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Abstract: Random graphs have the property that they are very predictable. Even by
exploring a small part reliable observations are possible regarding their structure and
size. An unfortunate observation is that standard models for random graphs, such
as the Erdös-Rényi model, do not reflect the structure of the graphs that describe
distributed systems and protocols. In this paper we propose to use the parallel
composition of such random graphs to model ‘real’ state spaces. We show how
we can use this structure to predict the size of state spaces, and we can use it to
explain that software bugs are in practice far easier to find than predicted by the
standard random graph models. By some practical experiments we show that our new
random model is an improvement over the standard model in predicting properties of
transition systems representing realistic systems.

Keywords: Random graph, P-parallel random transition system, state space size

1 Introduction

Modelling the behaviour of systems is gaining popularity. An unpleasant side effect is that the
transition systems of models of realistic systems easily become very large. We ran into such an
example while modelling an UART (universal asynchronous receiver/transmitter) for a company
called NXP. Using highway search [4], a parallel simulation technique far more efficient than
random simulation in finding problematic situations, we did not find a suspected error. The
question that we needed to answer was how large the probability was that the error really did not
occur. A typical derived question that immediately jumps to mind is to estimate the size of the
state space.

In order to answer such questions, one can resort to random graphs [2]. The Erdös-Rényi model
is a commonly used model. It has a set S of N states (nodes, vertices) and a set of transitions
→. There are two highly similar variants, one where each conceivable edge is present with some
probability p, and one where M transitions are chosen out of the N2 possibilities.

Erdös-Rényi random graphs are a little counterintuitive if it comes to modelling transition
systems which represent behaviour. Transition systems have an initial state and this initial state
has outgoing transitions to states that in general also have outgoing transitions. In the Erdös-Rényi
random graph the initial state may not have outgoing transitions (actually with a fairly high
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On the Random Structure of Behavioural Transition Systems

probability e−λ where λ is the fan-out, i.e., the expected number of transitions leaving a state).
Therefore, we choose a slightly different model, where each state has a fixed number λ of outgoing
transitions each of which goes to randomly selected states of the transition system. All choices
are made independently of each other.

Given this model of a random transition system we estimate the size of a transition system by a
random walk through the graph. By random simulation we have evidence that these estimates are
very good. However, by applying this technique to realistic models (e.g., Firewire P1394 protocol
[9]) it becomes obvious that the structure of these random graphs is not really a reflection of a
‘real state space’.

As an alternative model for the structure of realistic systems, we propose to use the Cartesian
product of P parallel random transition systems, reflecting that a realistic system often consists
of P more or less independent components. One could not only think of the components as
independent parallel processes, but one can also consider the behaviour of subtasks or even
variables as potential parallel components.

We develop techniques to estimate the sizes and fanout of the different components. Again,
using random simulation we verified that these estimation techniques are correct and precise.
More importantly, we estimate the sizes of ‘realistic state spaces’ and find that these are far
better than those we obtain using the ‘single threaded’ random model. There are also some
disadvantages, in particular, the predictions are less stable and the calculational effort for the
estimates is higher.

Our experiments provide evidence that P-parallel random transition systems could be a good
representation of ‘realistic’ state spaces. Of course, the state spaces of real applications do not
have a random structure. But having a random model which reflects ‘real’ state spaces reasonably
well and which is sufficiently simple to allow mathematical analysis is really a great asset, because
it enables the use of the power of random analysis to substantially increase our generic insight in
the behaviour of real systems.

As an illustration of the potential power of the P-parallel model we apply it to the question how
effective testing is. In our experience it is remarkably easy to detect a known error by running a
random test. According to the single threaded random model this is not possible. The probability
of hitting an erroneous state by a random walk is far too small. However, if the error occurs in
one of the states of one of the P-parallel components, it is far easier to find. Even stronger, if we
know the sizes of the different components, we can come up with small numbers of required test
runs to guarantee with a given confidence that realistic systems are error free.

Acknowledgments. Thanks go to Jesse Goodman, Wil Kortsmit and the referees for remarks,
support and discussion. This research was in part supported by NWO and Agentschap NL.

Related Work.

As far as we know, there is not much work on the random structure of transition systems
representing behaviour. The following is what we are aware of. Estimating the size of a Petri
Net’s state space has been investigated in [11]. That work makes explicit use of the structure of a
Petri Net and is only applicable when the Petri Net is constructed from a set of supported building
blocks.
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A more general approach was presented in [14] where, as in our work, a state space is seen as a
directed graph. However, the authors do not compute an estimate, but instead only classify state
spaces into one of three classes: small models, large models, and models that are too large and
hence out of reach. In this work classification trees, neural networks and techniques similar to the
Lincoln Index [13] are employed.

Inspired by [14], the authors of [3] present a method to compute the estimated state space size.
There, the observed measure is the size of the breadth-first frontier that is still to be explored in
relation to the number of states that have already been explored. By visual inspection, the authors
determine that this curve should be approximated with a quadratic function and use least-squares
fitting to compute the parameters and thereby an estimate for the state-space size.

2 Random State Spaces

In this section we define the basic notions that we employ. We use directed graphs or transition
systems without labels, as we do not need the labels in our exposition.

A state space is seen as a graph G = (S,→), with S being an arbitrary set of states (nodes,
vertices) and→⊆ S×S being a multi-set of transitions (edges). If (s,s′) ∈→ holds, we generally
denote this by s→ s′. For the edges in the set→ we assume that every state has a fixed degree of
outgoing edges, i.e., there exists a fixed λ ∈ N such that |{s′ | s→ s′}|= λ for all s ∈ S (where
{s′ | s→ s′} is a multi-set) and |E| denotes the size of a multi-set E. One can consider transition
systems with a variable fan-out, but this will make the random model more complex, and therefore
harder to use, and less predictive. If s→ s′, then s is called the source and s′ the target state of
that edge. In a random state space it is assumed that for every such edge, given its source state s,
every other state s′ is equally likely to be the target state. Furthermore, we define N = |S| and
M = |→| to denote the number of states and transitions, respectively.

A tuple T=(G,s0) is called a random transition system, where G=(S,→) is a random state
space as described above and s0∈S is an arbitrary, randomly chosen initial state. For such a
random transition system, only the part reachable from the initial state is of interest, i.e., those
states s′∈S for which s0→∗ s′ holds (where→∗ denotes the reflexive transitive closure of→).
Note that the number of reachable states is at most N.

This paper considers state spaces being the graph product of two or more random transition
systems. Since taking the graph product is associative, we only consider the case of two random
transition systems, which can then be repeated for more components. Thus, a product transition
system T1×2 = (G,s0) with graph G = (S,→) and initial state s0 ∈ S is assumed to be composed
from two random transition systems T1 = (G1,s1,0) and T2 = (G2,s2,0), with G1 = (S1,→1),
G2 = (S2,→2), such that S = S1×S2, s0 = (s1,0,s2,0), and (s1,s2)→ (s′1,s

′
2) iff either s1→1 s′1

and s2 = s′2, or s1 = s′1 and s2→2 s′2.
Note that it is assumed that the states in the product transition system T1×2 are opaque, i.e.,

from a state s = (s1,s2) ∈ S the individual components s1 and s2 of the state cannot be recovered.
Note also that we do not consider ‘synchronisation’, i.e., a transition in the product transition
system which consists of the simultaneous occurrence of transitions in the constituent transition
systems. Our random approximations of realistic state spaces do not contain such synchronised
transitions.
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3 Estimation Based On Duplicates

In this section, a technique is described to estimate the size of a single random transition system
T = (G,s0) with graph G = (S,→). For this purpose, the process of exploring the state space is
analysed. Starting from the initial state s0, the edges that have their source state in the already
explored part of the state space are iteratively explored. Thus, a target state of an edge that is
being explored can either be a state that has already been explored previously, or it is a state that
is new, i.e., has not been seen previously. Note that the method in this section does not rely on a
particular state space exploration strategy, contrary to approach in the next section which requires
breadth-first search.

3.1 A stochastic model

We develop a stochastic model where we introduce random variables Yk, which represent the
number of unique states seen after exploring k transitions. Then, the probability distribution of
the state space size N after exploring m transitions is

P[N = n |
m∧

k=0

Yk = ik],

where ik is the observed number of unique states seen after exploring k transitions. Applying
Bayes’ law, this probability can be rewritten as follows:

P[N = n |
m∧

k=0

Yk = ik] =
P[N = n∧

∧m
k=0Yk = ik]

P[
∧m

k=0Yk = ik]

=
P[
∧m

k=0Yk = ik | N = n]P[N = n]
∑

∞
r=im P[

∧m
k=0Yk = ik | N = r]P[N = r]

(1)

In the above equation (1), the probability P[N = n] is the so-called a-priori probability for
the size of the state space. To characterise the probabilities P[

∧m
k=0Yk = ik | N = n], we use the

following recursive identity:

P[
m∧

k=0

Yk = ik | N = n] = P[Ym = im |
m−1∧
k=0

Yk = ik∧N = n]P[
m−1∧
k=0

Yk = ik | N = n] (2)

Thus, we need to analyse the first factor at the right-hand side of equation (2) further. In case
m = 0, then we find that

P[
0∧

k=0

Yk = ik | N = n] =
{

1 if i0 = 1
0 otherwise,

since only the initial state is seen in the beginning.
For m > 0, we make a case distinction based on whether the target state of the newly explored

edge has been seen before or not. In case im = im−1, i.e., the target state has already been seen
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before, one of the im−1 already seen states has been chosen:

P[Ym = im |
m−1∧
k=0

Yk = ik∧N = n] =
im−1

n
=

im
n

(3)

Otherwise, if the target state of the newly explored edge has not been seen before, then
im = im−1 +1 holds and we have chosen one of the n− im−1 states we have not yet seen, giving
the following equality:

P[Ym = im |
m−1∧
k=0

Yk = ik∧N = n] =
n− im−1

n
=

n− im +1
n

(4)

Next, we solve the recurrence in equation (2) using equations (3) and (4). To do so, we
introduce variables q(m)

j for 1≤ j ≤ im to represent the multiplicity of number j in the sequence

i0, i1, . . . , im of length m+ 1. For example, in the sequence 1,1,2,3,3,4 it holds that q(5)1 = 2,
q(5)2 = 1, q(5)3 = 2, and q(5)4 = 1. It should be noted that ∑

im
j=1 q(m)

j = m+1 always holds. Using
these variables, the right hand side of equation (2) becomes

∏
im
j=1(n− j+1)∏

im
j=1 jq(m)

j −1

nm+1 . (5)

Substituting (5) for (2) in (1) gives the following result, where remarkably enough the vari-
ables q(m)

j disappear. Apparently, only the information about the number of unique states (the ik)
and the total number of states explored (which is m+1, i.e., the number of target states of explored
edges plus the initial state) is required:

P[N = n |
m∧

k=0

Yk = ik] =

(
∏

im
j=1(n− j+1)

)
P[N = n]/nm+1

∑
∞
r=im

(
∏

im
j=1(r− j+1)

)
P[N = r]/rm+1

(6)

We used that the maximally observed number of unique states im is a lower bound for the total
size N. Often, an upper bound n on the total number of states can be obtained. For a relative error
of 1

K it suffices to take n = im(1+ log(K)). We assume that N is a priori uniformly distributed in
the interval [im,n]. In this case, equation (6) reduces to

P[N = n |
m∧

k=0

Yk = ik] =

(
∏

im
j=1(n− j+1)

)
/nm+1

∑
n
r=im

(
∏

im
j=1(r− j+1)

)
/rm+1

, (7)

which gives the following expected size of the state space:

E[N |
m∧

k=0

Yk = ik] =
∑

n
n=im n

(
∏

im
j=1(n− j+1)

)
/nm+1

∑
n
r=im

(
∏

im
j=1(r− j+1)

)
/rm+1

(8)
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Figure 1: Estimates using equation (8) for an example random transition system with 10,000
states and a fan-out of 2. On the x-axis the number im of unique states observed is depicted. On
the y-axis, the estimated size is shown at the left, and the number of explored transitions m and
the diagonal are shown at the right.

3.2 Simulation experiments

We want to establish the effectiveness of the estimation procedure for the monolithic model by
predicting the sizes of a randomly generated state spaces and comparing the results with the actual
sizes used to generate them.

For the experiments with the estimation procedure presented in the previous section, we
explored the example graphs in a breadth-first fashion, as this is the commonly used strategy
of many model checking tools, an example being the tool LPS2LTS contained in the mCRL2
toolset [5, 8]. When used in verbose mode, the tool will output the currently explored number of
states and transitions, which therefore allows to apply equation (8) to estimate the total size of the
state space.

We present here the results on a random transition system with 10,000 states, each with
2 outgoing transitions. For other results see [7]. After randomly designating an initial state,
8,011 states were reachable. To compute the estimates, we used n = 1,000,000 as upper bound
on the size of the state space.

The estimation results are shown in figure 1. The x-axis shows the number of unique states
seen at a certain point, i.e., the maximal im used in that computation. On the y-axis, the result of
evaluating equation (8) is depicted. The values of the maximal im were increased in steps of 10
and two adjacent points were connected by a straight line segment. It can be observed that the
estimation yields results close to the actual value of 10,000 after having observed a few hundred
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im 11489 21717 51704 102265 150728 188569
m 13889 26669 79388 175029 273051 340608
N 35435 62637 85455 146869 204586 256631
Nreachable 25954 45878 62591 107572 149846 187965

Table 1: Estimates for the number of states of the firewire protocol. The actual number of
reachable states is 188569. The estimates for N under the assumption that the state space has a
random structure are not very accurate.

unique states. After that, it slightly overshoots, but always stays below 11,500 estimated states.
From this we conclude that our estimates are quite accurate.

3.3 Application to the firewire protocol

We use a description of a real time bus access in the firewire or P1394 protocol provided in [9] to
observe what happens when we predict the number of states for a realistic protocol assuming that
it is randomly generated. The protocol consists of two protocol entities that alternatingly obtain
access to a data bus resolving contention conflicts on the way.

The typical values for im and m are given in table 1. The estimates for the expected number of
states N and reachable states Nreachable, cf. equation (12), are also provided. The actual number of
reachable states is 188569 and there are 340608 transitions. There is an average fan-out of 1.8.

In table 1 we observe that the estimates for Nreachable while traversing the state space structurally
underestimate the actual number of reachable states and they only approach the actual number of
states when all states have been traversed. This is quite different from what we observe in figure
1. But this pattern is very similar to what we see in other state spaces representing real systems.
From this we conclude that our random model does not represent real systems sufficiently well.

4 Estimates of the Sizes of Product Transition Systems

In order to have a random model that approximates real state spaces better, we study transition
systems that are the product of two or more random transition systems in this section. Since we
assume that in a product transition system the identity of a component state cannot be recovered,
there is no way to obtain the original graphs. If we were able to recover the constituent graphs,
we could have applied the technique of section 3 to the components and easily derive a prediction
for the size of the whole transition system.

Our estimation technique is completely different from that of section 3. We require that the
exploration of a state space is performed in a breadth-first fashion, i.e., first all states at a certain
distance from the initial state are considered, before dealing with those at higher distances. This
allows to consider layers of a transition system T = (G,s0) with G = (S,→). We define the layer
∂BT ( j) at some distance j ∈ N by

∂BT ( j) = {s ∈ S | s0→ js∧∀k < j : s /∈ ∂BT (k)}

where s0→ js means that state s is reachable from state s0 in exactly j steps. We also call ∂BT ( j)
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the boundary ball on intrinsic distance j. Note that by the above definition, every state s reachable
from the initial state s0 is contained in exactly one layer, namely that with the minimal distance j.

The set of those states that have been seen up to some distance j ∈ N is defined as BT ( j) =⋃ j
i=0 ∂BT (i) and is called the ball of radius j. To obtain the layer ∂BT ( j), only edges from states

from the layer ∂BT ( j−1) have to be considered, since otherwise, if there was an edge from a
state s ∈ ∂BT ( j−k) with k > 1 to a state s′ ∈ ∂BT ( j), then this would imply s′ ∈ ∂BT ( j−k+1),
which would contradict s′ ∈ ∂BT ( j).

4.1 Estimating the size of a single component

We first concern ourselves with the estimation of the size of a single random transition system
based on balls and layers. In section 4.2 we use this result to estimate the sizes of the transition
systems in parallel products of transition systems. Breadth-first generation of a state space
explores edges having their source state in the current layer and adds the target states to the
surrounding ball. Thus, to obtain a layer at distance j+1, a total of λ |∂BT ( j)| edges are explored
where λ is the fan out of each state.

We are interested in the expected size of the reachable state space, which is the same as the size
of the ball with maximal radius. Thus, the expected size of the balls should be investigated.

Definition 1 We define G( j)=E[|BT ( j)|] to be the expected size of the breadth-first graph with
states at a distance ≤ j from the initial state and R( j) = E[|∂BT ( j)|] = G( j)−G( j−1), where
G(−1) = 0.

We use the convention that the subscript of BT carries over to G and R. For example, we write
G1×2( j) for E[|BT1×2( j)|]

To analyse the function G( j), we introduce random variables Xi that denote the size of the
partial state space after exploring i edges. Let ni for i = 1,2, . . . denote the number of unique
states observed after exploring i edges. Thus, n0 = 1 and for ni+1 we have either ni+1 = ni in case
the target state of the additionally explored edge was already in the explored part of the state
space, or ni+1 = ni +1 if the target state of the edge is new. Since the target state of an edge is
picked uniformly at random, the probability of the first case (ni+1 = ni) to occur is

P(Xi+1 = ni+1 |
i∧

l=0

Xl = nl) =
ni

N
=

ni+1

N
,

which amounts to the probability to pick one of the ni = ni+1 states that were already explored
from the total N states. In the second case, where ni+1 = ni +1, the probability is

P(Xi+1 = ni+1 |
i∧

l=0

Xl = nl) = 1− ni

N
=

N−ni+1 +1
N

,

where a state is picked that is not among the ni = ni+1−1 already explored states.
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The expected value of these random variables can be computed as:

E[Xi+1] =
∞

∑
k=0

kP(Xi+1 = k)

=
∞

∑
k=0

k
k
N
P(Xi = k)+

∞

∑
k=0

k
N− k+1

N
P(Xi = k−1) (9)

=
∞

∑
k=0

k
k
N
P(Xi = k)+

∞

∑
k=0

(k+1)
N− k

N
P(Xi = k)

=
∞

∑
k=0

k(1− 1
N
)P(Xi = k)+

∞

∑
k=0

P(Xi = k)

=
∞

∑
k=0

k(1− 1
N
)P(Xi = k)+1

=
N−1

N
E[Xi]+1. (10)

In equation (9) we used the above observations that either an already explored state is reached
or a new state was explored. Solving the recurrence equation (10) using the boundary condition
that E[X0] = 1, gives a closed formula:

E[Xi] = N

(
1−
(

N−1
N

)1+i
)
. (11)

This equation can also be used to predict N in table 1 with almost equal estimates for N.
Another use of equation (11) is to derive the number of reachable states s. All reachable states

have been explored if there are no other states that have been visited. Then there are λ s visits, as
for each explored state each outgoing transition is investigated. So, equation (11) becomes

s = N

(
1−
(

N−1
N

)1+λ s
)
. (12)

From this s can easily be solved, although care is required as there is also a small negative solution
for s.

From the observation that λ |BT ( j)| edges are explored to obtain BT ( j + 1), together with
equation (11) the following recursive formula for the function G( j) can be derived, namely the
expected size of the ball with radius j for a random transition system, where N and λ denote the
total size and the fan-out of each state, respectively:

G( j+1) = E[Xλ |BT ( j)|] = N

(
1−
(

N−1
N

)1+λG( j)
)
. (13)

Equation (13) gives a means to compute the size N given two consecutive balls, assuming that
we have a way to estimate λ as the average fan-out in each state. With more balls available, N,
and even λ , can be estimated using the least square method.

9 / 15 Volume 70 (2014)



On the Random Structure of Behavioural Transition Systems

4.2 Product Graph Size Estimation

As the estimates of the size of the state spaces are way off if we assume that they are homogenous
random state spaces, we are interested in viewing a state space as the product of two random
state spaces. We assume that the two components cannot be distinguished in the product graph
and therefore we need to formulate a relation between the observable ball and layer sizes of
the product graph and the component sizes. For this purpose, we note that due to the definition
of the graph product, which only performs a transition in one of the components, a state in the
layer of depth j can be reached by either only performing j steps in the first component, or j−1
steps in the first component and one step in the second component, etc. Furthermore, steps from
different components are independent of each other, i.e., if (s1,s2)→2 (s1,s′2)→1 (s′1,s

′
2), then

also (s1,s2)→1 (s′1,s2)→2 (s′1,s
′
2), where →i is a step done by component i. Hence, we can

re-order the steps such that first all steps in the first component are performed, and then all steps
in the second component. Thus, in the product graph, the following equation holds:

|∂BT1×T2( j)|=
j

∑
k=0
|∂BT1(k)| · |∂BT2( j− k)|. (14)

From equation (14) for the expected value R1×2( j) of the product graph we derive:

R1×2( j) =
j

∑
k=0

R1(k) ·R2( j− k). (15)

In the following, the expected sizes of the component layers, R1 and R2, are considered in more
detail. Let i ∈ {1,2} and recall that Ri( j+1) = Gi( j+1)−Gi( j). Using equation (13), we can
also obtain a recursive formula for the component layer sizes:

Ri( j+1) = Gi( j+1)−Gi( j)

= Ni

[(
Ni−1

Ni

)1+λiGi( j−1)

−
(

Ni−1
Ni

)1+λiGi( j)
]

= Ni

(
Ni−1

Ni

)1+λiGi( j−1)
[

1−
(

Ni−1
Ni

)λi(Gi( j)−Gi( j−1))
]

= (Ni−Gi( j))

[
1−
(

Ni−1
Ni

)λiRi( j)
]

=

(
Ni−

j

∑
k=0

Ri(k)

)[
1−
(

Ni−1
Ni

)λiRi( j)
]

(16)

Substituting equation (16) into equation (15) for R1 and R2 yields an equation for the observable
layer sizes of the product graph, in which the values of N1, N2, λ1, and λ2 are unknown. Note
however that the combined fan-out λ1 +λ2 can be observed in the product graph, since this is the
fan-out of each state in that graph. Therefore, one of the fan-out values can be eliminated, for
example by replacing λ2 with λ −λ1, where λ = λ1 +λ2 is the observed constant fan-out in the
product graph. By observing the sizes of three layers, three equations can be obtained from which
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the values of N1, N2 and λ can be solved, which is enough to provide the desired estimates. As
before if more layers are available, the parameters can be estimated using the least square method.
Using random simulation we established that this formula is effective and correct.

It should be noted that the above can easily be extended to more than two components. For
example, in case of a product graph consisting of three random transition systems, equation (14)
becomes:

|∂BT1×T2×T3( j)|=
j

∑
k=0

j−k

∑
l=0
|∂BT1(k)| · |∂BT2(l)| · |∂BT3( j− k− l)|. (17)

4.3 Experiments with state spaces of realistic systems
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1e7

188569
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0 10 20 30 40 50 60 70 80 90 100 110

Figure 2: Estimates of the reachable state space of the firewire protocol

We are interested in whether the estimates using product state spaces give a better prediction
for the sizes of state spaces that we encounter in practice. In figures 2 and 3 the results are
provided for the firewire protocol [9] and the concurrent alternating bit protocol [10]. They are
representative for other similar experiments that we have done. The sizes of the layers used in the
experiments are provided in [7].

On the x-axis the indices of all layers are indicated. On the y-axis the layer sizes, the estimated
number of reachable states and the estimated fan-out are depicted. For the estimated number of
states we use a logarithmic scale. The red squares denote the estimates assuming that the state
space is a single random state space. The blue circles indicate the estimated number of states
assuming that the state space consists of two random parallel systems. The estimated fan-outs for
two parallel systems are drawn using purple ellipses and they use a linear scale. In figure 2 1e5
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Figure 3: Estimates of the reachable state space of CABP

corresponds to a fan-out of thousand and in figure 3 100 corresponds to a fan-out of 10. The layer
sizes are depicted by a brown dot, also on a linear scale. In figure 2 100 corresponds to a layer
size of 5000 states. In figure 3 10 corresponds to a layer size of 25. The numbers are calculated
using the least square method using Matlab [1] (see [7] for the actual MATLAB code used). To
prevent the individual sizes of the components to become very different in the estimations, we
add a small penalty (N1−N2)

210−6 to the squared difference of input data and estimation. The
knowledge of the fan-out λ is not used. So, for the blue circles variables λ1, λ2 and N1 and N2 are
estimated. Using these the size of the reachable state space is calculated and put in the figure.

It is obvious that the red boxes structurally underestimate the size of the reachable state space,
where the blue circles do quite well. The figures in table 1 and figure 2 for the estimated reachable
state space assuming that the state space is not parallel are different (compare Nreachable with
the red squares). This difference is due to the different estimation techniques. In section 3 it is
explicitly assumed that the number of states cannot be less than the number of observed states
(concretely, the lowerbound im in equation 6). In the estimation in this section, using the least
square method, this information is not used. But the common denominator, namely structural
underestimation of the reachable state space, is visible in both cases.

The fact that the obtained blue estimates are doing much better supports the claim that ‘real
systems’ behave as parallel non communicating state spaces. That the results contain variations is
to be expected. If we look at 3D visualisations of the state space of the firewire protocol, then
the two peaks in the blue circles at layers 30 and 63 match very neatly with the disks in this 3D
visualisation [6]. It is unexpected that these local peaks are very high, especially because one
expects a dampening effect of taking all layers into account. In this light it is also strange that the
red boxes are hardly influenced by these two peaks in layer sizes.

5 Estimating the presence of residual bugs

In this section we show that it matters very much if the system has a product graph structure if
it comes to the effectiveness of testing for software bugs. It shows that if graphs have a single-
threaded random structure, testing for the presence of bugs is virtually impossible, but if graphs
have a product structure this is quite feasible.
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Figure 4: The probability of incorrectly declaring a system error free in G at the left and G1, . . . ,Gp

at the right for p = 3 and n = 10.

Assuming that realistic systems have a parallel structure explains why in practice many bugs
are found quite easily by testing. Only rarely bugs are hard to find and such bugs typically occur
when a number of components are in very specific states simultaneously. It suggests that bugs in
programs must be classified depending on the number of components that must be in a specific
state for such a bug to occur.

We calculate how long a successful random walk through the state space must be to conclude
with error α that there are no buggy states in the system. For this purpose we introduce two
stochastic variables, namely M which represents the number of states in a walk without encoun-
tering a bug, and K which is the number of states with a bug. We assume that K is uniformly
distributed where there are between 0 and np bugs. This upper bound on the number of bugs has
little influence on the length of the random walk satisfying small α . So, we could as well assume
that we know that there is a small upper bound on the number of states with bugs, without altering
the results.

We compare a single random state space G of size np with the product of p state spaces
G1, . . . ,Gp, each of size n. We first calculate the probability that although there are states with
bugs in the system, a random walk of size m does not encounter an error state in G. We want
this probability to be smaller than α such that if we conclude that the system is free of bugs on
the basis of a random walk of a certain size, the probability that this is incorrect is smaller than
α . Our estimation assumes that each time we visit a state its outgoing transitions go to random
other states, possibly different than in a previous visit. Strictly spoken this is not correct as the
outgoing transitions of a state are static, and when we revisit a state in a random traversal, the
probability that the outgoing state is also already visited is higher than in our estimation. Taking
the already visited states into account is a known difficult problem, and our slightly simplified
model is already very useful to heuristically show the effect of the graph structure on testing. We
compute
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P[K > 0|M = m] =
∑

np

k=1P[M = m|K = k]P[K = k]
∑

np

k=0P[M = m|K = k]P[K = k]

=
∑

np

k=1(n
p− k)mP[K = k]

∑
np

k=0(np− k)mP[K = k]

= 1− npmP[K = 0]
∑

np

k=0(np− k)mP[K = k]

= 1− npm

∑
np

k=0(np− k)m
< α (18)

At (18) we used that we assume that errors are uniformly distributed over the interval [0,np]. So,
P[K = 0] equals P[K = k].

For the Cartesian product graph of G1 to Gp we come to the following estimation where we
assume that graph Gi has Ki error states, uniformly distributed from 0 to n. We use the notation
if(c,x,y) to represent x if c holds, otherwise it is y.

P[(∑p
i=1 Ki)> 0|M = m]

=
∑

n
k1=0. . .∑

n
kp=0 if(∑p

j=1 k j=0,0,P[M=m|
∧p

i=1 Ki=ki]P[
∧p

i=1 Ki=ki])

∑
n
k1=0 ∑

n
k2=0 . . .∑

n
kp=0P[M=m|

∧p
i=1 Ki=ki]P[

∧p
i=1 Ki=ki]

=
∑

n
ki=0. . .∑

n
kp=0 if(∑p

j=1 k j = 0,0,(1−∑
p
i=1 ki/pn)mP[

∧p
i=1 Ki = ki])

∑
n
k1=0 ∑

n
k2=0 . . .∑

n
kp=0(1−∑

p
i=1 ki/pn)mP[

∧p
i=1 Ki = ki]

= 1−
P[
∧p

i=1 Ki = 0]
∑

n
k1=0 ∑

n
k2=0 . . .∑

n
kp=0(1−∑

p
i=1 ki/pn)mP[

∧p
i=1 Ki = ki]

= 1− 1
∑

n
k1=0 ∑

n
k2=0 . . .∑

n
kp=0(1−∑

p
i=1 ki/pn)m < α

To obtain the third expression in the derivation above, we observe that a step that does not reach a
state with a bug, does not hit such a state in any of the components. A component i has probability
(n− ki)/n to avoid a state with a bug. Assuming that with equal probability each component can
do a step, the probability to avoid a state with a bug is ∑

p
i=1(n− ki)/pn. So, the probability to

avoid m times a buggy state is (1−∑
p
i=1

ki
np)

m.
In figure 4 the estimates are depicted for a system with 1000 states versus three systems with

10 states. The difference is quite obvious. In the monolithic system a test run far longer than
the number of states must be traversed to declare the system error free with α = 0.05. With the
parallel system a test run of far less than 200 steps is more than sufficient.

Notably, the number of required test runs only increases with the number of states per compo-
nent. So, for four or more components with each 10 states test runs of approximately 200 are also
enough to obtain a certainty of 95% on the freedom of errors, whereas with the monolithic system
test runs must have a length of millions of steps to obtain the same effect.
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6 Conclusions and future work

Despite the in our view promising experiments showing that P-parallel random transition systems
are a good candidate to act as a model for real behaviour, more experimental data is required to
determine whether this is really as general as we think. Besides this, there are quite a number of
open technical questions. Solving Ni and λi in equation (14) is too time consuming, taking hours
for all 107 layers of the firewire protocol. It is unclear how to determine the index of parallelism
P from experimental data. We fixed P a priori to 2 and 3 [7]. It is unclear how to calculate the
probability of a random run in a directed graph to hit a bug (even when P = 1).

Understanding the effectiveness of ‘highway’-search as mentioned in the introduction is still
far beyond reach. This paper only contains a possible single step towards answering it.
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