
Electronic Communications of the EASST
Volume 70 (2014)

Proceedings of the
14th International Workshop on

Automated Verification of Critical Systems (AVoCS 2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

Leo Hatvani, Alexandre David, Cristina Seceleanu and Paul Pettersson

15 pages

Guest Editors: Marieke Huisman, Jaco van de Pol
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Adaptive Task Automata with Earliest-Deadline-First Scheduling

Leo Hatvani1, Alexandre David2, Cristina Seceleanu3 and Paul Pettersson4

1leo.hatvani@mdh.se
3cristina.seceleanu@mdh.se

4paul.pettersson@mdh.se
Mälardalen University

Västerås, Sweden

2adavid@cs.aau.dk
Aalborg University
Aalborg, Denmark

Abstract: Adjusting to resource changes, dynamic environmental conditions, or new
usage modes are some of the reasons why real-time embedded systems need to be
adaptive. This requires a rigorous framework for designing such systems, to ensure
that the adaptivity does not result in invalidating the system’s real-time constraints.

To address this need, we have recently introduced adaptive task automata, a frame-
work for modeling, verification, and schedulability analysis in adaptive, hard real-time
embedded systems, assuming a fixed-priority scheduler.

In this work, we extend the adaptive task automata framework to incorporate the
earliest-deadline-first scheduling policy, as well as enable implementation of any
other dynamic scheduling policy. To prove the decidability of our model, and at the
same time maintain a manageable degree of conciseness, we show an encoding of
our model as a network of timed automata with clock updates. To support this, we
also show that reachability in our class of timed automata with updates is decidable.
Our contribution helps to streamline the process of designing safety critical adaptive
embedded systems.

Keywords: model-checking, task automata, earliest-deadline-first scheduling

1 Introduction

One way to enable real-time embedded systems to cope with environment, application, or platform
changes is to introduce adaptivity at the design phase of system development. Adaptivity lets
the system adjust to a new situation, but at the same time may introduce new errors such as
breached timing constraints or other extra-functional requirements. Our goal is to propose a way
to streamline modeling and verification of adaptive embedded systems (AES) in order to minimize
the introduction of such errors at the design stage.

In the framework of adaptive task automata (ATA) that we have recently proposed [HPS12],
we have started to address this need by providing formal support for modeling the AES behavior,
simulation of the system execution, and verification of the schedulability. By formally verifying the

1 / 15 Volume 70 (2014)

mailto:leo.hatvani@mdh.se
mailto:cristina.seceleanu@mdh.se
mailto:paul.pettersson@mdh.se
mailto:adavid@cs.aau.dk

Adaptive Task Automata with Earliest-Deadline-First Scheduling

t1

t2

C D
t1 6 8
t2 3 3
t′2 2 2

t1

t′2

t1 t2
x ≥ 3

t1
t2x ≥ 3 ∧ sched(t1, t2)

t′2
x ≥ 3 ∧ ¬sched(t1, t2)

(a) (b)

x ≤ 3 x ≤ 3

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 1: An adaptation example: (a) task automaton model, and (b) ATA model.

system’s schedulability, we ensure that the system is going to meet its hard real-time specifications
as well as satisfy any other extra-functional properties.

In our previous work on adaptive task automata, we have assumed fixed priority scheduling
(FPS) policy. In this work we are extending the framework to support dynamic scheduling
policies by incorporating the earliest-deadline-first (EDF) scheduling policy into the framework.
Hereinafter we will refer to the specific variant of ATA with the EDF scheduling policy as ATAEDF.

The main contribution of this work is to find solutions to the challenges of verifying the
EDF schedulability of hard real-time tasks, in ATA. To tackle this, we show that verification
of schedulability in ATAEDF, described in Section 2, is decidable, by proposing an encoding of
the framework as a network of timed automata with (clock) updates (Section 3). We present a
summary of the proof of bisimilarity between the model and its encoding as well as decidability
of reachability for our class of timed automata with updates (Section 4).

2 Adaptive Task Automata

The adaptive task automata framework builds on top of task automata [FKPY07] by providing
predicates that influence task release patterns based on the content of the ready queue. The task
automata framework, in turn, is based on timed automata [Alu99] extended with: tasks that can
be released upon entering locations, a queue, and a scheduler to handle the released tasks and
simulate their execution. Since the current work elaborates on ATA extensively, we refer the
reader to the cited literature for more in-depth information.

In our model, we assume a uniprocessor system with independent, non-suspending tasks. For
each task, computation time and relative deadline are known and are specified as natural numbers.
At any point in time, there can be at most one task instance (job) per task in the queue and will be
also referred to as task.

2.1 Introductory Example

As a simple example, consider the set of tasks in Figure 1. Each task is characterized by its
execution time C and a relative deadline D. Figure 1(a) models the release of the task t1 at time 0
by annotating the initial location (double concentric circle) with the task. Task t2 is released in the
second location after 3 time units. The delay is modeled by adding a zero-initialized clock (x) to
the system, annotating the initial location with the invariant x≤ 3 that models that the location
will be exited after at most 3 time units, and adding a guard x≥ 3 on the edge, denoting that the

Proc. AVoCS 2014 2 / 15

ECEASST

edge will not be taken until at least 3 time units have passed.
If we schedule the model in Figure 1(a) using EDF, the deadline of the task t1 will be reached

before the task has a chance to complete. Assuming that we have t ′2, a lower quality alternative
to task t2, having a lower computation time, we could release t ′2 instead. To be able to chose the
variant of the task to be released, we have introduced the following predicates in our previous
work [HPS12]:

• inqueue(ti) which is true iff the task ti is waiting in the ready queue or currently executing.

• sched(ti) evaluates whether the task ti is going to complete its execution by the deadline.

• sched(ti, t j), assuming that the task ti is already in the queue, evaluates whether it will
complete in time if the task t j is released into the queue.

By incorporating the predicate sched(ti, t j) into the model of Figure 1(a), we get the model
presented in Figure 1(b). Here, task t2 is released only if it will not disrupt task t1, otherwise, task
t ′2 is released. With this modification, which can be seen as adaptive behavior, both tasks can
successfully complete.

2.2 Overview of the Existing Framework

In ATA, the ready queue is a sequence of tasks ordered by the scheduling policy. Each task ti in
the ready queue is defined by two real values ci and di. They represent the remaining execution
time until completion (ci) and the time until the task reaches its deadline (di).

Let us denote by T the set of tasks, and by P(T), ranged over by p, the set of various Boolean
combinations of the above predicates over the set of tasks. Utilizing this notation, an adaptive
task automaton can be defined as follows.

Definition 1 [HPS12] An adaptive task automaton over actions Act, clocks X , invariants
Φ(X), guard constraints B(X), tasks T , and predicates over tasks P(T) (Definition 3) is a
tuple 〈Act,X ,L, l0,E, I,M〉 where L is a finite set of locations, l0 ∈ L is the initial location,
E ⊆ L×B(X)×P(T)×Act× 2X ×L is the set of edges, I : L 7→ Φ(X) is a function assigning
each location an invariant, and M : L ↪→ T is a function annotating locations with tasks.

Guard constraints B(X) are a set of conjunctions of atomic constraints of the type x ∼C or
x− y∼C where x,y ∈ X are clocks, C is a natural number, and ∼∈ {<,≤,=,≥,>}. Invariants
Φ(X) are a set of conjunctions of atomic constraints of the type x∼C where x ∈ X is a clock, C is
a natural number, and ∼∈ {<,≤}.

In the case of (l,g, p,a,r, l′) ∈ E, we write l
g,p,a,r−→ l′, where g ∈ B(X) is a guard constraint,

a ∈ Act is an action, and r is the subset of clocks that will be reset on taking the edge.

We can represent the state of an adaptive task automaton as a triple 〈l,u,q〉, where l ∈ L is
the current location, u 7→ R≥0 is a function mapping clocks to non-negative real values, and
q = [t0(c0,d0), . . . , tn(cn,dn)] is the current ready task queue. Sch(q) is a function that returns the
ready queue sorted according to the scheduling policy, and RunSch(q,δ) is a function that returns
the ready queue after it was executed for δ time units.

3 / 15 Volume 70 (2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

Definition 2 [HPS12] Given an adaptive task automaton 〈Act,X ,L, l0,E, I,M〉 with an initial
state 〈l0,u0,q0〉, and a scheduling strategy Sch, its semantics is a transition system defined as:

〈l,u,q〉 a−→Sch 〈l′,r(u),Sch(M(l′) :: q)〉 if l
g,p,a,r−→ l′ ∈ E, q |= p, and u |= g

〈l,u,q〉 δ−→Sch 〈l,u⊕δ ,RunSch(q,δ)〉 if (u⊕δ) |= I(l)

where r(u) is 0 for all xi ∈ r and u(xi) otherwise, t ::q is the result of releasing t into the queue q,
and u⊕δ is the result of adding δ ∈ R≥0 to all clock values in u. If both transitions are enabled,
the choice is non-deterministic.

Intuitively, in the context of tasks, transitions are possibilities to release new tasks, while delays
in locations correspond to the execution of tasks.

Definition 3 [HPS12] Given a task automaton state 〈l,u,q〉, with q = [t0(c0,d0), . . . , tn(cn,dn)],
a scheduling policy Sch, and two distinct tasks, ti and t j, let P be the set of predicates {inqueue(ti),
sched(ti),sched(ti, t j)} satisfied as follows:

〈l,u,q〉 |= inqueue(ti) if ti ∈ q
〈l,u,q〉 |= sched(ti) if inqueue(ti)∧ (ci +∑ j∈HP(ti) c j)≤ di∨

¬inqueue(ti)∧〈l,u,Sch(ti ::q)〉 |= sched(ti)
〈l,u,q〉 |= sched(ti, t j) if inqueue(ti)∧〈l,u,Sch(t j ::q)〉 |= sched(ti)

where HP(ti) is the set of all tasks that have higher priority than ti, and Sch(t j ::q) is the queue
ordered by the scheduling policy Sch after the release of the task t j.

Boolean combinations of the above predicates over a set of tasks T give us the set of all possible
combinations of predicates denoted by P(T).

3 Encoding of ATAEDF

In order to show the decidability of the ATAEDF framework, we have encoded the universal
ATAEDF model as a network of timed automata with (clock) updates (TAU). First we present
the framework of timed automata with updates. The framework was introduced previously by
Bouyer et al. [BDFP04], yet we use a variant whose decidability has to be proven for our result
to hold. Then the encoding itself is laid out in three steps. The first step shows a way to encode
task releases, the second provides the intuition behind the encoding of the predicates used for
adaptivity, and the third introduces the encoding of the scheduler. After we have encoded the
system as timed automata with updates, we provide a proof that the reachability problem for our
class of timed automata with updates is decidable and that the encoding is bisimilar to the original
model. The ATAEDF is more challenging than ATA as the task priorities are decided online.

3.1 Timed Automata with Updates

The timed automata framework, as defined by Alur and Dill [AD94], has served as the basis for
several modeling variations proposed in order to fit specific design purposes [FKPY07, BDFP04,
LBB+01]. Along the same line, our approach also relies on a variant of timed automata.

Proc. AVoCS 2014 4 / 15

ECEASST

To concisely encode the scheduler model as timed automata, we need to allow for “clock
to clock” assignments. Although such clock assignments are already present in the updatable
timed automata framework [BDFP04], they are defined on models without invariants on locations.
Since our work depends on location invariants, let us define the extension of timed automata that
supports clock to clock assignments as well as location invariants.

Definition 4 A timed automaton with updates (TAU) over clocks X and actions Act is a tuple
〈Act,X ,L, l0,E, I〉, where L is a finite set of locations, l0 is the initial location, E ⊆ L×B(X)×
Act×2X ×2X2 ×L is the set of edges, and I : L→ Φ(X) assigns invariants to locations. In the
set of edges E, B(X) is the set of guard constraints, 2X represents the set of clock resets, and 2X2

represents the set of clock assignments of the form x := y, where x,y ∈ X .
The set of invariants Φ(X) is a set of conjunctions of atomic expressions of the type x ∼C

where x ∈ X is a clock, C is a natural number, and ∼∈ {<,≤}. The set of guard constraints
B(X) can be defined as a set of Boolean combinations of atomic expressions of the type x∼C or
x− y∼C where x,y ∈ X are clocks, and ∼∈ {<,≤,=,≥,>}.

In the case of (l,g,a,r,s, l′) ∈ E, we write l
g,a,r,s−→ l′, where r is the subset of clocks that will be

reset on taking the edge, and s the set of clock assignments.

The semantics of TAU is defined in terms of a timed transition system over states of the form
(l,u), where l is a location, u 7→ R≥0 is an assignment of clocks to non-negative real values, and
the initial state is (l0,u0), where u0 assigns all clocks in X to 0.

Definition 5 Given a timed automaton with updates 〈Act,X ,L, l0,E, I〉 with an initial state
〈l0,u0〉, its semantics is a transition system defined as:

• 〈l,u〉 a−→ 〈l′,r(s(u)))〉 if l
g,a,r,s−→ l′ ∈ E and u |= g

• 〈l,u〉 δ−→ 〈l,u⊕δ 〉 if (u⊕δ) |= I(l)

where s(u) performs the assignments xi := x j for every (xi,x j) ∈ s, r(u) is 0 for all xi ∈ r and u(xi)
otherwise, and u⊕δ is the result of adding δ ∈ R≥0 to all clock values in u. If both transitions
are enabled, the choice is non-deterministic.

A timed trace σ of a TAU, as is also the case with timed automata [AD94], is a sequence of
delay and action transitions σ = (l0,u0)

a1→ (l1,u1)
a2→ . . .

an→ (ln,un) where ai can be either action

(a→) or delay (δ→) transition, and a location l is said to be reachable if there exists a timed trace
ending in the state (l,u).

A network of TAU, A1|| . . . ||An over X and Act is defined as the parallel composition of n
TAU over X and Act. Semantically, a network of TAU again describes a timed transition system
obtained from those components, by requiring action transitions to synchronize on complementary
actions (i.e., a? is complementary to a!) [BY04].

3.2 Eearliest-Deadline-First Scheduling Policy

To encode the scheduler, we need to clearly define the EDF policy in the context of this paper.
Since the strategy for choosing the next task between two or more tasks with equal deadlines does

5 / 15 Volume 70 (2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

not impact the optimality of the EDF algorithm [GD99], we can give the following definition of
EDF with deterministic tie resolution.

Definition 6 According to the EDF scheduling policy with deterministic tie resolution, the
priority Pi of task ti is greater than the priority Pj of task t j if the time left until the absolute
deadline di of task ti is smaller than the time left until the absolute deadline d j of task t j, or their
absolute deadlines are equal and i > j holds. This can be expressed as

Pi > Pj ⇐⇒ di < d j ∨ (di = d j ∧ i > j)

where i and j represent strictly ordered task indices.

3.3 Task Releases

In ATA, tasks are released on changing to locations that are annotated with sets of tasks. A
straightforward method to realize instant task triggering upon entering a location is to use synchro-
nization channels on the edges of the corresponding TAU representation. This is demonstrated in
Figure 2.

l1

{t0}

x = 0

x = 5
l1

x = 0
release0!

x = 5

release0!

Idle Busy
release0?

(a) (b) (c)

Figure 2: (a) task automaton, (b) (a)’s encoding, (c) part of (b)’s scheduler

In Figure 2(a), we have a basic task automaton location with two disjunctive edges leading to it.
Location l1 is annotated with the task set {t0}. By entering the location via any of the edges, the
task t0 should be released and handled by the scheduler.

Modeling this behavior in TAU requires annotating every edge entering the location l1 with a
synchronization channel that creates a network of timed automata between the observed automaton
presented in Figure 2(b) and the corresponding edges in the scheduler automaton as seen in
Figure 2(c). In some cases, additional committed locations [BGK+02] might be needed to
accomplish this.

3.4 Schedulability Predicates

The ATA model implements adaptivity via a set of scheduling predicates that may restrict edge
guards: sched(ti), sched(ti, t j), and inqueue(ti). All predicates are evaluated within the context
of the current ready queue.

To express the predicates in timed automata with updates, we need to define an adequate
encoding of the relevant variables that describe tasks in ATA models. The task automata model
and consequently the adaptive task automata model define the task ti in terms of remaining
computation time ci and time left until the deadline di. We encode the remaining computation
time as the difference between the response time ri and the computation time ci: ci = ri− ci.

Proc. AVoCS 2014 6 / 15

ECEASST

C D
t1 2 3
t2 1 1
t3 2 2
t4 1 2

t1

t2

t4

t3
r2

r3

r1

r4

c2

c3

c1 c4

t2 t3

t4t1
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 3: Gantt chart and the encoding specific representation of tasks

To illustrate this encoding, let us observe Figure 3. The left side of the figure presents a Gantt
chart of task releases, while the right side presents a graph of the values of the variables c and r for
the same set of tasks. Note that, in the graph, the tasks t2 and t3, as well as t1 and t4 are presented
on the same level to conserve vertical space.

At time 0, task t1 is released. A higher priority task t2 preempts it at time 1. At the moment of
preemption, the response time r1 is increased by C2, the computation time of t2, while the response
time of task t2 is equal to its computation time. Both tasks complete when their computation time
becomes equal to their response time, respectively.

Two time units after task t1 completes, task t3 is released. It is already executing when task
t4 is released. Although task t4 has computation time of only 1 time unit, its response time
already accounts for t3. Due to the continuous nature of timed automata clocks, we cannot extract
information on how much of the computation time of task t3 has been already used, so we have to
use the full response time of task t3 increased by the response time of task t4. In order for this
response time to be in context, we also need to copy the clock value of c3 to c4, hence the clock
c4 starts from 1.

The time until deadline is encoded by simply comparing an increasing clock to the relative
deadline, but it is not shown here.

3.5 Scheduler and Queue

Next, we encode the EDF scheduling policy together with the queue as a single automaton, which
we will hereafter refer to as the scheduler automaton.

Our scheduler is created assuming the encoding of predicates outlined in the previous section
and the EDF policy presented earlier. These two constraints, addressed at the same time, have
significantly increased the complexity of the encoding. In Figure 4, we show the entire scheduler
model encoded as a timed automaton with updates, using synchronization channels to release
tasks.

To reduce the presentation complexity of the encoding and make it more accessible to human
readers, we have used a number of shorthands. For example, the queue is encoded as the set q.
Since this set is referenced in every location, we need to replicate each location for every possible
value of q. Since the number of tasks in the system (N) is finite and known in advance, this
means that there will be 2N replications of every location to reflect the set q. Next, only those
locations that imply values that satisfy the incoming guards are connected by the edges to the
originating location. The same approach can be applied to all other integer variables and translate

7 / 15 Volume 70 (2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

Idle

Busy

Error

crun ≤ rrun∧
∀tj∈q : dj ≤ Dj ∧ cj ≤ Cx

First task release Task trun done and q = ∅

High priority task release

Task trun done and q 6= ∅

Low priority task releaseDeadline miss

Maintain ci ≤ Cx

First task release
Sync releasei?
Update q := q∪{ti}; trun := ti; ri :=Ci;

ci := 0;di := 0;Pi := N

Task trun done and q = /0
Guard crun = rrun∧drun ≤ Drun∧q = {trun}
Update q := q\{trun}
Task trun done and q 6= /0
Guard crun = rrun∧drun ≤ Drun∧ ti ∈ q∧

ti 6= trun∧Pi = Prun−1
Update q := q\{trun}; trun := ti;

∀t j ∈ q : Pj := Pj +1

Maintain ci ≤Cx

Guard ci =Cx∧ ti ∈ q
Update ci := 0; ri := ri−Cx

Deadline miss
Guard ti ∈ q∧ ci < ri∧di ≥ Di

Low priority task release
Guard tEDF

next (ti) = t j ∧ crun < rrun

Sync releasei?
Update q := q∪{ti};

∀k ∈ q|Pk < Pj : Pk := Pk−1;
Pi := Pj−1; ri := r j;ci := c j;di := 0;
∀tk ∈ q|Pk < Pj : rk := rk +Ci

High priority task release
Guard tEDF

next (ti) = /0∧ crun < rrun

Sync releasei?
Update q := q∪{ti};ci := 0;di := 0; ri := 0;

∀t j ∈ q\{ti} : Pj := Pj−1;Pi := N;
∀t j ∈ q : r j := r j +Ci; trun := ti

Figure 4: Overview of the encoding E(Sch).

this representation into a pure TAU. The exception to this approach is the function tEDF
next () that will

be addressed later.
The scheduler consists of three locations: Idle, Busy, and Error. The edges are classes of edges

that are instantiated by iterating the variable ti over the set of tasks. Task identifiers such as ti and
i are used interchangeably to reduce the maximum subscript level.

Since a task can be in the queue or not, the queue is encoded as a set q. Tasks themselves are
represented via a number of variables: ti represents the i-th task, trun keeps track of the currently
running task, ci represents task computation clock explained in Subsection 3.4, ri contains the
current response time of the task, and ci is compared to ri to evaluate if the task has completed its
execution; di is a clock that is reset when a task is released, and is compared to the natural Di to
check if the task’s deadline has passed, Pi is the current priority of the task. The priority N, equal
to the number of tasks in the system, is the highest priority and it corresponds to the currently

Proc. AVoCS 2014 8 / 15

ECEASST

executing task.
The scheduler starts in the location Idle. This location corresponds to an empty task queue and

it will be reentered on any occasion when there are no tasks left in the queue.
The edge going out of the location Idle is First task release. This edge is taken whenever the

encoding of the adaptive task automaton synchronizes on releasei channel without any additional
constraints. Consequently, the task ti is added to the queue, the currently running task is set to
ti, the response time is set to the computation time, the deadline clock is reset, and the task is
assigned the highest priority.

In Busy location, there are four edges looping in the state, one returning to Idle and one leading
to Error location. The invariant on Busy location, shown in dashed rectangle in Figure 4, ensures
that, in the Busy location, the currently running task will not execute longer than its computation
time, and that all of the tasks in the system have not missed their deadlines.

In case that a deadline is missed, the edge Deadline miss is taken. The deadline is considered
missed when the task is in the queue, still has some execution left, and has reached or exceeded
its deadline. In such case, the system enters the Error location and deadlocks.

To explain the looping edges on the Busy location, let us first define the selector tEDF
next ().

Definition 7 The selector tEDF
next (ti) = t j selects the task t j that has the next higher priority in the

queue relative to the task ti, regardless of whether the task ti is in the queue or not according to
the deterministic EDF policy (Definition 6).

The selector returns the empty set if it is invoked for the highest priority task in the queue or
any not-yet-released task that would become the highest priority task if it were released.

Due to the nature of the EDF algorithm, a pure TAU implementation of this selector requires
replication of any edge annotated with this selector into several edges. For the current permutation
of tasks in the queue (implied by the current pure TAU location, and expressed via Pi and q
variables in the representation), edges are created to test whether the new task will fit into any of
the given possible positions in the queue. During verification, due to the determinism outlined in
Definition 7, only one of those edges will be enabled at any time.

The edge High priority task release employs this selector to check if the newly released task
has higher priority than any of the tasks in the queue. The edge guard also checks whether the
currently running task is still running. This check ensures that whenever a task completes it is
removed from the queue before any further actions are taken. Since the newly released task has
a higher priority than any other task in the queue, its response time is equal to its computation
time. All of the other tasks’ response times need to be increased by the computation time of the
newly released task. Priorities of other tasks are reduced and the newly released task acquires the
highest priority.

On the other hand, when the newly released task has lower priority than the currently running
task, it needs to be placed at the correct place in the queue via Low priority task release edge. This
is where the determinism of our EDF implementation via tEDF

next selector comes into play. We need
to ensure that the tasks added to the queue via this edge will be executed in the same sequence as
they are added to the queue. Otherwise, the computed response times would be invalidated. As
with the previous edge, we add the task to the queue, but this time we need to copy the response
time and computation clock from the higher priority task. Then, we increase the response time of

9 / 15 Volume 70 (2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

the new task, as well as any of lower priority, with the computation time of the released task.
As the time passes in Busy state, tasks are executing and will be removed from the queue when

they complete, by one of the Task trun done edges. The edge Task trun done and q 6= /0 is taken
if the task has completed its execution before the deadline and if the next task is present in the
queue. To switch the currently running task, the latter is taken out of the queue, a new task is set
to currently running task and all of the active tasks’ priorities are increased by one to keep priority
values bound between 1 and N.

If the task is the last task in the queue, the edge Task trun done and q = /0 is enabled and removes
the task from the queue while moving the automaton into the Idle location.

To keep all clocks and response times bound the edge Maintain ci ≤ Cx, resets the clock ci

to 0 every time an active clock reaches the maximum clock value Cx and the corresponding
response time is decreased by Cx. While this edge alters the value of clocks, it does not influence
the relevant difference ri− ci. This mechanism resolves the potential unboundedness of the
system caused by the inheritance of ci and ri values in Low priority task release. Without it, any
system that repeatedly releases tasks of lower priority than the currently running task can become
unbounded.

4 Decidability

The decidability of schedulability verification for our model depends on two things: decidability
of reachability for our variant of timed automata with updates (Subsection 4.1) and that the
encoding of ATAEDF model into timed automata with updates represents the original model
correctly (Subsection 4.2).

4.1 Decidability of Timed Automata with Updates

Alur and Dill [AD94] observe that we can partition the state space of a timed automaton into
a finite number of discrete regions that can be exhaustively explored in a finite amount of time.
Hence, the location reachability problem is decidable.

Our refined region equivalence relation is based on the relation given in [AD94] and extended
by the region equivalence relation for timed automata with diagonal constraints presented by
Bengtsson and Yi [BY04], and Fersman et al. [FKPY07].

Definition 8 (Refined region equivalence ≈ [FKPY07, AD94, BY04]) For a clock x ∈ X , let Cx

be a natural number. For a positive real number t, let {t} denote the fractional part of t, and btc
its integer part. Let u,v ∈ V be two regions, G a finite set of diagonal constraints in the form
x− y ./ Z≥0 where Z≥0 is the set of non-negative integers, and ./∈ {<,≤,=,≥,>}.

We define u≈ v, i.e. u and v are refined-region-equivalent iff

1. for each clock x, either bu(x)c= bv(x)c or u(x)>Cx and v(x)>Cx,
2. for each clock x, if u(x)≤Cx, then {u(x)}= 0 iff {v(x)}= 0,
3. for all clocks x,y, if u(x)≤Cx and u(y)≤Cx then
{u(x)} ≤ {u(y)} iff {v(x)} ≤ {v(y)}, and

4. u |= g iff v |= g for all g ∈ G .

Proc. AVoCS 2014 10 / 15

ECEASST

Given Definition 8 of refined region equivalence, we can postulate that operations over regions
will not disrupt the refined region equivalence relationship on TAU.

Lemma 1 Given a timed automaton with updates, let G denote the set of diagonal constraints
in the automaton and Cx be the maximum of Mx (the ceiling of x) and all constants appearing in
the guards and invariants of the automaton involving clock x. Let u,v ∈ V and t, t ′ ∈ RR≥0. Then
u≈ v implies

1. u+ t ≈ v+ t ′ for some real number t ′ such that btc= bt ′c,
2. u[x 7→ 0]≈ v[x 7→ 0] for a clock x, and
3. u[x 7→ y]≈ v[x 7→ y] for all pairs of clocks x and y.

Proof Outline. Lemma 1 can be trivially proven for the case when only one clock is assigned a
new value. The case with multiple clocks being assigned new values can be proven by observing
that we can reduce the problem to relative ordering of fractional parts of clocks which are
consistent for all clocks between regions based on the third criterion of Definition 8. The full
proof is given in [HDSP14].

Lemma 2 (Bisimulation of TAU) Let us assume a timed automaton with updates, a location l
and clock assignments u and v. Then u≈ v implies that:

1. when (l,u)→ (l′,u′) then (l,v)→ (l′,v′) for some v′ such that u′ ≈ v′, and
2. when (l,v)→ (l′,v′) then (l,u)→ (l′,u′) for some u′ such that u′ ≈ v′.

Proof Outline. The proof follows from Lemma 1. Assume a location l and clock assignments
u, and v, such that u≈ v. The refined region equivalence relation ≈ defines that the guards will
evaluate in both u and v to the same truth values. Therefore, the set of enabled transitions is equal
in both valuations.

Lemma 3 (Location Reachability) The location reachability problem for timed automata with
updates and invariants is decidable if the bound Mx for each clock x is known.

Proof. Lemma 1 shows that for each location l of the automaton, there is a finite number of
equivalence classes derived from the bisimulation relation ≈. Since the number of locations is
finite, the entire state space of an automaton can be partitioned into a finite number of equivalence
classes and these equivalence classes can be effectively generated and searched.

4.2 Model Bisimulation

Once we have encoded the entire ATAEDF system as a network of TAU, we need to show that
there exists a bisimulation between the original model and the encoding.

Our main result is described by Lemma 4 below, for which we outline the proof. In Definition 9,
we first introduce the concept of schedulability as reachability.

Definition 9 (Schedulability) The adaptive task automaton A with initial state (l0,u0,q0) and
scheduling strategy Sch is not schedulable iff there exists a trace (l0,u0,q0)(−→Sch)

∗(l′,u′,q′)

11 / 15 Volume 70 (2014)

Adaptive Task Automata with Earliest-Deadline-First Scheduling

such that in the state (l′,u′,q′) there is a task ti with more than zero computation time left, ci > 0,
and no more time to execute, that is di ≤ 0. The state (l′,u′,q′) is marked as (l′,u′,Error).

Lemma 4 Let A be an adaptive task automaton and Sch the EDF scheduling strategy presented
in Definition 6 . Assume that (l0,u0,q0) and (〈l0, Idle〉,u0∪ v0) are the initial states of A, and the
product automaton E(A)||E(Sch), respectively, where l0 is the initial location of A, u0 and v0 are
clock assignments assigning all clocks with 0, and q0 is the empty task queue. Then:

For all l and u: (l0,u0,q0)→∗ (l,u,Error) implies
(〈l0, Idle〉,u0∪ v0)→∗ (〈l,Error〉,u∪ v) for some v.

For all l, u, and v: (〈l0, Idle〉,u0∪ v0)→∗ (〈l,Error〉,u∪ v) implies
(l0,u0,q0)→∗ (l,u,Error).

Proof Outline. The encoding of the ATAEDF automaton differs from the automaton itself in two
key aspects: invocations of tasks and adaptivity predicates.

Since the task releases in ATAEDF can be said to be of a non-blocking nature, we essentially
verify that the scheduler will be non-blocking as well. Indeed, the only situation when there are
no enabled edges annotated with a synchronization channel is when the scheduler automaton
enters the Error state.

Our encoding exposes the values required for the evaluation of the encoded schedulability
predicates directly. In order to check that the ATAEDF adaptivity predicates are going to evaluate
to the same results, we establish a correlation between tasks’ parameters in ATAEDF and the
encoding. Once these mappings have been properly established, we check edge-by-edge that they
are maintained. The full proof is given in [HDSP14].

Since we have proven that the reachability problem is decidable for TAU, stated by Lemma 3,
also that every ATAEDF can be translated into a bisimilar TAU, we can conclude that the problem
of checking schedulability of ATAEDF is decidable as well.

5 Related Work

Our work tries to unify schedulability analysis with modeling and analysis of adaptive embedded
systems. At the same time, a number of works address problems in those two separate fields, as
well as non-modeling methods for analysis of schedulability in adaptive contexts. While this is by
no means an exhaustive list of the works in these areas, we will try to list those that are closest to
ours.

In the following works, verification of adaptive embedded systems is done on a more coarse
scale than in our approach. Most of these approaches could be used in synergy with ours to provide
system level verification, while ours provides task level granularity. Adler et al. [ASSV07] use
Kripke structures as the underlying presentation of the system and specify the system’s properties
using LTL. Schneider et al. [SST06] have proposed a method to describe and analyze adaptation
behavior in embedded systems in which the data flow is augmented with quality descriptions used
by configuration rules to determine potential adaptations. Goldsby et al. [GCZ08] provide the
AMOEBA-RT model focused on run-time verification and monitoring.

In the area of adaptive scheduling, most work [JPG04, LRK03] was done to achieve a lower

Proc. AVoCS 2014 12 / 15

ECEASST

energy consumption by exploiting dynamic voltage scaling features of modern CPUs. While such
approaches can be used to analyze schedulability in some adaptive contexts, our approach makes
it possible to model and analyze more precisely task release patterns of non-periodic tasks.

Finally, other works have approached verification of schedulability by means of timed automata
for uniprocessors [DILS09, MLR+10], and multiprocessors [YLX10] without explicit inclusion
of adaptive functionality.

6 Conclusion

In this work, we have shown that the verification of adaptive task automata with earliest-deadline-
first scheduling policy is decidable. To support our claim, we have encoded our adaptive task
automata model as timed automata with updates and presented that the model and its encoding are
bisimilar, as well as given a proof that reachability in our variant of timed automata with updates
is decidable.

Our main result is the proof of decidability of our ATA extensions. Using ATA, it is possible
to model the environment of an embedded system as well as behavior of functional and extra-
functional properties in response to internal or environmental changes. Thus we verify the
behavior of specified properties throughout the execution of the system.

In this work, we have implemented the EDF scheduling policy. However, by replacing the
selector tEDF

next (), we can implement any other policy that is deterministic and does not change
relative task priorities after their release into the queue. A non-deterministic selector would
invalidate the schedulability testing predicates (sched()) since the response times predicted when
testing a task would not necessarily correspond to the actual response times after the task is
released.

During the encoding, we have faced a number of challenges. To support dynamic scheduling
policies and schedulability predicates, we have required dynamic construction of task response
times, which, in turn, have required a clock copying mechanism that had to be added as an
extension of timed automata.

As future work, we plan to further explore removal of the assumptions, specifically extend
the framework to support modeling of multi-core systems, smart handling of tasks with variable
execution time, shared resources, as well as create a set of templates that correctly model the most
commonly utilized task release patterns.

Acknowledgements: This research has been supported by the Swedish Research Council, which
is gratefully acknowledged.

Bibliography

[AD94] R. Alur, D. L. Dill. A theory of timed automata. Theoretical Computer Science
126:183–235, April 1994.
doi:10.1016/0304-3975(94)90010-8

13 / 15 Volume 70 (2014)

http://dx.doi.org/10.1016/0304-3975(94)90010-8

Adaptive Task Automata with Earliest-Deadline-First Scheduling

[Alu99] R. Alur. Timed Automata. In Halbwachs and Peled (eds.), Computer Aided Verifica-
tion. Lecture Notes in Computer Science 1633, pp. 8–22. Springer Berlin Heidelberg,
1999.
doi:10.1007/3-540-48683-6_3

[ASSV07] R. Adler, I. Schaefer, T. Schuele, E. Vecchié. From Model-Based Design to Formal
Verification of Adaptive Embedded Systems. In Butler et al. (eds.), Formal Methods
and Software Engineering. Lecture Notes in Computer Science 4789, pp. 76–95.
Springer Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-76650-6_6

[BDFP04] P. Bouyer, C. Dufourd, E. Fleury, A. Petit. Updatable timed automata. Theoretical
Computer Science 321(23):291 – 345, 2004.
doi:10.1016/j.tcs.2004.04.003

[BGK+02] J. Bengtsson, W. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson, P. Pet-
tersson, W. Yi. Automated verification of an audio-control protocol using Uppaal.
The Journal of Logic and Algebraic Programming 52 – 53(0):163 – 181, 2002.
doi:10.1016/S1567-8326(02)00036-X

[BY04] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms and Tools. In Desel
et al. (eds.), Lectures on Concurrency and Petri Nets. Lecture Notes in Computer
Science 3098, pp. 87–124. Springer Berlin Heidelberg, 2004.
doi:10.1007/978-3-540-27755-2_3

[DILS09] A. David, J. Illum, K. Larsen, A. Skou. Model-Based Framework for Schedulability
Analysis Using UPPAAL 4.1. Pp. 93–119. CRC Press, 2011/12/27 2009.
doi:10.1201/9781420067859-c4

[FKPY07] E. Fersman, P. Krcal, P. Pettersson, W. Yi. Task automata: Schedulability, decidability
and undecidability. Information and Computation 205(8):1149 – 1172, 2007.
doi:10.1016/j.ic.2007.01.009

[GCZ08] H. J. Goldsby, B. H. Cheng, J. Zhang. AMOEBA-RT: Run-Time Verification of
Adaptive Software. In Giese (ed.), Models in Software Engineering. Lecture Notes in
Computer Science 5002, pp. 212–224. Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-69073-3_23

[GD99] J. Goossens, R. Devillers. Feasibility intervals for the deadline driven scheduler with
arbitrary deadlines. In Real-Time Computing Systems and Applications, 1999. RTCSA

’99. Sixth International Conference on. Pp. 54 –61. 1999.
doi:10.1109/RTCSA.1999.811193

[HDSP14] L. Hatvani, A. David, C. Seceleanu, P. Pettersson. Adaptive Task Automata with
Earliest-Deadline-First Scheduling. Technical report ISSN 1404-3041 ISRN MDH-
MRTC-287/2014-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, August 2014.
http://www.es.mdh.se/publications/3661-

Proc. AVoCS 2014 14 / 15

http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/978-3-540-76650-6_6
http://dx.doi.org/10.1016/j.tcs.2004.04.003
http://dx.doi.org/10.1016/S1567-8326(02)00036-X
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1201/9781420067859-c4
http://dx.doi.org/10.1016/j.ic.2007.01.009
http://dx.doi.org/10.1007/978-3-540-69073-3_23
http://dx.doi.org/10.1109/RTCSA.1999.811193
http://www.es.mdh.se/publications/3661-

ECEASST

[HPS12] L. Hatvani, P. Pettersson, C. Seceleanu. Adaptive Task Automata: A Framework for
Verifying Adaptive Embedded Systems. In Lara and Zisman (eds.), Fundamental
Approaches to Software Engineering. Lecture Notes in Computer Science 7212,
pp. 115–129. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-28872-2_9

[JPG04] R. Jejurikar, C. Pereira, R. Gupta. Leakage Aware Dynamic Voltage Scaling for
Real-time Embedded Systems. In Proceedings of the 41st Annual Design Automation
Conference. DAC ’04, pp. 275–280. ACM, New York, NY, USA, 2004.
doi:10.1145/996566.996650

[LBB+01] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, J. Romijn.
As Cheap as Possible: Effcient Cost-Optimal Reachability for Priced Timed Au-
tomata. In Berry et al. (eds.), Computer Aided Verification. Lecture Notes in Computer
Science 2102, pp. 493–505. Springer Berlin Heidelberg, 2001.
doi:10.1007/3-540-44585-4_47

[LRK03] Y.-H. Lee, K. Reddy, C. Krishna. Scheduling techniques for reducing leakage power
in hard real-time systems. In Real-Time Systems, 2003. Proceedings. 15th Euromicro
Conference on. Pp. 105–112. July 2003.
doi:10.1109/EMRTS.2003.1212733

[MLR+10] M. Mikučionis, K. Larsen, J. Rasmussen, B. Nielsen, A. Skou, S. Palm, J. Pedersen,
P. Hougaard. Schedulability Analysis Using Uppaal: Herschel-Planck Case Study. In
Margaria and Steffen (eds.), Leveraging Applications of Formal Methods, Verification,
and Validation. Lecture Notes in Computer Science 6416, pp. 175–190. Springer
Berlin / Heidelberg, 2010.
doi:10.1007/978-3-642-16561-0_21

[SST06] K. Schneider, T. Schuele, M. Trapp. Verifying the adaptation behavior of embedded
systems. In Proceedings of the 2006 international workshop on Self-adaptation and
self-managing systems. SEAMS ’06, pp. 16–22. ACM, New York, NY, USA, 2006.
doi:10.1145/1137677.1137681

[YLX10] F. Yu, G. Li, N. Xiong. Schedulability analysis of multi-processor real-time systems
using Uppaal. In Information Science and Engineering (ICISE), 2010 2nd Interna-
tional Conference on. Pp. 1 –6. dec. 2010.
doi:10.1109/ICISE.2010.5689944

15 / 15 Volume 70 (2014)

http://dx.doi.org/10.1007/978-3-642-28872-2_9
http://dx.doi.org/10.1145/996566.996650
http://dx.doi.org/10.1007/3-540-44585-4_47
http://dx.doi.org/10.1109/EMRTS.2003.1212733
http://dx.doi.org/10.1007/978-3-642-16561-0_21
http://dx.doi.org/10.1145/1137677.1137681
http://dx.doi.org/10.1109/ICISE.2010.5689944

	Introduction
	Adaptive Task Automata
	Introductory Example
	Overview of the Existing Framework

	Encoding of ATA_EDF
	Timed Automata with Updates
	Eearliest-Deadline-First Scheduling Policy
	Task Releases
	Schedulability Predicates
	Scheduler and Queue

	Decidability
	Decidability of Timed Automata with Updates
	Model Bisimulation

	Related Work
	Conclusion

