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Abstract: This paper proposes a Formal Co-simulation (FoCoSim-WSN) frame-
work to provide a good software engineering practice for wireless sensor networks
(WSNs) including high-level abstraction, separation of concerns, strong verification
and validation (V&V) techniques. This provides an iterative interworking frame-
work which combines the benefits of existing simulation and proof-based formal
verification approaches. The complexity of software development for the sensor
node controller is reduced by separating the controller model from the simulation
environment. Controller algorithms from application through network and MAC
layers can be formally developed and verified in a layered manner using the refine-
ment method of the Event-B language and its RODIN toolkit. The absence of certain
classes of faults in controller models which cannot be guaranteed by simulation test-
ing techniques, can be proved by formal methods. On the other hand, the MiXiM
simulation of physical environment provides full confidence about reliability and
performance analysis through long running simulation via wireless channels. Our
prototype development confirms the flexibility of the framework for interworking
between formal, simulation and co-simulation modelling.

Keywords: formal modelling and analysis, Event-B, proof, simulation, wireless
sensor network, co-simulation

1 Introduction
A Wireless Sensor Network (WSN) is a distributed system of cooperating devices that performs
distributed monitoring applications in a physical environment over a self-organised wireless net-
work topology. In traditional WSN development, WSN requirements are tackled with a “code-
and-fix” process [Pie10] in which the code is implemented on the real hardware. The WSN ap-
plication is developed under the constraints of display-less, low-level specific platform and low-
power design. In safety-critical application domains where WSNs are increasingly being adopted
- from healthcare to military - the demand on verification is high [Pie10, BRWR10, ACB10].
Functional requirements including safety/liveness properties have to be considered together with
performance and reliability requirements of the network.

Simulation is usually used at an early stage of designing and testing communication proto-
cols because it provides the higher level of abstraction [KM07, ISH10]. It abstracts away from
specific operating system platforms whereas other testing techniques such as emulation and lab-
oratory testbeds do not. In current simulation practice, protocols and algorithms are layered to
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create a communication networking protocol suite by a standard protocol stack scheme. These
are integrated with a stochastic environment framework of wireless channel, radio and analogue
models to generate the long running testing scenarios. The simulation and performance analysis
such as network latency and energy consumption are conducted independently from any specific
platform. However, code for simulation is developed monolithically; current practice is a long
way from model-based software engineering process. The specification of the behaviours of the
software controller algorithm and the behaviour of the environment are implemented in simu-
lation at the same time. This gives significant complexity to manage during development and
makes it hard to understand the code. Thus, a clear separation of concerns is required in this
aspect. Furthermore, critical design errors are not guaranteed to be discovered during simula-
tion. This technique cannot guarantee the absence of certain classes of faults as discovered in
[IPM13].

Formal Methods have been considered to design and verify the WSN application and protocol.
For example, formal analysis is proposed in [MRDD10] to detect critical network elements with
OMNeT++. The framework proposed by [WBLS09] also indicates the translated formal specifi-
cation in PVS (Prototype Verification System) from the logic-based Network Datalog language
(NDlog) to guarantee the protocol behaviour. In [IPM13], the proof-based formal method gives a
strong guarantee for the absence of faults. Certain functional requirements and safety properties
are encoded as invariants in Event-B and it is proved that this invariant is always satisfied by
the system behaviours before actual implementation. However, the complexity and scalability
of applications need long running simulation behaviours to give full confidence about reliability
and performance requirements in formal models.

To increase the quality of current SE practice for WSN development, this paper is implement-
ing the vision proposed in [PM12]. We construct the infrastructure for co-simulation between
formal Event-B WSN models and MiXiM environment simulation engines. This provides an
integrated set of methodologies for WSNs: (S)imulation, (F)ormal and (C)o-simulation;see Fig-
ure 1. The FoCoSim-WSN framework is proposed which is a formal co-simualtion method for
Event-B and MiXiM for WSNs.

(S) S-style development is the traditional WSN development style that layers the protocol
algorithms and evaluates the network performance as mentioned earlier. Target code based
on the simulation model is generated together with standard platform-specific libraries.
Node level simulation or emulation takes place to test the correctness and performance of
the real code before the real world deployment.

(F) F-style modelling represents the requirement specification, modelling and verification in a
formal modelling language [IPM13, Abr07, ABHV06]. Each protocol algorithm is layered
and verified through refinement steps at network level development. The verified network
model is produced before different refinement paths are encoded with requirements for the
specific dependent platform at node level. The final, verified node code is generated with
standard libraries for a specific hardware platform from this verified node model.

(C) our C-style prototype framework enables the complexity of development to be reduced
by separating the software controller from the environment. Formal methods provide the
controller, a formal model of code in the real nodes, containing the protocol algorithms
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separately. An environment simulator provides stochastic sensed data and radio environ-
ment, allowing simulation scenarios to be defined as required. The verified controller
model for each layer of protocol stack - ultimately, down to verified generated code - is
co-simulated with the environment model to perform the performance analysis. A master
co-simulation language and algorithm is required to integrate and manage the component
simulators. The formal Event-B controller model simulated by ProB can co-simulate with
a sensor environment provided by MiXiM via this master.

Figure 1: Vision of co-simulation approach for WSN development

In this work, our FoCoSim-WSN framework cosimulates between node controller models on
the Event-B simulation and sensor environment models on MiXiM simulation. Each network
algorithm at each protocol layer is separated from the wireless and physical environment and
modelled in Event-B language. A master algorithm is developed by Groovy language to coor-
dinate between network algorithm and environment models. As MiXiM can provide a socket
interface in order to integrate its network models together with other simulation environment
such as the Vehicles in Network Simulation (Veins) [SGD11] framework1, we mock-up our own
interfaces for MiXiM containing a socket interface for co-simulation. This work focuses on the
network level of the development. We exercise our FoCoSim-WSN framework with the two ab-
straction layers at the network level development, application (app) and network (net). The two
lower layers, MAC and physical (phy), are our work in progress. The node level development
remains work for the future.

The remainder of this paper is organised as follows. Sections 2 and 3 discuss related work
and introduce the running case study, an environment monitor system. In Section 4, we demon-
strate the strengths and weaknesses of S-style development. Section 5 discusses the F-style ap-
proach showing the benefit of specifying and verifying the network algorithm model. We apply a
shared-event decomposition to separate the controller from the environment. The main section is
Section 6 which introduces our prototype C-style framework (FoCoSim-WSN) for co-simulation
and demonstrate with the case study. Finally Section 7 gives some conclusion and future work.

1 see Veins -http://veins.car2x.org/
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2 Related Work

Recently, co-simulation frameworks have been proposed in order to co-ordinate between the
software controller model and physical simulation environment. DESTECS 2 [BKL+10] is an
integrative co-simulation framework for co-modelling and co-simulating between discrete-event
(DE) and continuous-time (CT) of physical models via XML-RPC Interface. The formal simula-
tion of ADVANCE3 [ADV13] provides a framework for integrating multi cyber-physical systems
using different simulation engines via Functional Mock-up Interfaces (FMIs)4. A master-slave
algorithm to execute the co-simulation is implemented in the Groovy language of the ProB tool.

A hybrid design framework is needed for WSN development when the WSN application
closely interacting physical environments has become more complex. The model-based sys-
tem design (MBSD) framework for WSNs proposed by [WB12] co-simulates event-triggered
components illustrating network algorithms together with continuous dynamic behaviour exhib-
ited by physical environment. HybridSim[WB13] adopts FMI standard to co-simulate between
sensor application models provided by TinyOS and simulation environment generated by Mod-
elica. SysML (based on UML) is applied to the work described above [WB12, WB13] to express
the application abstraction. Their work is similar to our work in which the model of the node
is co-simulated with the environment. However, their node models do not contain formal ele-
ments that leads to lack of formal precise semantics. The closest to our co-simulation framework
is NMlab [HSB10] which provides a co-simulation framework for Matlab and ns-2 simulator.
The system controller implemented in Matlab co-simulates with the network models provided
by ns-2 by using socket interfaces. Similar to this, HarvWSNet [DBMS13], a framework for en-
ergy harvesting WSNs, combines the strengths of two development toolkits via a standard socket
interface. The power management model is implemented in Matlab to communicate to the wire-
less sensor network communication model provided by WSNet. However, the communication
algorithms at each protocol layer are still implemented in WSNet simulator.

3 Case Study

To demonstrate the effectiveness of our approach, we have extended an environment monitoring
system from our preliminary work [IPM13]. This case study is derived from deployed projects
described in [BIS+08]. Each sensor node in a network senses data such as temperature and wind
speed periodically. This environmental data is regularly sensed and routed wirelessly via multi-
hop from the source node to a sink node. As a small number of nodes was initially deployed
in SensorScope project to evaluate the first use of multi-hop [BIS+08], we implemented our
preliminary models consisting of 7 nodes (6 sensor nodes with node 0 representing a sink in
Figure 2a) to evaluate the first demonstration of a multi-hop network.

Nodes in the simulation represent the wireless devices with their protocol stacks as shown in
Figure 2b. The data that has to be sent to a data sink is collected by Application Layer before
sending down to lower layers. The task of the Network Layer is to manage the route tree used to

2 see DESTECS -http://www.destecs.org/
3 see ADVANCE -http://www.advance-ict.eu/
4 see FMIs -https://www.fmi-standard.org/
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Figure 2: An example of (a) a multi-hop network topology and (b) node’s structure

decide the next hop for transmission towards the sink. MAC Layer manages power consumption
by switching radio on/off to sending/receiving packets and provides an acknowledgement (ACK)
mechanism for reliable transmission. The lowest layer, the Physical layer, performs the radio
propagation for packet sending and receiving.

In this work, we focus on the experiment at the two upper layers, application and network
layers. SensorApp, a periodic sensing protocol in which the sensed packet is transmitted period-
ically down to the lower layer, is chosen to implement at the application layer. For the network
layer, MintRoute, a link quality protocol is selected to be an efficient routing protocol.

MintRoute [WTC03] is a routing algorithm to build the route tree from every node towards a
sink. The route tree is dynamically changed based on the link quality between nodes. This link
quality is adjusted by the successful rate of transmitted packet delivery. MintRoute performs four
major steps: (1) neighbourhood discovery - one neighbour discovers another neighbour based on
broadcast beacon messages, (2) link quality estimation - the estimation of reception link quality
ratio is calculated periodically by observing the successful rate of receiving packets, (3) route
broadcast - the transmission link quality ratio of each neighbour is estimated periodically based
on the reception link quality ratio attached in “route update message”, and (4) parent selection -
this is performed periodically to specify one of the neighbours for routing. The path cost towards
a sink is calculated based on both two ratios (reception and transmission). Link which has these
two ratios less than the quality threshold is not considered. A neighbour with the smallest path
cost is chosen as a parent.

4 S-style modelling

To explore the benefits and drawbacks of S-style development, this section describes the simula-
tion experiment on the case study described in the previous section.

MiXiM5[KSW+08] provides a development framework for the simulation and performance
analysis of wireless networks including WSNs. It provides generic and flexible component ar-
chitecture for models based on a standard network simulation engine, OMNeT++6. This layers
the development environment into the standard IP protocol stack as shown in Figure 2b. Each

5 see MiXiM -http://mixim.sourceforge.net/
6 see OMNeT++ -http://www.omnetpp.org/
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layer can communicate with the adjacent layer via communication interfaces named gates. In our
simulation model, we extended the base modules (the general structure) for application and net-
work layers provided by MiXiM to implement SensorApp and MintRoute respectively. The con-
figuration parameters were replicated from the real configuration used in SensorScope [BIS+08],
as discussed in our previous work [IPM13].

This exercise expresses the strength and weakness of S-style development. The network al-
gorithms can be analysed with the performance evaluation such as the load distribution of the
network and the network latency as described in the introduction. However, based on our pre-
vious work [IPM13], simulation enables us to discover the loop problem occurring in the route
tree but this problem cannot be revealed at all running experiments we performed. This leads us
to fix and prove this problem in formal models. Thus, simulation cannot guarantee that the fault
in the algorithm will be discovered.

Furthermore, this modelling style causes complexity in development. The controller represent-
ing the specific protocol algorithm for each layer in protocol stack has to be completed together
with environment elements provided by the standard interface in simulation toolkit (wireless
channel communication and connectivity, the library functions - implementing sending/receiving
packet and packet encapsulation/decapsulation) to form a single simulation model. This leads us
to encounter difficulties of managing such a complex simulation model (especially in MintRoute
algorithm implemented at the network layer). The next section will demonstrate how to reduce
this complexity by using Event-B modelling techniques. Each single controller for each proto-
col stack in a simulation model is separated and implemented into multiple layers by using the
refinement technique.

5 F-style modelling

5.1 Overview of Event-B Modelling

Event-B [Abr07] is a proof-based formal method for specification and verification based on set
theory and first order predicate logic. An Event-B model consists of two parts: context and ma-
chine. The context describing the static part contains carrier sets, constants and axioms. The
machine represents the behavioural part which consists of three elements: variables, invariants
and events. States are described by typed variables. Invariants that state the guaranteed prop-
erties of the model express the functional requirement and safety property. Events in Event-B
give a state transition. Each event contains guard(s) and action(s). The event guards express
the necessary conditions that enable the event to successfully and usefully trigger, and actions
describe the state transitions over the variables. Proof Obligations (POs) are used to state that
invariants are satisfied by every event.

Event-B Tool: RODIN [ABHV06] is an open tool platform based on Eclipse. This extensi-
ble tool was developed by the European Union ICT Project DEPLOY7(2008-2012). RODIN
includes editors, a proof obligation generator (PO-generator), graphical front ends, theorem
provers and the ProB8 animator and model checker.
7 see DEPLOY - Industrial deployment of system engineering methods providing high dependability and productivity:
FP7 Project 214158 http://www.event-b.org
8 see ProB - http://www.stups.uni-duesseldorf.de/ProB/
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Refinement: refinement is a method that allows software engineers to manage the complexity
of the development by layering the abstraction of the models. A simple abstract view of essential
requirements is implemented first. More requirement or design detail is added at each refine-
ment step until implementation, data structure and algorithm are added to the concrete model in
order to bring the model to become close to the real implementation. Refinement POs state that
concrete refining events must correctly implement their counterpart abstract refined events.

Shared-Event Model Decomposition: the complexity of large system development is man-
aged by breaking a single machine into sub-machines [But09, SPHB11]. These sub-machines
interact by exchanging messages via shared events. The shared-event decomposition Rodin plug-
in9 is applied to this work to decompose a software controller from a sensor environment.

5.2 WSN Development in Event-B

The benefit of using the F-style for WSN development described in Section 1 is presented in this
section. Event-B is used to create a WSN specification and its verification. The development
approach can be shown in Figure 3. The two upper layers: Application and Network layers are
implemented. The Event-B refinement technique is used to layer the model which corresponds
to each layer of protocol stack. We apply our MintRoute models proposed in [IPM13]. The
refinement structure and some events are adjusted to support our co-simulation framework. Six
refinement models are created. This begins with a very simple abstract model (M0) in which the
data packet is transmitted to a sink in one atomic step. Then, the first and second refinement mod-
els (M1-M2) fulfill the operation for SensorApp. These refinement models define the neighbour
node to determine multi-hop network for broadcasting mechanism before they are refined down
to implement MintRoute. Each step of MintRoute protocol is layered (as in M3-M5, Figure 3)
from neighbourhood discovery to parent selection as described in Section 3. The models for
the C-style of co-simulation development are also prepared by separating the software controller
from the environment for both layer protocols. Shared event decomposition technique is applied
to decompose the second and fifth refinement models corresponding to application and routing
layers respectively. Note that separated environment models ENV2 and ENV5 are used for the
controller verification and validation before decomposition. In the C-style development, they are
replaced with the concrete simulation environment implemented in MiXiM.

For the route tree construction verification, we create safety invariants as shown in Figure 4.
This shows us the benefit of proof to indicate no-loop property as a necessary invariant proved
after simulation revealed it. We apply the definition of transitive closure (tcl) and the no-loop
property proposed by Abrial[Abr10] and applied in [DBA08, HKBA09]. We define the route
tree in @inv3 2. The initialisation of variable nodes contains only a sink ({Sink}) and the route
tree (cRouteTree) is initialised to be an empty set. As soon as a node is explored to discover its
parent, it is recorded in nodes with a pair between this node and its parent put in cRouteTree. Flag
completedRoute in invariant @inv3 3 indicates the completion of route tree construction. Thus,
invariants @inv3 2 and @inv3 3 represents that when the route tree is finished, each sensor node
must have its own parent. Furthermore, safety invariant @saf3 1 illustrates the no-loop property.
This can guarantee that there are no loops in the routing tree. Theorem @mth3 3 confirms every

9 see shared-event decomposition plug-in - http://wiki.event-b.org/index.php/Decomposition Plug-in User Guide
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Figure 3: Event-B Development Approach

node must have a route to a sink. Theorems @mth3 1 and @mth3 2 are introduced to help the
proof of @mth3 3.

Figure 4: Safety invariants regarding the route tree in the fifth refinement model (M5).

5.3 Model Decomposition, Verification and Validation

As WSN is a distributed system in which each node exchanges data via a channel interface,
shared event decomposition [But09, SPHB11] is used to separate software controller from en-
vironment as shown in Figure 5. The software controller contains the necessary variables and
events expressing communication networking protocols and algorithms such as SensorApp and
MintRoute whereas environment consists of variables and events regarding the connectivity,
channel and sensing environment. We design these two subcomponents to exchange messages
via shared events. The steps of communication can be described as follows:

(P1) The environment activates each sensor node in the controller to sense and create a data
packet via a shared event (sensing).

(P2) Each sensor node transmits a data packet down to the channel. The shared event (send down)
passes the forwarder node id and packet information as channel parameters (chnPar).

(P3) The channel indicates the neighbour of the current forwarder.
(P4) The channel returns the neighbour list and the forwarded packet to every neighbour

controller via the shared event (send up) to indicate the operation transmitting a packet
up to specific receivers.

(P5) Each neighbour node (including a sink, e.g. nodes 0,1,4,3 of sender node 2, Figure 5)
receives a forwarded packet (receive pkt and sink recv pkt) or detects a duplicated packet
(receive dup pkt).
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Figure 5: Steps of communication between a software controller and environment

Model Verification by POs: we verify the properties of a machine by proving that every event
still satisfies invariants. 330 POs were discharged, in which 85 percent of the total number of POs
were proved automatically by RODIN. This includes the invariant to guarantee that no packets
are lost under the perfect network. Furthermore, the safety invariant regarding the absence of
loop problem was discharged automatically. However, the remaining were proved interactively.
This is because invariants and tcl properties include quantified predicates and graph properties.

Model Animation and Validation: we create the testing scenarios affecting the different link
quality ratios that satisfy all desired requirements and strategies. These are used to animate and
trace the list of operations to validate the formal model on ProB.

6 C-style Co-modelling
6.1 FoCoSim-WSN Framework for WSNs

We develop a prototype FoCoSim-WSN framework of node controller models on the Event-B
simulation and sensor environment models on MiXiM simulation as shown in Figure 6. Event-B
layers each communication protocol and algorithm to create and verify node controller models
through refinement steps, whereas each protocol layer in MiXiM environments only contains
gates (without any protocol algorithms) for communicating with the adjacent layer. In order to
co-simulate these models, a master is implemented in Groovy language of the ProB tool. Here
we describe the implementation of our master.

To schedule the event in the Event-B model, we implement multiple threads in the master.
Each thread creates the instance of the Event-B model representing the controller of each sensor
node which corresponds to each virtual node in the MiXiM Environment. MiXiM provides
periodic timers such as a sensing timer and route broadcast timer, which allows the Event-B
controller and MiXiM Environment models to exchange input/output periodically. TCP sockets
are implemented as data exchange interfaces on both sides. We mock-up our own interfaces for
MiXiM. FMInterface is the front-end interface which contains the synchronization event which
corresponds to the shared-event defined in Event-B. This event is scheduled at fixed intervals
and dedicated to maintain the data synchronization between the Event-B controller and MiXiM
environment. Our protocol algorithms communicate with a sensor environment by exchanging
the packet information (chnPar) and the receiving neighbour lists (nbrLst) together with the
forwarded packet via the socket program implemented in the master. SimManager is the back-
end interface where the parameters passed from FMInterface are transited down to/up from the
channel (accessed by module ChannelAccess) via the protocol stack.
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Figure 6: FoCoSim-WSN Co-simulation Framework

During the initialization phase, MiXiM initializes the physical environment such as interval
time, ratio propagation, max transmission power and path loss coefficient alpha from the config-
uration file. Virtual nodes are created and placed on the simulation area (playground) generated
by module WorldUtility in MixiM. The connection between them is established by method up-
dateNicConnection() in MiXiM’s ConnectionManager. Only nodes that are placed within the
maximal interference distance of each other can be connected. This forms the network topol-
ogy. Then, FMInterface starts requesting a connection to the Event-B controller via sockets
implemented in the master. Once the connection is established, FMInterface sends the neces-
sary information extracted from the configuration file such as the number of nodes (numNodes)
and identified sink id (SinkId) to a master. The master creates multiple threads corresponding
to the number of virtual nodes generated in the MiXiM environment before it starts creating,
initialising and loading the instance of Event-B controller model into each thread. Furthermore,
each thread contains a TimerTask which is used to schedule the sequence of the events in the
Event-B model. Then, the master relays the completion of the Event-B model initialisation to
FMInterface in MiXiM via a socket. The example of the above mentioned initialization phase
can be expressed in Figure 8.

At the simulation phase, the MiXiM begins to simulate at time 0. Every periodic time, MiXiM
sends the information to tell each controller node to start performing the operation such as sens-
ing and creating a packet. MiXiM generates sense data to the required random distribution for
each node controller. When each node creates a packet, the channel information (chnPar) in-
cluding the initial source of packet, the sequence number, the forwarder and the destination node
id (setting to -1 for broadcasting mechanism) is synchronized between the output shared event in
Event-B controller (e.g. event send down, Figure 5) and the synchronization event in FMInter-
face. The virtual packet containing this correspondent input parameter is created and transmitted
to the virtual neighbour node via the protocol stack. The receiving neighbour lists in MiXiM
of the forwarder node are synchronized back from the synchronization event in FMinterface to
the input shared event in Event-B controller (e.g. event send up, Figure 5) of each thread of
node controller. After receiving the neighbour lists, each node controller will perform the next
operation (e.g the receiving events described in step P5, Figure 5). Then, the receiving node that
is not the destination forwards/rebroadcasts a received packet to its neighbours. The steps of this
communication are the same as described for packet creation and transmission mechanism.

Proc. AVoCS 2014 10 / 15
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6.2 Co-simulation Case Study Modelling

This section describes how to use our general FoCoSim-WSN framework to implement the spe-
cific models in our case study.

(a) SensorApp co-models (b) MintRoute co-models

Figure 7: Co-simulation models.

The C-style model for mixed (Event-B/MiXiM) co-simulation is developed by reuse of F-style
formal-based and S-style simulation-based developments. Our prototype co-simulation frame-
work exercises two levels of abstraction - application and network layers as shown in Figure 7.
We reuse node controller models, M2(SensorApp) and M5(MintRoute), in F-style development
to implement in this mixed co-simulation. In the MiXiM environment, we develop two proto-
col layers, SimpleApp and SimpleNet by removing the protocol algorithms from SensorApp and
MintRoute modules in S-style. These modules are a standard module extending the base mod-
ules in MiXiM containing only packet en/decapsulation functions and gates. This enables the
corresponding Event-B controller representing the upper layer model to be able to communicate
with the lower layer in MiXiM environment via FMInterface and SimManager.

To demonstrate the iterative co-model development for each layer protocol, we start exercising
at the application layer in which only the SensorApp algorithm is separated from the simulation
environment and implemented in Event-B. In MiXiM, module SimpleApp is used as a gate for
communicating between SensorApp controller in Event-B and lower layers retaining protocol
algorithms MintRoute and S-MAC as illustrated in Figure 7a. Figure 7b shows the co-simulation
at the network layer, the co-models are implemented in the same way as in the application layer.
Module SimpleNet in MiXiM is used to coordinate between the MintRoute controller in Event-
B and the lower layer. S-MAC is still retained in MiXiM’s MAC layer. As in this Event-B
controller also contains the concrete model of SensorApp protocol containing unicast data packet
forwarding mechanism via the route, this model also co-simulates with module SimpleApp in
MiXiM.

Figure 8 shows the master algorithm interaction expanding on Figure 7a to demonstrate one
sensing cycle for SensorApp. This interaction corresponds to communication steps in Figure 5.
As we use the same Event-B controller, we design steps R1, R2 and R4 to be the same as steps P1,
P2 and P4. The input/output parameters are passed from/to shared event (send down/send up) in
order to exchange information between the controller and environment. Then, these parameters
are passed by a socket sending and receiving mechanisms (methods send and recv) as shown in
steps R2 and R4. Step R5 is implemented for a receiving node to receive the forwarded data
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Figure 8: Master algorithm for SensorApp protocol co-simulation

(a) (b)

Figure 9: Example of performance analysis results of some nodes

packet, method anyEvent provided by ProB Groovy is used to create alternative choices among
events receive pkt, receive dup pkt or sink recv pkt. Note that we do not describe the master
algorithm for the MintRoute protocol. This is because it has the co-simulation interaction step to
exchange the same input/output parameters for beacon and route packet transmission.

Considering step R3 which performs concrete operations of step P3 in Figure 5, after each
node in MiXiM environment receives channel information from FMInterface via SimManager,
the packet is generated based on this information and transmitted down to lower layers and fi-
nally a channel. Note that virtual nodes in the MiXiM environment are generated by module
SimpleApp (the same as SimpleNet for the network layer) containing only gates for transmit-
ting/receiving a data packet to/from lower layers. The forwarding node uses method sendDown
to relay a current packet down to the lower layer and finally to the channel. Method handleLow-
erMsg is used by receiving nodes for receiving a forwarded packet from the lower layer. SIM-
Manager collects information from receiving nodes to generate neighbour list. Finally, this
neighbour list is sent to FMInterface and relayed to the Event-B controller via the master.

6.3 Co-simulation Prototype Validation

In order to validate our C-style prototype, we ran our C-style co-models within 1400 seconds of
simulation time with different network topologies varying from 1-hop to 3-hop network contain-
ing 4 to 7 nodes respectively. These simulation networks were generated from the parameters
configured in the MiXiM configuration file. This performs eleven cycles of sensing periods, to-
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gether with three cycles of parent selection. We compared the performance analysis results in
C-style with that of S-style to identify the difference and weakness of C-style and S-style. How-
ever, we only found the randomness of the routing algorithm to discover the route tree. Figure 9,
for example, shows one of our co-simulation results from the network containing the topology
illustrated in Figure 2a. As shown in Figure 9a for both styles, the latency of node 2 is always
low as it always chooses a sink to be a parent. However, in Figure 9b, at two-thirds of running
simulation time, the latency of node 5 in S-style simulation is considerably high. This is because
its parent had the highest number of forwarded data packets compared to that of C-style.

6.4 Engineering Process for C-style Development

Based on our experience, our prototype FoCoSim-WSN enables three flexible modes of working
in which formal and simulation can be integrated easily.

This can start from the pure Event-B model (F-style) development in which the protocol al-
gorithm can be modelled through the refinement steps. System engineers can develop either an
early model for some high level or a refined model for more detailed level of functional ab-
straction. Then, the software controller illustrating the protocol algorithm can be separated from
a sensor environment by using the decomposition technique. This separated controller is also
prepared for C-style co-simulation.

On the other hand, the developed controller algorithm in pure S-style simulation model can be
separated from the environment and implemented in the Event-B model in the same way. The
separated environment, which will be used by C-style co-simulation, still retains only the com-
munication gates (no algorithm) together with the standard function in MiXiM such as packet
encapsulation and decapsulation. However, instead of developing the sensor environment from
scratch, reusing our standard module for communicating between two upper layers (such as Sim-
pleApp and SimpleNet) is another alternative way to prepare simulation environment.

The next step is C-style co-simulation in FoCoSim-WSN framework. The Event-B controller
model from F-style and the separated sensor environment from S-style are co-simulated via a
master. To support the development with reuse, our master is modularized into the different
interfaces such as WSNSocket, TimerTask and EventBCtl for encapsulating the functionality of
the socket program, scheduling events for multiple threads and Event-B controller model inter-
face respectively. In order to develop a specific master algorithm, the system engineers only
customize the EventBCtl to be compatible with their Event-B model (as we have done for our
proposed co-simulation models for different layers). During implementing a master algorithm,
the synchronization (shared) events for communicating between these two models are needed to
be identified. However, the automatic master code generation is still left for future work. This
work has accomplished the generic modules for only two upper layers: application and network.
The lower standard modules for the lower layer such as MAC is still required and is work in
progress.

7 Conclusion and Future Work

This paper has demonstrated the co-simulation approach to the extension of current SE for WSN
development. Our prototype development shows that the framework integration for (F)ormal,
(S)imulation and (C)osimulation can combine the benefits between two modelling approaches.
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The complexity to manage in communication protocol and algorithm development can be re-
duced by the refinement approach provided by Event-B. Furthermore, Event-B offers strong
V&V in which the absence of certain classes of faults such as the loop problem in the route tree
can be guaranteed by POs. Whereas a stochastic environment framework of wireless channel,
radio and analogue models provided by simulation can help engineers to analyse and evaluate the
performance of the network such as network latency and congestion. Our prototype FoCoSim-
WSN framework provides an iterative interworking scheme through multiple refinement levels.
System engineers also can work either F- or S-style development before the separated controller
and environment are combined and co-simulated into our prototype framework. This framework
can be flexible and utilized to integrate between F-, S- and C-style modelling. System engineers
can implement their models cross over into these three flexible modes of working easily.

In the future, we will perform the experimentation of this preliminary prototype framework
through long running testing scenarios. The real network deployment problem will be addressed
by this prototype framework as expressed in [IPM13]. Node failure, unreliable connection and
buffer overflow scenarios will be injected into our co-simulation. The bottleneck problem will
be tackled by limiting the queue size through long running simulation. “Killer” traces will be
seeked to validate formal Event-B models. More dense network models will be considered in
order to evaluate the reliability of this framework and explore the network congestion problem.
Code generation experiments from the node controller for the real node is still promising for
our future work. Open research issues are the node level co-simulation development and the
extension for multi-cosimulation.
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[KSW+08] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. K. Haneveld, T. E. V.
Parker, O. W. Visser, H. S. Lichte, S. Valentin. Simulating wireless and mobile
networks in OMNeT++ the MiXiM vision. In Simutools. Pp. 71:1–71:8. 2008.

[MRDD10] P. Matouek, O. Ryav, G. S. De, M. Danko. Combination of Simulation and Formal
Methods to Analyse Network Survivability. In SIMUTools. P. 6. 2010.

[Pie10] G. P. Pietro. Software engineering and wireless sensor networks: happy marriage
or consensual divorce? In FoSer. Volume 4, pp. 283–286. 2010.

[PM12] M. Poppleton, G. Merrett. Towards a Principled and Evolvable Approach to Soft-
ware Development for Future Wireless Sensor Networks. In SESENA. 2012.

[SGD11] C. Sommer, R. German, F. Dressler. Bidirectionally Coupled Network and Road
Traffic Simulation for Improved IVC Analysis. IEEE TMC 10(1):3–15, 2011.

[SPHB11] R. Silva, C. Pascal, T. S. Hoang, M. Butler. Decomposition tool for Event-B. SPE
41(2):199–208, 2011.

[WB12] B. Wang, J. S. Baras. Integrated Modeling and Simulation Framework for Wireless
Sensor Networks. WETICT 0:268–273, 2012.

[WB13] B. Wang, J. S. Baras. HybridSim: A Modeling and Co-simulation Toolchain for
Cyber-physical Systems. DS-RT ’13 0:33–40, 2013.

[WBLS09] A. Wang, P. Basu, B. T. Loo, O. Sokolsky. Declarative Network Verification. In
PADL ’09. Pp. 61–75. 2009.

[WTC03] A. Woo, T. Tong, D. Culler. Taming the underlying challenges of reliable multihop
routing in sensor networks. In SenSys. Pp. 14–27. 2003.

15 / 15 Volume 70 (2014)


	Introduction
	Related Work
	Case Study
	S-style modelling
	F-style modelling
	Overview of Event-B Modelling
	WSN Development in Event-B
	Model Decomposition, Verification and Validation

	C-style Co-modelling
	FoCoSim-WSN Framework for WSNs
	Co-simulation Case Study Modelling
	Co-simulation Prototype Validation
	Engineering Process for C-style Development

	Conclusion and Future Work

