract states are built from the cross product of intervals.

Lemma 1 For an STA M with abstraction setA and some set of states B the maximal (minimal)
probability/reward value to reach B inabs(M,A ) is not lower (not higher) than the maximal
(minimal) probability/reward value in[[M]].

Proof. We only consider disjoint abstract states. Non-disjoint ones (from overlapping intervals)
would however not affect correctness, yet induce imprecision due to additional transitions in
the abstraction. LetM = 〈Loc,Var,A,E, linit , Inv〉 andA = 〈Bi〉i∈I . We define theintermediate
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abstraction M′ def= 〈Loc×Val,A]R+
0 ,T ′

M,〈linit ,0〉〉 by replacingjumpof Definition5 by

l
g,a
−→E W g(v) 〈s′j〉 j∈I s.t.∀ j ∈ I : s′j ∈ Bj

〈l ,v〉
a
−→T ′

M
[∀ j ∈ I : s′j 7→μv

W (Bj)] .

Let f map paths from the intermediate abstraction to the semantics[[M]], so for a pathβ =
s0a0[∀ j : s′j 7→μv

W (Bj)]s1a1 . . . we havef (β ) def= s0a0μv0
W s1a1 . . ..

For σ ∈ S[[M]] we constructσ ′ ∈ SM′ . Consider pathβ with last(β ) = 〈l ,v〉. W.l.o.g. con-
sider a subsetA = {a}×Adist ⊆ A×Prob(S) of the possible successors when choosing edge
e= l g,a−→ W ∈ E with 〈l ,v〉 a−→TM μv

W . Let 〈Si〉i ⊆ A i be the finite set of abstract states for which
μv

W (Si) > 0. Defineμi ∈Prob(Si) asμi(Ai)
def= μv

W (Ai)/μv
W (Si) for measurableAi ⊆Si and denote

their product measure byμprod∈ Prob(×i Si). DefineU def= {[∀i : s′i 7→μv
W (Si)] | ∀i : s′i ∈ Si}, func-

tion g([s′1 7→p1, . . . ,s′n 7→pn])
def= (s′1, . . . ,s

′
n), andμ(B) def= μprod(g(B)). Then we setσ ′(β )(A) def=

μ(Adist∩U)σ( f (β ))({edgeechosen}). This wayσ ′ for M′ simulates the continuous distribu-
tions in [[M]] s.t. measures on paths withσ andσ ′ agree [Hah13, Theorem 4.22]. This implies
that reachability probabilities and reward values when using equivalent reward structures agree.

Because distributions inM′ and abs(M,A ) have finite support, one can define a finite automata
simulation relation [SL95] such that〈l ,v〉 � Bi if 〈l ,v〉 ∈ Bi from which one concludes that
abs(M,A ) also bounds reachability probabilities ofM′. Using extensions of simulation relations
similar to e.g. [Hah13, Definition 7.26] one can also bound reward values in this way.

4.3 Digital Clocks and Scaling Time

We model-check the resulting PTA using the existing digital clocks approach [NPS13]. Let us
illustrate this approach on our running example:

Example4 The digital clocks MDP for the PTA from the previous example is shown in Fig-
ure4. The clock-incrementing self-loops are labelledtick . We have excluded the non-stochastic
part (locationsl2 andl4) and merged the interval-valued variablex into the locations to show the
concrete comparisons on the edges ofl a

1 andl b
1. We have also included the concrete probabilities

for λ ≈ 3. The maximum probability of reachingl3 or l4 in this MDP in at mostt ∈N time units
is 0.475for t = 0 and0.5 for 1≤ t ≤ 7. We know from Example2 that the actual probability in
the STA is1

2 ∙ (1−e−λ t) < 0.5. In our case ofλ ≈ 3, this is0 for t = 0, approx.0.475for t = 1
and very close to0.5 for t = 7. The error is thus between0.475and almost0 depending ont.

For rewardr, the maximum value is∞ even if we remove thetick -edge froml0: We can stay
in l b

1 forever due to the right-open interval created for the unbounded exponential distribution.
The minimum value computed in this MDP is0.475∙0+ 0.025∙1 = 0.025, whereas the actual
value forλ ≈ 3 is ≈ 1

3.

The example shows that the error introduced by the abstraction of the continuous distributions
depends on the variance of the distributions in relation to the interval width of at least 1 required
to use PTA. In models where the dependence between time and property values is similarly
direct as in this example, we can get more accurate results at the cost of larger MDP state spaces
by scaling time: Both the results of the sampling and the non-interval values that clocks are
compared to (including those in properties) are multiplied by some factord ∈ N+. (For the
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l0

l a1

l b1

l3
true, a

1
2, . . .

0.475,{c := 0}

0.025,{c := 0}

c≥ 0, b,∅

c≥ 1, b,∅

true, tick ,
{c:=min{c+1,2}}

c≤ 1−1, tick ,
{c:=min{c+1,2}, r := r+1}

c < ∞, tick ,
{c:=min{c+1,2}, r := r+1}

true, tick ,
{c:=min{c+1,2}}

Figure 4: Digital clocks MDP of the PTA abstraction (explicit intervals)

exponential distribution, for example, the former can be achieved by dividing the rate byd.)

Example5 By scaling time by a factor ofd = 2 in our running example STA, two unit width
intervals are used forr = 0.05 andλ ≈ 3, with probabilities0.388and0.087. The upper bound
for the reachability probability drops to0.388for t = 0 and0.475for t = 1; the lower bound for
the minimum expected reward rises to0.137.

Although scaling timecan lead to tighter bounds, there is another, independent cause of
overapproximation error, which is due to the digital clocks requirement of closed clock con-
straints: All adjacent intervals have a singleton overlap, and we can only refer to exactly these
overlapping values in clock constraints and properties. They have probability 0 in the STA, but
not in the PTA, which leads to e.g. the upper bounds for time-bounded reachability probabil-
ities being “one step ahead”: In Example5, the upper bound computed fort = 0 is the actual
probability fort = 1, the bound fort = 1 is the probability fort = 2, and so on.

5 Implementation

We have implemented our STA analysis approach in the newmcsta tool within the MODEST

TOOLSET [HH14]. It relies neither onmcpta [HH09] nor on PRISM for PTA model checking.
It currently supports the continuous uniform, exponential and normal distributions as follows,
wherex is a variable of typereal and sampling expressions may reference other state variables:
– x := UNI(lower,upper) for the uniform distribution, wherelower resp.upperare expressions

of type real for which a concrete lower boundlb resp. a concrete upper boundub∈ R can
be determined withlb ≤ ub. The intervals are then[blbc,blbc+ 1], . . . , [dube−1,dube] with
probability expressions constructed according tocdfUNI(x) = (x− lower)/(upper− lower).

– x := offset+ EXP(rate) for the exponential distribution, whereoffsetis an expression of type
int andrate is an expression of typereal for which a concrete lower boundλ ∈R+ can be
determined. The intervals are then[offset,offset+1], . . . , [offset+n−1,offset+n] and[offset+
n,∞) wheren = d− lnρ

λ e (using the quantile function of the exponential distribution). The
probability expressions of the intervals are constructed according tocdfEXP(x) = 1−e−rate∙x.

– x := NORM(m,σ) for the normal distribution, where the meanm is an expression of typeint
and the standard deviationσ is a concrete value inR+. The intervals are(−∞,m−n], . . . , [m−
1,m], [m,m+1], . . . , [m+n,∞). Since neither the quantile function nor the cdf of the normal
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Figure 5: Reachability results and state space sizes for the M/G/1 example

distribution have a closed-form solution, we requireσ to be a concrete value to precomputen
and the actual interval probabilities based onσ andρ close todouble precision.

These examples show a general recipe to support other continuous distributions using their
quantile function and cdf. In case a distribution is parameterised by an expression that con-
tains state variables, we may generate more intervals than necessary for some valuations, which
then have zero probability. For example, we generate two intervals forx := UNI(0,2i) when i
has domain{0,1} since the upper bound of expression 2i is 2. However, since the probabilities
are preserved as expressions, the probability of[1,2] will evaluate to 0 for all states wherei 6= 2.

6 Evaluation

We have appliedmcsta to four different examples. We are interested in how close the computed
bounds are to the actual values (effectiveness), and how large the state spaces of the underly-
ing MDP become1 (efficiency). All measurements were performed on the same 1.7 GHz Intel
Core i5-3317U system with 4 GB of RAM running 64-bit Windows 8.1. The first two models we
present are deterministic. As mentioned, our method is not targeted for this special case, so we
expect correct and useful, but not very tight, computed bounds. Specialised methods will per-
form better or be more precise in these cases. The last two models, however, contain continuous
and discrete nondeterminism, so our technique is currently the only one available for verification.

6.1 M/G/1 Queueing System with Normal Distribution

Our first example models anM/G/1/6 queueing systemas STA where the service time is nor-
mally distributed with mean 10 and standard deviation 2. Since clocks cannot be negative, it is
implicitly truncated to values≥ 0 when we compare the result to a clock. The time between
customer arrivals is exponentially distributed with rate1

6. The queue has length 5, not counting
the customer being served, and is initially empty. We are interested in the following values:
– the probabilityp that the queue is full and≤ tp time units have elapsed,
– the expected timet until the queue is full for the first time, and
– the expected numberc of customers served before the queue becomes full.
Since nondeterminism is absent by construction, we can use statistical model checking with the
modes simulator from the MODESTTOOLSETto obtain good approximations ofp, t andc.

1 Memory was the limiting factor in all examples; runtime was always below 3 minutes.
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Figure 6: Reachability results and time scale effects for the tandem queues

The results of computing upper and lower bounds onp usingmcsta are shown in Figure5. On
the left, we show the computed bounds for different values oftp as black triangles. We see that
there is a noticeable approximation error, but the general evolution of the probability over time
is preserved. Aftertp ≈ 80, the lower bound shows no significant improvements. Fortp ≥ 90,
we ran out of memory, so we increased the residual probability parameterρ to 0.1. The number
of concrete states in the MDP of the digital clocks semantics is shown on the right of Figure5.
We see that it increases linearly withtp and can be reduced significantly by increasingρ, i.e. by
lowering the number of intervals for the abstraction of the exponential and normal distributions.

Asking forminimumexpected rewards, we compute boundst ≥ 43.4 andc≥ 3.52 for the other
two values. As we do not need a global clock to check a time bound liketp here, the underlying
MDP has just 136767 states. State-space exploration and computation of both bounds takes only
2.3 s in total. If we ask formaximumexpected rewards, we get bounds∞ due to the right-open
intervals created by the abstraction of the unbounded distributions (cf. Example4). Simulation
with modes tells us thatt ≈ 61 andc≈ 6.2 for this deterministic model.

6.2 Tandem Queueing Network

We next look at a model from the PRISM benchmark suite [KNP12]: the tandem queuing network
of an M/Cox2/1/4 followed by an M/M/1/4 queue [HMS99]. It is a CTMC and we can thus
model it as an STA without nondeterminism. We experiment with scaling time as described in
Section4.3. We compute the maximum probabilitypff of the first queue being full in timet,
trying to use a value ofρ ≥ 0.05 as low as possible and a time scaling factor as high as possible
without running out of memory. The result is shown on the left of Figure6.

The second property we look at is the maximum probabilitypaf of both queues becoming full
within time t. This happens at a vastly different time scale:paf only starts to approach 0.5 when
t is on the order of 50. We thus focus on the effect of scaling time on the approximation error for
fixed time boundt = 2. The results are shown on the right of Figure6. We see that the error can
be significantly reduced by scaling up time.

Finally, we compute bounds on the expected timestff until the first queue becomes full and
taf until both are full. As we increase the time scaling, we go from lower boundstff ≥ 0.000012
andtaf ≥ 0.56 for time scaled = 1 with 9557 MDP states, computed in 0.1 s, totff ≥ 0.108710
andtaf ≥ 5.87 for d = 10 with 3662958 states, computed in 108 s. Again, upper bounds (i.e.
maximum expected rewards) are all∞. From simulation, we gettff ≈ 0.29 andtaf ≈ 17.9.
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Table 1: Results and comparison for the WLAN example

model type Pmax [E∧
min,E

∧
max] [E∨

min,E
∨
max] [E1

min,E
1
max] states time

wlan PTA 0.18359 [1325,6280]μs [450,4206]μs [450,5586]μs 104804 8s

wlan-uni STA 0.13659 [2325,4607]μs [950,3018]μs [950,3880]μs 264240 15s

6.3 Wireless LAN with Uniform Transmission Time

Departing from queueing systems, we now look at the model of a communication protocol: the
carrier-sense multiple-access with collision avoidance (CSMA/CA) part of IEEE 802.11WLAN.
We take the MODESTPTA model [HH09] and replace the nondeterministic choice of transmis-
sion delay out of[200,1250]μs (with a unit of time representing 50μs) by a uniformly distributed
choice over the same interval. The result is still nondeterministic, and an STA instead of a PTA.

Model-checking results for the original PTA (“wlan”) and the new STA (“wlan-uni”) are
shown in Table1. We see that the state space of the underlying MDP is larger when the uni-
form distribution is used. This is because the states not only contain explicit values for all clocks
as in the original PTA, but additionally 21 different concrete intervals that overapproximate the
result of sampling from UNI(4,25). The blowup thus stays far below the worst-case factor of 21.

We analyse six time-unbounded properties: Pmax, the maximum probability that either of the
two modelled senders’ backoff counters reaches the upper bound of 2, as well as E∧

min/E∧
max,

E∨
min/E∨

max and E1
min/E1

max, the minimum/maximum expected times until both senders, either of
them, or the one with id 1 correctly deliver their packets. Due to the nondeterminism, we cannot
use simulation or any other technology to compute the actual values. However, the computed
bounds are plausible if we assume that in the PTA, the longest/shortest transmission delay max-
imises/minimises the values. The STA is thus indeed expected to show less extremal behaviour.

6.4 File Server

As a final example, we analyse another model that combines all essential features of STA and
cannot be model checked with any other approach we know of (exceptprohver). It represents a
single-threadedfile serverwith slow archival storage:
– Requests arrive to a single queue of lengthC = 5 with interarrival times following EXP(1

8).
– File sizes are uniformly distributed over some range such that sending the file back to a client

takes time uniformly distributed over[1,3].
– 2 % of all files are in slow archival storage. Retrieving a file is instantaneous for normal

storage, but takes between 30 and 40 time units nondeterministically for archival storage.
We thus have continuous stochastic delays, a probabilistic choice and nondeterministic delays.
Additionally, we model the initial queue length as uniformly distributed in{0, . . . ,bC

2c}. The
model is part of the MODESTTOOLSETdownload.

We are interested in the probabilityp that the request queue becomes full within timetp, and
the minimum (i.e. worst-case) expected timet until this happens. Fort, we obtain a lower bound
of 462 time units from an MDP with 107742 states in 6s. Forp, the results are shown in Figure7.
On the right, we see that the number of MDP states again grows linearly with the time bound.
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Figure 7: Model checking results and state space sizes for the file server example

On the left, we have plotted the computed upper/lower bounds using small triangles.
Due to the nondeterministic delay, we cannot use simulation. However, we can instructmodes

to resolve that delay by scheduling events either as soon or as late as possible (ASAP/ALAP).
Simulating these deterministic variants of the model gives ust ≈ 1012 forASAP andt ≈ 721 for
ALAP. For p, the simulation results are included on the right of Figure7. The results that we get
via our new approach are clearly useful: They are safe bounds whereas we do not know anything
about the relationship between simulation results and the actual values.

7 Conclusion

We presented the first fully-automated model checking approach for STA with general, unboun-
ded distributions and support for nondeterminism. It provides upper bounds for maximum and
lower bounds for minimum reachability probabilities and expected rewards. We investigated
causes of approximation error and showed that scaling time can effectively reduce the error. In
experiments performed with our implementation,mcsta, we saw that the approach works well in
practice, but state-space explosion is a significant problem for time-bounded properties.
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