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Abstract: Smartcards are security critical devices requiring a high assurance veri-
fication approach. Although formal techniques can be used at design or even at de-
velopment stages, such systems have to undergo a traditional hardware-in-the-loop
testing phase. This phase is subject to two key requirements: achieving exhaustive
transition coverage of the behavior of the system under test, and minimizing the test-
ing time. In this context, testing time is highly bound to a specific hardware reset
operation. Model-based testing is the adequate approach given the availability of a
precise model of the system behavior and its ability to produce high quality cover-
age while optimizing some cost criterion. This paper presents an original algorithm
addressing this problem by reformulating it as an integer programming problem to
make a graph Eulerian. The associated cost criterion captures both the number of
resets and the total length of the test suite, as an auxiliary objective. The algorithm
ensures transition coverage. An implementation of the algorithm was developed,
benchmarked, and integrated into an industrial smartcard testing framework. A val-
idation case study from this domain is also presented. The approach can of course
be applied to any other domains with similar reset-related testing constraints.

Keywords: Model-based testing, Constraint Solving for Verification, Hardware in
the loop

1 Introduction

Testing remains the major industrial approach for software validation and verification. However,
with the development of model-based engineering and the use of Domain Specific Languages,
testing is not any more disconnected from modeling activities. In this context, Model-Based
Testing (MBT) has appeared as way to automate test generation from models [UL06, DSVTO7].
Based on a model of the system under test, it provides the advantage of automated generation,
ensuring complex coverage criteria, evolution of the test suites as the specification evolves. How-
ever, there are also a number of shortcomings: the effort required to build a model is also quite
high and requires a deep change in the design process. Moreover, additional effort is also re-
quired to manage a translation from an abstract test suite to concrete test cases. There are also
still language and tool limitations to cope with, especially when managing large models and
generating tests from them [ULO06].

In this paper, we take a more focused approach which does not try to capture the behavior
of the whole system but only specific behavioral aspects expressed in the widely industrially
adopted formalism of state machines [Har87, Fow03].
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Several coverage criteria for state machines have been proposed and are now considered as
standard: transition coverage, state coverage, pair of transition coverage, pair of state coverage,
path coverage, etc. They provide relevant trade-off points between the level of assurance pro-
vided by a successful test campaign, and the cost and time devoted to the creation and execution
of a test suite. The overall length of the test suite and the individual cost of some steps of testing
are the two factors influencing the time necessary for executing a test suite.

In this paper, we focus on transition coverage which is quite popular. Our contribution is to
take into account a frequent problem of the cost of managing transition under tests by driving the
system into a well-defined state, for example by applying some “reset” procedure. The cost of
this system reset can be quite prohibitive and should be minimized. We present an algorithmic
approach to automatically generate test suites that minimize the number of resets that must be
performed to execute a test suite. We consider that a reset must be performed between each
test case. Our algorithm also minimizes the overall length of the test cases as an auxiliary cost
criterion. So far, our algorithm exclusively supports the transition coverage criterion.

This problem was encountered in the context of smartcard testing. In this context, resets are
expensive because they are performed either by flashing the program memory, or by switching
to a new and fresh device in case the hardware flashing is disabled. Hardware flashing might be
disabled for security reasons, as it might give access to the innards of the card. Those operations
are an order of magnitude more time consuming than performing the software actions listed
by the state machine implemented in the smartcard. This problem can be encountered in other
domains, for example in business workflow management systems where going to a known state
can require complex database operations.

In this paper we will consider a running example from the smartcard domain: a fragment of the
public Eurocard-Visa-Mastercard (EMV) specification [EMVO08]. It is described in a relatively
small state machine presented in Figure 1 driving the card lifecycle between initialization to
more operational states. This system runs on smart card commonly encountered for debit and
credit cards.

Select

Genergte AC Select
If SW<35000

Generate AC
If SW=9000

Generate AC
If SW=5000 & TC=ARQC

GenerateAC
If SWe=9000 & TC<=ARQC

Figure 1: The EMV state machine that governs smart cards

Our proposed approach can be summarized by the following reasoning:

1. We consider that a test suite is a path in the state machine. Each test case is a fragment
of this path, and test cases are separated by hardware resets. The hardware reset is modeled
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as an extra transition in the state machine, each state but the initial one has a reset transition
that leads to the initial state. Hardware resets are thus added to the purely software state
machine in the beginning of our algorithm.

A transition coverage criterion is very close to the definition of Eulerian path. An
Eulerian path in a graph is a path that takes each transition exactly once. Finding an Eule-
rian path in a graph has complexity O(#Edges). The search for the test suite is therefore
nothing else but searching for an Eulerian path, assuming such a path exists. The length is
of course optimal because it is equal equal to the number of edges.

. There can only be an Eulerian if the graph is Eulerian itself and this can be checked

by simple conditions, mainly involving the degree of the nodes. There are two possibili-
ties to cope with this, either to develop a specific algorithm derived from the one that finds
an Eulerian path or to transform the graph into an Eulerian one. We have opted for the
second approach because it seemed computationally more efficient, much more elegant,
and less expensive to implement.

Transforming an ordinary graph into an Eulerian graph can be achieved by adding some
edges to enforce the conditions that make a graph Eulerian. This operation allows for
degrees of liberty. However, we can only add reset edges (from any state to the initial
state) or duplicate existing transitions. We cannot add any other new transitions.

. All added transitions do not have the same impact, especially adding reset transitions

is very costly and one can prefer to add many ordinary transitions instead, this can
be formulated as an optimization problem. The optimization problem is expressed as
finding the set of transitions making a graph Eulerian while minimizing the cost criteria
which is expressed as the weighted sum of the added transitions, with reset transitions
having a much larger costs than normal ones. The optimal test suite is then simply the
Eulerian path cut at the reset transitions.

On the technical side, this problem can be easily expressed as an Integer Programming
(IP) problem, which can be solved efficiently using Integer Programming techniques
(MIP solver).

The remainder of this paper is structured as follows. Section 1 formally defines the problem
that we are solving in this paper and the notation used throughout the paper. Section 2 introduces
the specific technological background of our approach, notably Eulerian graphs and integer pro-
gramming. Section 3 presents our algorithm in full details. Section 4 illustrates the result of
running our algorithm on our EMV case study as well as on a full set of benchmarks showing
how it scales. Section 5 presents some related work. Finally, section 6 summarizes the paper and
gives open issues and possible extensions of this approach.

2 Problem Statement

The problem solved in this paper is formally defined as follows:
Given a state machine,
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e described by its states S and its transitions 7, T C 52
e with initial state init , init € S
e ensuring reachability (i.e. each state is reachable from init)
Find a set of paths, each path starting at init, such that:
e cach transition of the state machine is taken at least once by one of the paths
e the number of paths is minimal
o the overall length of these paths is minimal

The two objective functions are strictly prioritized: the number of resets is minimized first,
and then, keeping the same number of resets, the overall length of the test paths is minimized.

3 Technical Background

This section presents our approach. It first recalls necessary background on graph theory, Eu-
lerian paths, and integer programming. It then presents some inspiring problems from graph
theory and explains the intuition behind our algorithm. Throughout the paper, the concepts of
state machine and graph are undistinguished, and denoted by any of these two terms.

3.1 Graph Theory and Eulerian Path

An Eulerian path in a graph is a path that takes each transition exactly once. An Eulerian cycle
is an Eulerian path such that the end node of the path is the same as the start node of the path.
An Eulerian graph is a graph with an Eulerian path. There is a classical theorem that links the
Eulerian property to simple properties of a graph. It can be found in lecture books [Tru93]. We
only recall the property itself and not its proof. A directed graph is Eulerian if:

e it is strongly connected: for each pair of node, there is a path leading from one to the
another

o for each node, its in-degree is equal to its out-degree
As exception to the rule above: a pair of nodes called init and end might exist:
o the out-degree of init is equal to the in-degree of init plus one
e the in-degree of end is equal to the out-degree of end plus one
e there might not be a path from end to init

Hierolzer’s algorithm finds an Eulerian path in O(#Edges) in an Eulerian graph [Hie73]. The
principle of the algorithm is to build a path starting from the inif node such that the path takes
edges at most once. The path does not necessarily cover all edges of the graph. The algorithm
then iteratively completes the path with edges that were not taken. It proceeds by walking on the
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path until reaching a node that has edges leaving the node and that are not in the path yet. The
algorithm explores a path starting from this new edge, and only takes edges that were not taken
so far. This additional path is necessarily a cycle that comes back to the node where it started.
This secondary path is then added to the initial path. The walk then proceeds on the completed
path by first following the added section, and iteratively enriches the path with other missing
edges. When the walk is finished, the path has been enriched with all the edges of the graph, it
is therefore Eulerian.

3.2 Integer Programming

Integer programming is about solving problems of finding x such that:
e x-c is minimal
e A-x<b
o all values of x are integers

Where x is a vector of unknowns, b and ¢ are vectors of constants, A is a matrix of constants,
x - ¢ is the Cartesian product of x and ¢, A - x is the matrix product of A and x, the inequality <
holds for each row of the two vectors.

Efficient solvers are available for such problems [GLP, SCI, LPS, IBM]. Notice that the
above IP problem only includes an inequality but can easily be extended to handle equality as
well: equality p = g can be encoded by the conjunction of two constraints p < g and —p < —q.

3.3 Inspiring Problems

Related problems are presented in [EJ73, Thi03]. Among them, the approach is notably inspired
from the Chinese postman problem. The Chinese postman must take each street of the city at
least once to deliver the mail, and wants to minimize his overall walking distance. This problem
is efficiently solved by an IP-based approach, to duplicate the necessary edges in order to make
the graph Eulerian. Out of the Eulerian graph, an Eulerian path can be computed efficiently.

Two different classes of edges appear in a related problem called the rural postman problem.
This problem is similar to the Chinese postman problem except that some streets are actually
rural pathways where no mail must be delivered. They can be used as shortcuts and might not be
taken in the final path.

In our case, the graph is directed, and there are two classes of edges: reset transitions and other
transitions. Reset transitions must be minimized first, and might not be taken in the final path.
Other edges must also be minimized, as a secondary objective.

4 Algorithm

The global view of the algorithm is depicted in Figure 2.

e The first step transforms the initial state machine into an Eulerian state machine by in-
serting reset transitions representing hardware resets, and duplicating some transitions of
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Figure 2: Architecture of our test generation approach

the state machine. The state machine resulting from the transform is designated as the
Eulerian machine, with transitions 7, and states S,.

e The second step finds an Eulerian path in the Eulerian state machine by applying Hi-
erolzer’s algorithm. It delivers a path that takes each transition at least once, and includes
both transitions from the initial state machine and reset transitions. The algorithm is called
so that the path starts at the inif node.

e The third step cuts the Eulerian path at reset transitions. Each fragment is a path that starts
at init and ends anywhere in the state machine.

We will focus here only on the first step as the two others are trivial. This first step enriches
the initial state machine with reset transitions. The set of reset transitions added to the initial
state machine is represented by R.

In order to express the duplication of the edges present in the initial state machine, each edge
e of the initial state machine gets an associated unknown x, that represents the number of time it
will be present in the Eulerian state machine. Similarly, reset transitions also get an associated
unknown x; that will be resolved.

The main constraint that we want to enforce on the x variable is the one of degree equality:
for each node, its in-degree should be equal to its out-degree. This constraint, taken from the
definition of the Eulerian graph in Section 3.1 has an acceptable exception regarding the degree
of nodes: a pair of nodes called the init and end node, respectively must enforce a slightly
different equality: the init node has one more out-edge and the end node has one more in-edge.
The init node of the exception is fixed to be the init node of the state machine, while the end
node of the transition is not identified yet at this stage. To elegantly cope with this exception, we
introduce a set of additional transitions to the initial state machine, called fictive transitions. An
example of such a fictive transition is presented in Figure 3.

These fictive transitions will enable us to post the same equality constraint on each node, inde-
pendently of the possible exception on this constraint, because we will take the fictive transitions
into account in the equality constraints. In the Eulerian state machine, if the exception turns out
to happen, one fictive transition will link the end node to the init node, and ensure that the degree
constraint will be enforced. If the exception does not happen, no fictive transition will be present
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Init End

Figure 3: Adding a fictive transition.

in the Eulerian state machine. Each node but the init node has a fictive transition that links it to
the init node. We represent the set of fictive transition by the set F'. Each fictive transition f gets
also an associated unknown variable x.

We now review each condition that must be enforced by these unknowns from Section 3.1 and
from the problem statement in Section 2 and show how they are translated into constraints of an
IP problem:

Constraint C1 - For each node, its in-degree is equal to its out-degree. This translates
neatly into an IP problem. Considering a node n of the graph, we can find all transitions
reaching (resp. leaving) the node, including the fictive and reset ones, they are denoted as
I, (resp. Oy), we just need to post that }.,c; Xe = Y. oc0, Xe- This constraint is posted for
each node n.

Constraint C2 - There is at most one fictive transition in the state machine. It is is
posted on the set of fictive transitions F: } rcpxp < 1.

Constraint C3 - Each transition from the original machine is taken at least once. It is
to be posted for each transition of the original state machine, thus not for reset or fictive
transition. For each transition ¢ in the initial state machine, we have to post the following
constraint: x, > 1.

Constraint C4 - No transition can be taken a negative number of times. This is
straightforwardly translated into a MIP: for each transition e in the state machine, we
have to post that x, > 0. This is partially redundant with the previous constraint, so that it
need only be posted on reset and fictive transitions.

Constraint CS - The graph must be strongly connected. This constraint is more com-
plex. From Section 2 we know that the initial state machine is quasi-strongly connected,
as there is a path from init to each node. We only need to ensure that there is a path from
each node to init. This is implemented by adding the necessary reset transitions. Consider
a state s of the state machine. It must be connected to init. We thus consider Z; the set of
states reachable from s. If init € Z;, the constraint is entailed for s. If init ¢ Z, at least
one reset transition must be added from one of the set if Z; to establish the connection to
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init. Considering Rz, the set of reset transitions from R that start in a state of Z;, the cor-
responding constraint is as follows: }..cg, x > 1. Computing all the Z, can be performed

at once through the Floyd-Warshall algorithm [Flo62].

The cost criterion is composite and is expressed in terms of the IP problem as follows:

o The first cost criterion is that the number of reset transitions in the Eulerian path should be
minimal. The associated objective function to minimize is: Y cp Xe-

e The second cost criterion is that the overall length of the test case should be minimal. The
associated objective function to minimize is: ) ,cr Xe.

Combining the two objective functions into a single one is performed by summing them with
a high weighting on the first criterion. This weighting is computed to be strictly bigger than
the maximal value of the second criterion. We selected the value #Edge?, where Edge is the
set of transitions in the initial graph. This is higher than the number of edges in the Eulerian
path because the worst case would be that taking one more transition of the state machine re-
quires crossing the whole state machine again. Other values can be used, but the outcome of the
optimization will be the same, for the x variables.

The result of the IP problem is the number of times each transitions must be represented in the
transformed state machine to make it Eulerian with minimal cost.

The Eulerian state machine is elaborated from the initial one, the reset transitions and the
computed x values: the states of the Eulerian state machine are the ones of the initial one, and
each transition ¢ of the initial state machine, or from the set of reset transition is present exactly x;
times in the Eulerian one. The potentially identified fictive transition is not added to the Eulerian
state machine because it was only a modeling artifact to ease the encoding of the problem into an
IP problem. It can be omitted in the Eulerian state machine without losing the Eulerian property
of this machine thanks to the exception of the definition.

5 Implementation and Validation

5.1 Implementation

An implementation of this approach has been developed in Python and relies on several open
source libraries such as NetworkX and Coopr [Net, San]. NetworkX is a Python software pack-
age for the creation, manipulation, and study of complex networks. It offers a lot of useful
features such as graph generators, network structure and analysis measures, and graph drawing.
Coopr is a collection of Python software packages that supports a diverse set of optimization ca-
pabilities for formulating and analyzing optimization models. In particular, we used the Pyomo
package which supports mathematical modeling of integer programs in Python. Pyomo enables

! In case we were only minimizing the number of resets with no concern about the total number of transitions of the
test suite, we could consider a simpler approach for this constraint: adding at least one reset transition for each strongly
connected component that has no edge getting out of it, and that does not contain the initial state. This approach would
restrict the positions where reset transitions can be added, thus potentially increasing the total number of transitions
of the test suite.
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to define symbolic problems, create concrete problem instances, and solve these instances with
standard solvers. We used the GLPK solver for the MIP resolution [GLP].

The prototype is fully integrated in a test management toolset in a smart card context [DPD " 12].
Figure 4 shows the tool with the FSM editor open as well as a generated test scripts. Test scripts
can easily be generated from those FSM as each transition is directly referencing a command
with parameters. Special scripts are also available (e.g. for the reset transition).

(i Pattern-Based enerztor |
File Tools Scripts ? A
—{ Eulerian Path
0 EMV 4
5B commandiist ||, fom Qength:40)
& ApplicationUnblock any other command
[0 GenerateAC (GetChalenge
500 GetChallenge Foviey
%00 GetData ReadRecord
GetProcessingOptions SW 1= 9000
40 GetProcessingOptions | | S2Precessnadebons U1 = 3006 )
-3 InternalAuthenticate | | GenerateAC SW 1= 5000 hgOptions Generate AC Select
= elec
-0 PinChangeUnblock | |GetPracessingOptions SW =000 9000 IF SW <> 9000
%0 PutData GetProcessingOptions S\ = 5000
[ ReadRecord GetData
53 Select Verify
GetChallenge
-3 UpdateRecord Interalauthentiate i
%03 Veri ReadRecord - .
B da!allst#y GenerateAC SW = 9000 AND TC = ARQC Tnitiated iy other command L
GenerateAC SW ! = 9000 b
Options SW = 9000
o B fsm GenerateAC SW = 9000 AND TC = ARQC
Sel d Select
@ Selectes GetProcessingOptions SW = 5000
© Initiated GenerateAC SW = 9000 AND TC = ARQC Generate AC Sel
i PinChangeUnblock elect
© Online Dt IF SW = 9000 AND TC = ARQC
@ Script GetChallenge
ApplicationUnblock
ReadRecord
GetData
gudam'(it:ggw 9000 CeoeetsAC
enerate -
Select IF SW = 9000 AND TC <> ARQC
GetProcessingOptions SW = 5000
GenerateAC SW = 9000 AND TC = ARQC
ReadRecord
ApplicationUnblock
PutData ”
ooty Generate AC
GetChalenge
UpdateRecord
PinChangeUnblock
_ y Qerint ey other command  ~
ﬂ m »

Figure 4: Prototype integration inside the STMicroelectronics test tooling

5.2 Illustration on the EMV Case Study

For the EMV model presented in Figure 1, our tool finds a single test case that alone ensures
the transition coverage criterion. No reset transition is needed here because the state machine
is strongly connected from the start. The run time was around a tenth of second on a 2GHz
machine. The single test case has 16 transitions. It is described in Figure 5.

5.3 Benchmarking

We have performed some benchmarking of our algorithm, both to check its efficiency and scal-
ability, and to try to measure how efficient it could be with respect to the cost criterion. Bench-
marking the cost criterion is actually only aimed at checking that minimizing it gives some good
result and we know that our algorithm is optimal with respect to it.

Our benchmarking is based on randomly generated state machines with specific characteris-
tics. They are generated randomly so as to reach a given number of nodes and transitions. We
have swept the two dimensional space of number of nodes and transitions so as to give a wide
view of the efficiency of our algorithm. The number of nodes range from 4 to 84 while the num-
ber of transitions ranges from 4 to the maximal connectivity the size of these state machines.
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GetProcessingOptions SW=9000 (Selected -> Initiated)
GenerateAC SW<>9000 (Initiated —-> Selected)
GetProcessingOptions SW=9000 (Selected —-> Initiated)
Select (Initiated —-> Selected)

GetProcessingOptions SW=9000 (Selected -> Initiated)
GenerateAC SW=9000 AND TC=ARQC (Initiated -> Online)
GenerateAC SW<>9000 (Online -> Selected)
GetProcessingOptions SW=9000 (Selected -> Initiated)
GenerateAC SW=9000 & TC=ARQC (Initiated -> Online)
Select (Online -> Selected)

GetProcessingOptions SW=9000 (Selected -> Initiated)
GenerateAC SW=9000 & TC=ARQC (Initiated -> Online)
GenerateAC SW=9000 (Online -> Script)

Select (Script —-> Selected)

GetProcessingOptions SW=9000 (Selected -> Initiated)
GenerateAC SW=9000 & TC<>ARQC (Initiated -> Script)

Figure 5: Single test trace elicited for the EMV state machine

There are 2268 test cases. The machine used for the benchmarking is a dual-core Intel 2,53 GHz
with 3,5Gb of RAM running Microsoft Windows.

We have measured a set of parameters, both related to the generated test state machine and to
the behavior of our algorithms, namely:

e The number of nodes that have no access to the initial state (those will trigger the need for
inserting reset transitions)

e The diameter of the graph; to compare it to the length of the generated test suite
e The run time and memory consumption of our algorithm

e The number of test cases found in the generated test suites which is equal to the number
of resets plus one

o The overall length of the generated test suite: this is the summed length of the test cases

Figure 6 reports the run time and peak memory consumption with respect both to the number
of transitions and the number of nodes. Surprisingly, the run time seems to be nearly insensitive
to the number of nodes. It seems to be more or less linear with respect to the number of transitions
of the state machine. There is an exception in the run time, which is a graph with 45 edges and
around 100 transitions which can either be a very badly shaped test case, or an external factor
(e.g.: antivirus) which could not be reproduced. The peak memory consumption seems to be
also linear with respect to the number of transitions, and seems to be much less dependent on the
number of nodes.

The main objective function is the number of reset transitions. The left graph of Figure 7
presents the number of reset transitions generated by our algorithm with respect to the number
of nodes that have no path to the initial state. These are the nodes that potentially require the
insertion of a reset transition in order to make the graph Eulerian. We have drawn the 1:1 line on
the graph to enlighten two phenomena. First, the number of resets is often lower than the number
of nodes that have no path to the initial state. This is because the algorithm manages to visit them
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Figure 6: Run time and peak memory consumption of our algorithm on our benchmark suite

in a row, as they form a chain towards some ’dead end” node. Second, there can be more resets
inserted than the number of such nodes because such dead end node can have several incoming
arcs; hence it requires as many resets to be inserted to ensure that the graph is Eulerian.

Wy #reset 1500 overall suite length +
+ . 1400
o
+ o+ R Lt
+ 1200
+ 4
P + 1000
+ + ot + 500
+ +
+ + o+ 600
-
oo 400
e
+ with no path 2
to init - Edges
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40 a0 B0 70 a0 u] 200 400 GO0 800 1000 1200 1400 1600

Figure 7: Number of generated resets wrt. number of nodes without path to init (left) and suite
length wrt. number of edges (right)

The right graph of Figure 7 presents the length of the generated test suite with respect to the
number of edges of the graph. We can see that the dependence is mostly linear, except for small
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numbers of edges, where it might be higher.

Our graphs are generated randomly, so that, in the statistical sense, our benchmarks are only
valid assuming a random set of graphs. Extreme cases can likely be found, such that the algo-
rithm behaves very inefficiently. Nevertheless, these benchmarks give a good overview of the
average behavior of the algorithm.

6 Related Work

Finite state machines are a formalism that is implicitly or explicitly present in a number of
model-based testing approaches. We focus here on approaches with explicit FSM descriptions.

e The commercial QTronic tool suite [Ver] provides a graphical FSM editor. The FSM de-
scription can also be coupled with a richer JAVA-inspired language. Considering only the
FSM part, it supports not only state and transition coverage but also more complex cover-
age criteria like transition pairs (all pairs of input/output transition to a state). However, it
does not support the management of the cost of special transitions like resets. The underly-
ing technology is based on algorithms, including symbolic state space analysis, constraint
solving, and combinatorial optimization. A more complete evaluation of this tool can be
found in [And10].

o SmartTesting relies on UML class and state diagrams to model the system under test [Sma,
BGLPO08]. More complex behaviors can be specified using UML OCL (Object Constraint
Language). The test generation relies on a set-constraints based solver. It does not cope
with reset costs.

e The UML-B plug-in for RODIN enables the specification of FSMs in graphical form with
Event-B as underlying formalism [SB08, Abr10]. Model-based test generation is currently
being developed based on the ProB model-checker which is implemented in SICStus Pro-
log and uses co-routining and finite domain constraint solving [LBO8]. Transition costs
are also currently not taken into account.

Other research has addressed the problem of generating reset-minimal test suites in the larger
scope of generating a checking sequence and taking into account the notion of distinguishing
sequences. A first work proposed some heuristics [UWZ97]. Hierons improved them based on
optimizations of the state recognition sequences and their use to construct the test segments.
This resulted in shorter checking sequences produced from minimal, completely specified, and
deterministic finite state machines [HU02]. An improved algorithm was more recently proposed:
it produces minimal length sequences in its class and does not require the FSM to be strongly
connected [HU10]. The approach is totally different and does not rely on the notion of Eulerian
path. Besides, we did not consider distinguishing sequences. The notion of distinguishing se-
quences is not relevant in the smartcard domain where a separate oracle is available (emulator
implementation). However, in a more general context, guaranteeing distinguishing sequences
would be relevant.

MIP-based tools have also been used in the context of test case generation. [NSZ07] presents
how scheduling problems can be solved by means of a MIP and how the generated schedules
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can be used as test cases for real-time systems. They furthermore present how the randomization
introduced by some MIP solvers on the generated schedules can lead to test cases exhibiting
similar randomness.

An MIP-based tool able to statically check meta-properties of the state machine such as dis-
jointness and exhaustiveness of transitions is described in [OQLOS8]. This work relies on a state-
machine model manipulating numerical data. Their solver is also able to identify sets of values
to inject in such state machine to lead it towards some pre-defined states. This can be used to
generate test data that should bring the state machine into some predefined state. Iteratively,
one should generate a single test case for each state through this procedure. Our approach does
not encompass the decoration of state machine by condition and numerical state variables, but it
provides test suite generation approach enforcing a coverage criterion for the whole test suite.

Consequently, we believe that the work described in this paper is an original algorithm for
generating a checking sequence minimizing the number of reset transitions used.

7 Conclusions and Perspectives

This paper has presented an original algorithm that generates a test suite for a state machine using
a constraint solving approach. The test suite ensures that each transition of the state machine is
taken at least once, and guarantees to include as few test cases as possible, to keep the number of
resets as low as possible. It furthermore ensures that the overall length of the test suite is as small
as possible. The approach is original because it is based not on an exploratory approach such as
depth first search, but on a graph transforms approach. It first transforms the state machine into
an Eulerian one where such a test suite can be found straightforwardly. The transformation is
computed efficiently with the help of a MIP solver.

The insights of this approach are interesting for the following reasons: despite the apparent
complexity of the problem, the proposed solution is elegant and can easily be implemented. Its
general performance is excellent and scales well.

An apparent limitation of our approach is the use of flat FSM while real world examples are
expressed as parallel and hierarchical decomposition. For example, smartcards are expressed as
the combination of multiple agents with specific behavior. They can be either generic (e.g. the
presented EMV agent for the lifecycle, a PIN management agent, ...) or application specific.
However, several algorithms exist to translate such problems to a flat FSM [DPC*14]. The
resulting FSM is more complex but our algorithm scales well.

Another area of extension would be to consider the notion of distinguishing sequences in
order to detect invalid test executions without any external oracle. However, in our industrial
case an oracle was available as the test sequence is being played both on a simulator and an
implementation, including in hardware-in-the-loop mode which takes long reset time and which
motivated this paper.
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