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Abstract: We present an extension of the DIVINE software model checker to
support programs with exception handling. The extension consists of two parts, a
language-neutral implementation of the LLVM exception-handling instructions, and
an adaptation of the C++ runtime for the DIVINE/LLVM exception model. This con-
stitutes an important step towards support of both the full C++ specification and
towards verification of real-world C++ programs using a software model checker.
Additionally, we show how these extensions can be used to elegantly implement
other features with non-local control transfer, most importantly the 1 ong jmp func-
tion in C.
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1 Introduction

Widespread and regular use of formal verification methods in the general software development
is one of the major goals in computer science. As a matter of fact, recent formal method research
trends put a strong emphasis on direct practical applicability of verification results. A current
example of this trend is the activity in the program analysis community and the Software Verifi-
cation Competition [Bey14]. The strong drive to make formal method applications approachable
by the general software development and engineering community highlights the fact that the
most important factor of using formal methods in practice is their ease of use. Hence, formal
methods must be applied at a level that software engineers and developers naturally work at —
that is, in an overwhelming majority of cases, at the source code level.

There are multiple reason for this: not only working with program source code is natural for a
software developer, source code also constitutes very precise notation, which is a natural match
for a formal system. While it is true that semantics of programming languages are usually not
rigorously specified, they do often attain a very high level of precision in their specifications.
The main inconvenience of specifications of languages like C++ lies in the large volume of text,
and consequently, large amount of facts. Nevertheless, the complex natural-language specs have
a formal counterpart: compilers. While a C++ compiler is a very complex software system,
the fact is that real-world compilers achieve an enviable level of agreement in their semantics,
despite numerous optimisation passes they all implement.

Consequently, there is a natural tendency to build model checkers that can be applied to pro-
grams written in commonly-used languages: most importantly C, C++ and Java. Clearly, there

* Petr RoCkai has been partially supported by Red Hat, Inc.
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are limitations to what a model checker can do: the problem it is tackling is, in general, firmly
undecidable. In theory, this is a huge red flag — we are trying to solve a problem that we know
for a fact cannot be solved. Nevertheless, a partial solution can still be immensely useful: af-
ter all, a software engineer often has to argue about properties of programs that are in general
undecidable. In this case, all that matters is whether the instance at hand can be solved.

There is however another limitation, which is usually more important in practice: conformance
to programming language specifications. In order to derive substantial utility from a model
checker, it should implement a full programming language specification: the programs that soft-
ware developers write and that they can run should be also valid inputs to a model checker. This
is especially critical if we expect a seamless integration of model checking tools into a develop-
ment workflow. The brunt of the problem at hand is that programming languages as specified are
already very constraining — engineers in pursuit of more elegant and more maintainable code al-
ready skirt the boundaries of what is allowed in a particular programming language. Introducing
substantial constraints to enable model checking is, in many cases, a non-starter.'.

This is especially a concern with C++, which is a relatively high-level language, with a long
development history and widespread use. Some of the features the language offers are rather
unpalatable (especially so in the model checking community), usually because they exhibit very
complex semantics. While some of the problematic aspects can be conjured away by target-
ing a suitable intermediate language and hijacking a good existing compiler frontend — such as
LLVM [LAO4] (the IR) and its companion CLang (the frontend) — this is not the case with all such
the features. A particularly hairy example is exception handling, which necessarily finds its way
into the intermediate representation.

Besides their complicated semantics, which are already a formidable problem, they bring an
entirely new phenomenon to model checking: non-local transfer of control. While not unap-
proachable, it complicates everything — and a modern software model checker is already com-
plicated enough. It is easy to see how tempting it is to constrain the input language of the
model checker to disallow exceptions. However, for the reasons expounded earlier, we firmly
believe that it is very important to provide full coverage of language features in a model checker.
This paper primarily presents our experience in implementing exception handling in DIVINE, an
explicit-state model checker for C and C++ programs based on LLVM.

2 Preliminaries

DIVINE [BBH " 13] is a general-purpose explicit-state model checker for safety and LTL proper-
ties. For LTL model checking, it uses an automata-based approach [VW86], reducing the decision
procedure to a graph problem — namely detection of an accepting cycle in the state space graph
of a program under verification. In order to tackle large graphs, it implements efficient parallel
algorithms for both reachability (for safety verification) and accepting cycle detection (for LTL

! Clearly, there are specialised projects where programming language semantics need to be severely constrained,
whether it is due to formal treatment — this is sometimes the case with mission-critical software — or due to limitations
of the hardware platform, a situation most often encountered in the embedded systems space. Nevertheless, in the
latter category, increases in hardware capabilities of embedded systems is apt to reduce this gap between embedded
and mainstream general-purpose programming.
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model checking). Implementations tailored for both shared-memory and distributed-memory
parallel computers are available, along with an assortment of memory-saving techniques. For
more recent results in the field of parallel and distributed model checking, see e.g. [ELPP12].

Among other input languages, DIVINE can handle programs written in LLVM intermediate
representaion (LLVM IR). The main use-case for explicit-state model checking, and especially
LTL model checking in this area is for unit testing of parallel programs. While explicit-state
model checking per se (without the aid of some form of abstraction) cannot handle arbitrary
10 behaviour, this is something that software engineers deal with all the time — testing cannot
do that either. Of course, an ideal solution would overcome this problem as well — but we
contend that this is not a serious obstacle in pragmatic use. However, there are two interesting
things that an explicit-state model checker can do (and where testing struggles): asynchronous
lock-based parallelism (which is an ubiquitous concern in contemporary C++ programming)
and liveness (LTL) checking. Moreover, since LLVM is quickly becoming the lingua franca of
software analysis tools [MFS12, CDEO0S], it is not unconceivable that an explicit-state model
checker would be integrated into a larger abstraction/CEGAR-based decision procedure, in order
to tackle the open-world angle in program verification.

Now if we have a model checker that can handle LLVM IR as its input, and a compiler frontend
that can translate C++ into LLVM IR (and there are at least two such compilers, CLang and GCC)
— we can compile C++ programs to IR (bitcode) and run a model checker on it. This appears to
be very easy on the surface of it, but there are hidden complexities. First, in order to actually
verify a program, it needs to be fully defined: in basically all cases, programs make use of the
C and C++ standard libraries. Especially the C++ standard library constitutes a very substantial
amount of code, and we cannot reasonably argue about program correctness if we don’t include
this code. The libraries in turn make use of system-level APIs (in the cases we are interested
in, this is mostly POSIX), which are fortunately fairly constrained and small, compared to the
standard libraries themselves.

As we have argued above in Section 1, constraining the language that can be used with the
model checker is an option of last resort, as it has substantial impact on its usefulness. A good
way to approach this problem is to compile the libraries themselves into bitcode and bundle them
with the program’s own bitcode, to form a nearly fully-defined LLVM program. The missing
system-level APIs can be either provided as stubs (a practice commonly used in testing), or in
some cases — where they constitute important part of program functionality — implemented in
terms of a small number of model-checker provided primitives. To this end, DIVINE provides
an implementation of both the C and C++ standard libraries, including the small number of
changes required for compatibility with the different system-level API implemented by DIVINE.
The overall structure of the libraries, with emphasis on exception handling (see also Section 3
for more details on this) is illustrated in Figure 1.

3 Exception Handling

Exception handling is an area where code generation needs to co-operate in order to imple-
ment correct language semantics. Since code generators are part of LLVM, but LLVM itself is
programming-language-agnostic, the LLVM code generators need to provide a sufficiently generic
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Figure 1: The various components involved in exception handling, and their interaction with
execution and verification. The source code is first compiled using a suitable C++ frontend
(clang or gcc) into LLVM IR. When building a binary for execution, the IR code is fed to a
code generator and combined with common components (the standard C and C++ libraries),
and with execution-specific components: 1ibunwind and execution-specific parts of the C++
runtime support library (the personality routine and the 1 ibunwind-based stack unwinder). For
verification purposes, the LLVM IR is instead combined with those same common components
that have been converted into intermediate representation, and with verification-specific runtime
functions from the DIVINE C++ runtime. The resulting bitcode file is then fed to DIVINE, using
its LLVM subsystem to generate the state space and execute a suitable verification algorithm on
that state space.
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interface to allow implementation of efficient exception handling.

In all modern C++ compilers, zero-cost exceptions are the norm: the exception handling ma-
chinery imposes no overhead at all unless an exception is actually thrown. This means that the
code generator is not allowed to insert special instructions for calls or for saving context when
entering try blocks. In order to allow this sort of behaviour, all exception handling logic needs to
happen at an exception throw time, and for this to be possible, a stack unwinder is required. The
unwinder is platform-specific, and needs to understand the particular ABI and most importantly
the layout of the program stack and individual stack frames. LLVM itself does not provide an
unwinder library: it is usually provided by the operating system.

Unfortunately, the interface of the unwinder library is not entirely specified, and as such, it is
also somewhat platform-specific. There are two major surfaces of the unwinder, each exposed
to different part of the compiler/standard library duo. On one hand, the unwinder needs unwind
tables in order to correctly unwind the stack. These unwind tables are generated by LLVM, since
they reflect the high-level structure of individual stack frames, which is itself generated by LLVM.
These tables end up being a part of the program text, i.e. they are stored in the executable image,
and are as such a static part of the program. On the other hand, there is the “dynamic”, or
runtime, interface of the unwinder library, which is exposed to the language runtime instead:
when an exception is raised, the language runtime uses the unwind library and the unwind tables
generated by LLVM to guide the exception handling process.

While C++ is the primary target of the exception-handling mechanisms in LLVM, care has
been taken to make it sufficiently general to accommodate other language runtimes, as long as
their exception handling works along the same general principles. The main requirement for an
exception system to be compatible with LLVM is that it can use the same unwinder interface,
or at very least that it can process the unwind tables produced by LLVM. On many platforms
(all modern UNIX systems based on the ELF executable format), these unwind tables are in
a standardised format, mandated by the DWAREF specification [DWA10]. Other platforms use
different unwind tables, though.

Besides information about the structure of a stack frame, unwind tables contain information
about how exception handling should process this particular stack frame. In programming lan-
guages with lexical scoping, lexically scoped variables cease to exist when their scope termi-
nates: normally, this happens when a function returns. However, exceptions create a new way
in which a lexical scope can cease to exist, namely that an exception is propagated through this
scope upwards. As long as lexically scoped (local) variables are sufficiently simple (plain old
data in C++ terminology), this is not a major problem: the stack is unwound, so the storage
associated with those variables is automatically reclaimed. However, C++ and a number of other
languages allows scoped variables of complex types, with associated destructors: code that the
runtime guarantees is executed just before the variable is deallocated. Particularly in C++, this
is widely used to implement reliable, automatic resource acquisition and release’. Even though
similar schemes have been proposed for C [Tur], they are usually implemented using set jmp
and 1ongjmp primitives, do not use any compiler support and therefore do not map to the LLVM

2 In the C++ community, this design pattern is known as RAII: Resource Acquisition Is Instantiation. Among other
things, it is used to safely hold mutual exclusion locks, dynamically allocated memory and other non-composable
resources inside functions that could experience non-local loss of control due to exceptions.
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exception handling mechanism.

Nevertheless, LLVM as such has no concept of destructors, nor does the unwinder library. The
language compiler needs to generate cleanup handlers, i.e. blocks of code that take care of
calling any appropriate destructors, or performing other language-specific cleanup when a stack
frame is torn down because the stack is being unwound. Moreover, the same mechanism is used
for exception handlers: the main difference is that an exception handler stops the propagation of
an exception, and its role is to deal with the exceptional situation: exception handlers correspond
to the catch blocks attached to a try block.

In order to improve efficiency (at the expense of simplicity) of the unwinder, it has a concept
of exception type: different types of exceptions can happen, and a particular catch block can
handle only a subset of those exception types. Each call-site in each call frame possibly contains
a cleanup handler, and a list of exception handlers. Deciding whether a particular exception
handler can handle a particular exception type is deferred to a personality function: a language-
specific callback provided to the unwinder. This personality function helps the unwinder decide,
among other things, which handler to invoke for a particular exception type.

3.1 Mapping Exceptions to LLVM

Now that we have established the basics of how exceptions are implemented in general, we will
look at how those concepts map to LLVM. The machinery provided by LLVM to handle exceptions
consists of 3 instructions: invoke, landingpad and resume. The invoke instruction
is like a call instruction, but it provides extra provisions for exception propagation: unlike
call, it is a terminator instruction, i.e. it is always last in a basic block. It is also a branching
instruction: it takes two basic block addresses as parameters corresponding to two branches —
the first is taken upon a normal return from the function, the other is taken if an exception has
been raised in the callee.

The invoke instruction co-operates tightly with the 1andingpad instruction: the basic
block that the exception branch of invoke points to must begin (after any possible ¢ instruc-
tions) with a landingpad instruction, and the entire basic block is called a landing block>.
The 1andingpad instruction then encodes the list of exception handlers and whether there is a
cleanup handler present, and which personality function to invoke for the corresponding callsite
(invoke instruction). The syntax of the 1andingpad instruction is following:

<r> = landingpad <rt> personality <t> <pers_fn> <clause>+
<r> landingpad <rt> personality <t> <pers_fn> cleanup <clause>x

<clause> := catch <type> <value>
<clause> := filter <array constant type> <array constant>

If the landing block is a cleanup one, the stack unwinder always transfers control to the landing
block during the unwinding process, regardless of any exception handlers. If the landing block is

3 In upstream LLVM documentation, what we call a “landing block™ here is referred to as a “landing pad”. The reason
for this departure is that the original terminology makes it easy to confuse “landingpad” as an instruction and
“landing pad” as a basic block.
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not a cleanup landing block, it is only executed if some catch clause in the landingpad instruction
matches the exception type (as decided by the provided personality function).*

Since each invoke instruction only has a single landing block associated, this landing block
is responsible for handling any and all catch clauses of the higher-level programming language
covering the particular callsite. The return value of the 1andingpad instruction is crucial in
deciding what action to take when the landing block is entered, and corresponds to the return
value of the personality function. In other words, when the unwinder executes the personality
function (which is part of the language runtime), it stores its return value, and provides this return
value in the result of the 1andingpad instruction. Since the personality function has access to
the part of the unwind tables generated from the 1andingpad instruction, it can communicate
information encoded in the unwind table to the landing block itself. In the libc++ runtime, the
personality function returns a tuple consisting of a pointer to the exception object itself, and a
“handler switch value”, an integer which corresponds to the index of a relevant “catch” clause of
the landingpad instruction, or a special value (-1) when no catch clauses match but a cleanup
needs to be performed.

The code generated for the landing block then checks the handler switch value computed by
the personality function, and transfers control to a cleanup or handler block accordingly. Finally,
if the selected handler is a cleanup handler, the exception propagation (stack unwinding) needs
to be resumed after the cleanup is done. This is achieved by the resume instruction, which
expects as a parameter the same value that was returned by the corresponding 1andingpad
instruction which interrupted the exception propagation.

Interestingly, there are no LLVM instructions for raising (throwing) exceptions. This is left
entirely in the management of the language runtime, which needs to closely co-operate with the
stack unwinding library anyway (the interface of the personality function is mandated by the
stack unwinder).

4 C and C++ Runtime Support in DIVINE

As we have argued in Section 2, in order to verify real-world code, we need to provide an
implementation of standard libraries: DIVINE provides 1ibc, in form of bitcode that can be
linked to (incomplete) bitcode produced by the compiler from the C program itself. While the
implementation of 1ibc is mostly complete, in some respects, it behaves differently from tradi-
tional OS-provided versions. Since the program that is being verified is not allowed to actually
interact with the world, such function calls are implemented either as “stubs” possibly using
non-deterministic choice, or they interact with DIVINE using a private DIVINE-specific interface.

The case of C++ is slightly more complicated. While many language features require no
special runtime support (i.e. the same as C), there are some that do, most notably Run-Time
Type Identification (RTTI) and exception handling. Besides those areas where library support
code is required for language features, like in C, most C++ programs make use of the standard

4 Additionally, the filter clauses restrict the types of exceptions that can be propagated through the invoke instruction
corresponding to this landing block, akin to how exception specifiers work in C++. If an exception is thrown and it
reaches a filter clause of the appropriate type, a language-specific action is invoked. In C++, this action is user-
specified, and defaults to terminating the program.
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C++ library.

Consequently, there are two libraries that are required by virtually all C++ programs: the
runtime support library, and the standard library. Multiple implementations of both exist® —
DIVINE ships with 1ibc++abi for the runtime portion and 1 ibc++ for the stdlib portion.

As far as RTTI goes, there are no special considerations with regards to model checking. The
upstream 1ibc++abi code can be used verbatim with DIVINE. Exceptions are more compli-
cated, and are, coincidentally, a feature that is most often neglected in analysis tools and model
checkers that work with C++ programs. Exception handling in C++ consists of three major parts:
unwind tables, landing pads and exception handlers which are all generated by the compiler
based on the input code, using special (although language-neutral) LLVM instructions: invoke
and landingpad being the two most notable. Additionally, the C++ runtime library uses a
CPU- and platform-specific stack unwinder and contains a language-specific personality rou-
tine. The personality routine makes use of the unwind tables generated by the compiler to guide
the stack unwinder during an exception (see Section 3 for details).

An LLVM interpreter hence needs to provide a stack unwinder and an API to access the
unwind tables, for use by the personality routine. In DIVINE, the unwinder interface is ex-
tremely simple, consisting of a single trap, -_.divine_unwind. The language runtime can use
_divine_unwind to remove a number of topmost stack frames from the stack of the current
thread, returning control to the topmost remaining frame. If the active instruction in the target
frame is an invoke instruction, control is transferred to its alternate destination basic block
(a landing block), and the value passed to __divine_unwind is passed on to the personality
routine of the landing block.

5 Implementation

We have outlined the mechanisms used by LLVM to implement language-agnostic exception han-
dling in Sections 3 and 3.1. There are multiple points where DIVINE has to hook into those mech-
anisms in order to support exception handling in a particular programming language. While a
substantial part of that support is language-agnostic, crucial pieces of infrastructure are part of
the language’s standard library: in case of C++, this is 1ibc++abi as explained in Section 4.

In a native code generator in LLVM, the information from landingpad instructions gener-
ated in the frontend is used to construct unwind tables. The format of those tables is platform-
and architecture- specific. To read those tables, 1ibc++abi uses the 1ibunwind interface
(originally specified as part of the IA64 C++ ABI). This interface is semi-standard, but no actual
standardising document exists. Since the 1ibunwind implementation is tied to the binary for-
mat of the executable, via the in-memory image of the unwind tables, it cannot be directly used
in DIVINE. Likewise, it is tied to a specific architecture/platform via its knowledge of stack and
register layout — another disqualifying feature. Therefore, 1ibunwind needed to be replaced
with a new implementation for DIVINE.

5 The GNU compilers ship with 1ibstdc++, which contains, as a subproject a runtime support library libsupc++.
Clang ships with 1ibc++. Depending on platform, a choice of either 1ibc++abi or libcxxrt is available for
use with 1ibc++. An independent implementation is available from Apache Software Foundation under the name
libcxx. Multiple compilers ship yet different implementations.
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struct R1 { R1() { /* ... x/ } "RI() { /* ... =/ } };
struct RC { Rl rl; int *resource;
RC() : rl() {
resource = new int[32];
}
"RC() { delete[] resource; }
}i

int main() {
try {
RC res;
// work with the resource...
} catch (...) {
// handle exceptions

Figure 2: Example source code, for illustrating exception handling mechanisms. See Figures 3
and 4.

5.1 The 1libunwind interface

There were two basic options: either replicate the portion of the 1ibunwind interface used
by libc++abi, making it possible to use unmodified source for 1ibc++abi — which sits
on a higher level than 1ibunwind. Conceptually, this is a tempting solution — the more of
the library code is left intact, the more faithful the verification. There is a major downside
though: the interface between 1ibunwind and 1ibc++abi is complex and intricate. This is
especially true of the interface between the unwinder and the personality function: the unwinder
uses the personality function as a callback, invoking it once for each active frame on the stack
at the moment an exception is raised. The personality function uses a pair of platform-specific
registers to pass the handler switch value and the exception pointer to the exception handler: it
cannot invoke the handler itself, as the stack has not been unwound yet and the handler would
end up running in the wrong context. For this reason, 1ibunwind provides an interface to
splice register values into the context of the exception handler to be invoked.® It would be
in principle possible to implement this interface in DIVINE system space: each thread would
need two special thread-local variables to hold these values, and the 1andingpad instruction
would simply read those values and copy them into appropriate LLVM registers. The downside is
extra space overhead — 16 bytes per thread, allocated even if no exceptions are currently active.’

6 This is clearly implemented in a platform-specific fashion. If the registers are always saved on the stack, their stack
images will be rewritten. If they are clobber-type registers, they can be written to directly and the unwinder will take
care not to clobber them before transferring control to the selected exception handler. Other options may be available
depending on platform.

7 Those 16 bytes could be compressed away in most cases to a single bit, at expense of code complexity. However,
system-space complexity is very costly, and complexity involved in addressing the state vector even more so.
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Figure 3: Example of an exception-handling process as it happens in the DIVINE runtime (see
Figure 2 for the source code). The situation at the top of the flowchart corresponds to an out-
of-memory condition in the program. Constructor of class RC was trying to obtain dynamic
memory (using operator new), but the allocation request has failed. As a result, operator new
is throwing an exception — the throw statement in the C++ source code of the implementation
is translated to a __cxa_throw call, which uses __cxa_throw_divine to unwind the stack.
The unwinder first uses __divine_landingpad to find an exception handler (which it finds
in the call frame of the main () function, and any intervening cleanup handlers (there is one
in the RC constructor itself). The unwinder proceeds to call the personality routine to obtain
a handler switch value and passes the result to __divine_unwind, along with the address of
the first cleanup handler. __divine_unwind removes stack frames up to the cleanup handler,
which takes control and calls a destructor of the locally constructed R1 instance. Finally, when
done, the cleanup handler invokes the resume instruction which continues the propagation up
the stack, to the exception handler (the catch block in main () ).
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Figure 4: Example of an exception-handling process as it happens in the standard 1ibc++abi
process on 64-bit Linux (see Figure 2 for the source code and Figure 3 for comparison with
DIVINE). The situation at the top of the flowchart corresponds to an out-of-memory condition in
the program — as a result, operator new is throwing an exception — the throw statement in the
C++ source code of the implementation is translated to a __cxa_throw call. The __cxa_throw
implementation then calls into 1ibunwind — the _Unwind_RaiseException function in
particular. At this point, 1 ibunwind takes over control, looping over active stack frames. Each
frame is examined by calling the personality routine with a _UA_SEARCH_PHASE flag, in the
context of the throw statement. In this phase, an exception handler is identified, but the stack
is not yet unwound. In the next phase, the stack is actually unwound, and again, each frame
is examined by a call to the personality routine. If a cleanup handler or the selected excep-
tion handler is found, it is invoked by returning _-URC_INSTALL_CONTEXT to libunwind
(otherwise, .URC_CONTINUE_UNWIND indicates that unwinding should continue with the next
frame). Cleanup handlers return control to 1 ibunwind by invoking -Unwind_Resume.

gxx personality I |

_URC_INSTALL_CONTEXT
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Another downside is that this limits flexibility: while the LLVM exception mechanism is made to
play nice with 1ibunwind, it is flexible enough, at least in theory, to admit another approach
to stack unwinding. Using this approach would mean changing the DIVINE system space to
accommodate a different 1andingpad return type.

While this API/ABI issue has reasonable solutions, there is a more important issue at play.
While 1ibunwind understands the platform-specific portions of unwind tables, it provides no
support for parsing the language-specific chunks. This means that 1ibc++abi code itself has
ABI-specific knowledge of the unwind table layout, needed to extract the exception type info
and switch values. All 1ibunwind does here is provide a pointer to the 1sda (language-
specific data area) portion of the unwind table for a given stack frame. In order to support
this 1ibc++abi code in its literal form, DIVINE would have to synthesise DWARF-formatted®
1sda areas from landingpad instructions. This is unpleasant, because it is a complex format
designed for space efficiency, and the encoded tables are completely C++ specific, even specific
to C++ on a particular platform. The only reasonable way to provide such tables would be to
leverage pieces of the existing x86 (or x86-64) code generator to synthesise the 1sda tables.
LLVM, however, does not provide an interface to this functionality.

5.2 DIVINE-specific unwinding API

Both these issues in mind, we have chosen a different approach, which requires modi-
fications to libc++abi, but can be implemented with just 2 new system-space builtins
— one for querying metadata encoded in landingpad instructions, based on a stack
frame reference (__divine_landingpad) and another for actually unwinding the stack
(._divine_unwind).

This clearly requires some changes in 1ibc++abi: one is the personality function, and
the other is the actual __cxa_throw implementation: a call to this function is inserted by the
C++ compiler at the site of a throw statement (along with some support code). While in the
original 1ibc++abi implementation, the personality function bears most of the burden (since
libunwind does the stack search, calling out to the personality function as needed), this is re-
versed in the DIVINE implementation. Here, the personality function merely extracts the correct
items from the exception header to pass on to the exception handler. The __cxa_throw imple-
mentation, on the other hand (and unlike in the 1 ibunwind version) unwinds the stack itself
using __divine_landingpad. This builtin does not change anything, but provides the caller
with 1andingpad metadata, using a simple integer indexing of stack frames. Negative indices
start at the top of the stack, non-negative at the bottom. This makes it easy for the unwinder to
walk through the stack one frame at a time, looking for an appropriate handler. When the handler
is found, it can call the personality function (pointer to which is part of the 1andingpad meta-
data) and pass it to __divine_unwind along with the frame address it obtained from calling
_divine_landingpad. The job of __divine_unwind is then simple enough: destroy all
the frames above the one addressed and transfer control to the landing block associated with the
active invoke instruction in the now-topmost stack frame. __divine_unwind also takes care
of copying the value it obtained from its caller (in this case the return value of the personality

8 DWAREF is a companion format to encode debug and other metadata in ELF executable images. A backronym
“Debugging With Attributed Record Format” has been invented for it.
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function) into the result of the corresponding 1andingpad instruction.

The implementation of __divine_landingpad takes advantage of the implicit garbage col-
lection done by DIVINE, as it allocates the metadata block on heap. Since the block is neither
flagged as a result of an alloca instruction, nor as a result of __divine_malloc, itis trans-
parently retained as long as necessary without being flagged by the interpreter as a memory leak.

5.3 setjmp and longjmp

The C functions set jmp and 1ongjmp can be used for non-local transfer of control, in a way
somewhat similar to C++ exceptions. In fact, some C programs use those two semi-standard
functions to implement somewhat crude exception handling in C. The purpose of the set jmp
function is to save enough of the machine state to allow non-local transfer of control to the point
in program where set jmp was called. The 1ongjmp partner then, using a context saved by
the set jmp call, restores the corresponding machine state. The state is exactly the same as it
was right after set jmp call returned for the first time, with one exception: the return value of
the set Jmp call is altered in its second return, to make it possible to detect whether the return
was a “normal” return or a 1 ong jmp return.

Clearly, exception handling based on set jmp/longjmp cannot be “zero-cost” — state has to
be explicitly saved at the start of every t ry block, and possibly before any resource acquisition.
The latter problem can be side-stepped by maintaining a separate “resource” stack [Tur], but even
then, entering t ry blocks is fairly expensive. Nevertheless, robust C programs may choose this
style of exception handling, since the runtime overhead can be outweighed by the programming
benefits — especially due to fewer and simpler error paths to write, maintain and test. Finally,
there are other uses for 1ongjmp in programs, besides exceptional situations.

While longjmp is not nearly as widely used as C++ exceptions are, the reasons for
supporting this primitive are similar, even if somewhat weaker. Fortunately, the primi-
tives we have designed for C++ exception handling can be easily re-used in implement-
ing setjmp and longjmp — since __divine_unwind can just as easily stop at a call
instruction as it can on an invoke instruction, we only need minor extensions to the
_divine_landingpad/__divine_unwind mechanism. The main difference between ex-
ceptions and 1ong jmp is how the control flow at the point of set jmp is handled. The DIVINE-
specific implementation of set jmp needs to be able to find out the program counter value of its
enclosing frame, corresponding to the call instruction. This can be done by slightly extending
_divine_landingpad, to provide the program counter value for call instructions in the
stack (this does not alter the semantics of __divine_landingpad for invoke instructions in
any way).

Finally, __divine_unwind needs to be extended as well, to allow the caller to specify where
to restart the execution in the target frame — since longjmp is not above the corresponding
set jmp in the call stack, a successful 1ongjmp needs to change the program counter in the
target frame, in addition to unwinding. Luckily, this is fairly easy, since the __divine_unwind
caller can specify the program counter corresponding to the callsite to unwind to. For normal
C++ exceptions, the caller just puts in a 0, meaning no program counter adjustment (i.e. the
semantics stay exactly the same) and 1ongjmp passes in the program counter value obtained
froma __divine_landingpad call done by the set jmp function.
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6 Case Studies

Besides the simple fact of making model checking possible on a substantially wider class of
programs, exceptions themselves are an interesting subject for model checkers: error paths are
notoriously hard to test. With a model checker, however, it is easy to insert non-deterministic
failures and check that the program behaves sensibly under all sorts of error conditions. Resource
leaks are among the most common errors encountered in error paths, which makes the problem
even harder to debug — resource leaks, especially memory leaks, require special tools to diagnose
in a test, such as valgrind.

Since DIVINE can already diagnose memory leaks in LLVM inputs, checking error paths in-
volving exceptions becomes a fairly easy task. However, error paths can contain more serious
errors as well — especially in multi-threaded programs, where threads are not isolated from the
effects of other threads failing to handle an exception, and the entire program may crash. Among
the first issues that we have found using our new exception support in DIVINE is such a crash,
in std: :thread implementation in 1ibc++, under out-of memory conditions.” When a new
thread is created using this standard C++ interface, most of its state is allocated in the newly-
created thread, before user code is executed. Since this allocation can fail with an exception, and
the 1ibc++ implementation fails to install an exception handler in the context of this newly-
created thread, the exception cannot be caught. In such cases, the C++ standard document re-
quires the runtime library to call an “unexpected exception handler”, which, unless overriden by
the user, terminates the application.

In order to fix this problem, we have moved the memory allocation code into the calling
thread. To avoid synchronisation problems and possible resource leaks, this happens before the
new thread is created — the calling thread allocates all the dynamic state for the new thread and
passes it down as a parameter. This way, any exceptions related to resource exhaustion happen in
the calling thread, in a context where users can control the scope and propagation of exceptions
by wrapping the call to the thread constructor in a suitable catch block.

7 Conclusions

We have shown how to extend an explicit-state software model checker based on LLVM with
support for exception handling, with focus on C++ exceptions. To ensure the viability of the
approach described in the paper, we have created an implementation as part of the DIVINE model
checker. Additionally, we have used this implementation to verify properties of C++ programs
that make use of exceptions (either directly or via the standard library) and in the process found
an exception-related bug in the 1ibc++ implementation of std: : thread.

To the best of our knowledge, this makes DIVINE the first model checker to be able to verify
C++ code with exceptions'’. The main contributions of the paper are twofold: first, the descrip-
tion of C++ and LLVM exception handling mechanisms in the context of model checking, and

9 The proposed patch that fixes the problem can be found in http:/Ilvm.org/bugs/show_bug.cgi?id=15638 and the
relevant source code in the file 1ibc++/std/thread.

10° According to [RES113], the ESBMC++ tool also supports C++ exceptions. Unfortunately, it appears that this
support is so far largely theoretical: the current version (1.23) produces a spurious counterexample on a simple test
case, taking a path through the code which disregards the fact that an exception has been raised.
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second the implementation derived from it: all relevant source code is freely available as part of
the current DIVINE distribution.

Bibliography

[BBH™13] J. Barnat, L. Brim, V. Havel, J. Havligek, J. Kriho, M. Lenco, P. Ro¢kai, V. étill,

[Bey14]

[CDEOS]

[DWA10]

[ELPP12]

[LAO4]

[MFS12]

[RFST13]

[Tur]

[VWS86]

J. Weiser. DiVinE 3.0 — An Explicit-State Model Checker for Multithreaded C &
C++ Programs. In Computer Aided Verification (CAV 2013). LNCS 8044, pp. 863—
868. Springer, 2013.

D. Beyer. Status Report on Software Verification - (Competition Summary SV-COMP
2014). In Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2014). LNCS 8413, pp. 373-388. Springer, 2014.

C. Cadar, D. Dunbar, D. R. Engler. KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs. In 8th USENIX Symposium on
Operating Systems Design and Implementation, (OSDI 2008). Pp. 209-224. USENIX
Association, 2008.

DWARF Debugging Information Format Committee. DWARF debugging information
format version 4. 2010.
http://dwarfstd.org/

S. Evangelista, A. Laarman, L. Petrucci, J. van de Pol. Improved Multi-Core Nested
Depth-First Search. In Automated Technology for Verification and Analysis (ATVA
2012). LNCS 7561, pp. 269-283. Springer, 2012.

C. Lattner, V. Adve. LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In International Symposium on Code Generation and Opti-
mization (CGO). Palo Alto, California, Mar 2004.

F. Merz, S. Falke, C. Sinz. LLBMC: Bounded Model Checking of C and C++ Pro-
grams Using a Compiler IR. In Proceedings of the 4th International Conference on
Verified Software: Theories, Tools, Experiments. VSTTE’12, pp. 146-161. Springer-
Verlag, 2012.

M. Ramalho, M. Freitas, F. Sousa, H. Marques, L. Cordeiro, B. Fischer. SMT-Based
Bounded Model Checking of C++ Programs. In Proceedings of the 20th Annual IEEE
International Conference and Workshops on the Engineering of Computer Based Sys-
tems. ECBS 13, pp. 147-156. IEEE Computer Society, Washington, DC, USA, 2013.

D. Turner. Robust Design Techniques for C Programs.
http://freetype.sourceforge.net/david/reliable-c.html

M. Vardi, P. Wolper. An Automata-Theoretic Approach to Automatic Program Veri-
fication. In IEEE Symposium on Logic in Computer Science. Pp. 322-331. Computer
Society Press, 1986.

15/15

Volume 70 (2014)


http://dwarfstd.org/
http://freetype.sourceforge.net/david/reliable-c.html

	Introduction
	Preliminaries
	Exception Handling
	Mapping Exceptions to LLVM

	C and C++ Runtime Support in DIVINE
	Implementation
	The libunwind interface
	DIVINE-specific unwinding API
	setjmp and longjmp

	Case Studies
	Conclusions

