
Electronic Communications of the EASST
Volume 71 (2015)

Graph Computation Models
Selected Revised Papers from GCM 2014

More on Graph Rewriting With Contextual Refinement

Berthold Hoffmann

20 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

More on Graph Rewriting With Contextual Refinement

Berthold Hoffmann

Fachbereich Mathematik und Informatik, Universität Bremen, Germany

Abstract: In GRGEN, a graph rewrite generator tool, rules have the outstanding
feature that variables in their pattern and replacement graphs may be refined with
meta-rules based on contextual hyperedge replacement grammars. A refined rule may
delete, copy, and transform subgraphs of unbounded size and of variable shape. In
this paper, we show that rules with contextual refinement can be transformed to stan-
dard graph rewrite rules that perform the refinement incrementally, and are applied
according to a strategy called residual rewriting. With this transformation, it is possi-
ble to state precisely whether refinements can be determined in finitely many steps or
not, and whether refinements are unique for every form of refined pattern or not.

Keywords: graph rewriting – rule rewriting – contextual hyperedge replacement

1 Introduction

Everywhere in computer science and beyond, one finds systems with a structure represented by
graph-like diagrams, whose behavior is described by incremental transformation. Model-driven
software engineering is a prominent example for an area where this way of system description
is very popular. Graph rewriting, a branch of theoretical computer science that emerged in the
seventies of the last century [EPS73], is a formalism of choice for specifying such systems in
an abstract way [MEDJ05]. Graph rewriting has a well developed theory [EEPT06] that gives
a precise meaning to such specifications. It also allows to study fundamental properties, such
as termination and confluence. Over the last decades, various tools have been developed that
generate (prototype) implementations for graph rewriting specifications. Some of them do also
support the analysis of specifications: AGG [ERT99] allows to determine confluence of a set
of rules by the analysis of finitely many critical pairs [Plu93], and GROOVE [Ren04] allows to
explore the state space of specifications.

This work relates to GRGEN, an efficient graph rewrite generator [BGJ06] developed at Karls-
ruhe Institute of Technology. Later, Edgar Jakumeit has extended the rules of this tool substan-
tially, by introducing recursive refinement for sub-rules and application conditions [HJG08]. A
single refined rule can match, delete, replicate, and transform subgraphs of unbounded size and
variable shape. These rules have motivated the research presented in this paper. Because, the
standard theory [EEPT06] does not cover recursive refinement, so that such rules cannot be ana-
lyzed for properties like termination and confluence, and tool support concerning these questions
cannot be provided.

Our ultimate goal is to lift results concerning confluence to rules with recursive refinement.
So we formalize refinement by combining concepts of the existing theory, on two levels: We
define a GRGEN rule to be a schema – a plain rule containing variables. On the meta-level,
a schema is refined by replacing variables by sub-rules, using meta-rules based on contextual

More on Graph Rewriting With Contextual Refinement

hyperedge replacement [DHM12]. Refined rules then perform the rewriting on the object level.
This mechanism is simple enough for formal investigation. For instance, properties of refined
rules can be studied by using induction over the meta-rules. Earlier work [Hof13] has already laid
the fundaments for modeling refinement. Here we study conditions under which the refinement
behaves well. We translate these rules into standard rules that perform the refinement in an
incremental fashion, using a specific strategy, called residual rewriting, strategy, and show the
correctness of this translation.

The examples in this paper arise in the area of model-driven software engineering. Refac-
toring shall improve the structure of object-oriented software without changing its behavior.
Graphs are a straight-forward representation for the syntax and semantic relationships of object-
oriented programs (and also of models). Many of the basic refactoring operations proposed
by Fowler [Fow99] do require to match, delete, copy, or restructure program fragments of un-
bounded size and variable shape. Several plain rules are needed to specify such an operation,
and they have to be controlled in a rather delicate way in order to perform it correctly. In con-
trast, we shall see that a single rule schema with appropriate meta-rules suffices to specify it, in
a completely declarative way.

The paper is organized as follows. The next section defines graphs, plain rules for graph
rewriting, and contextual rules for deriving languages of graphs. In Sect. 3 we define schemata,
meta-rules, and the refinement of schemata by applying meta-rules to them, and state under
which conditions refinements can be determined in finitely many steps, and the replacements of
refined rules are uniquely determined by their patterns. In Sect. 4, we translate schemata and
meta-rules to standard graph rewrite rules,and show that the translation is correct. We conclude
by indicating future work, in Sect. 5. The appendix recalls some facts about graph rewriting.

2 Graphs, Rewriting, and Contextual Grammars

We define labeled graphs wherein edges may not just connect two nodes – a source to a target –
but any number of nodes. Such graphs are known as hypergraphs in the literature [DHK97].

Definition 1 (Graph) Let Σ = (Σ̇, Σ̄) be a pair of finite sets containing symbols.
A graph G = (Ġ, Ḡ,att, `) consists of two disjoint finite sets Ġ of nodes and Ḡ of edges, a

function att : Ḡ→ Ġ∗ that attaches sequences of nodes to edges,1 and of a pair ` = (˙̀, ¯̀) of
labeling functions ˙̀: Ġ→ Σ̇ for nodes and ¯̀: Ḡ→ Σ̄ for edges. We will often refer to the
attachment and labeling functions of a graph G by attG and `G, respectively.

A (graph) morphism m : G→ H is a pair m = (ṁ, m̄) of functions ṁ : Ġ→ Ḣ and m̄ : Ḡ→ H̄
that preserve attachments and labels: attH ◦ m̄ = ṁ∗ ◦ attG, ˙̀H = ˙̀G ◦ ṁ, and ¯̀H = ¯̀G ◦ m̄.2 The
morphism m is injective, surjective, and bijective if its component functions have the respective
property. If Ġ⊆ Ḣ, Ḡ⊆ H̄, m is injective, and maps nodes and edges of G onto themselves, this
defines the inclusion of G as a subgraph in H, written G ↪→H. If m is bijective, we call G and H
isomorphic, and write G∼= H.

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε .
2 For a function f : A→ B, its extension f ∗ : A∗→ B∗ to sequences A∗ is defined by f ∗(a1 . . .an) = f (a1) . . . f (an),
for all ai ∈ A, 1 6 i 6 n, n > 0; f ◦g denotes the composition of functions or morphisms f and g.

Selected Revised Papers from GCM 2014 2 / 20

ECEASST

C

SCC

V

C

SB

VE
V

BB

E E

E E

E

E

m⇒
pum′

C

SCC

V

C

SB

VE
V

B

B

E

E

Figure 1: Two program graphs

C

C

S

C B

V

SB B

V

E

E

E E

E E

E

E

Figure 2: A refactoring rule

Example 1 (Program Graphs) Figure 1 shows two graphs G and H representing object-oriented
programs. Circles represent nodes, and have their labels inscribed. In these particular graphs,
edges are always attached to exactly two nodes, and are drawn as straight or wave-like arrows
from their source node to their target node. (The filling of nodes, and the colors of edges will be
explained in Example 2.)

Program graphs have been proposed in [VJ03] for representing key concepts of object-oriented
programs in a language-independent way. In the simplified version that is used here, nodes la-
beled with C, V, E, S, and B represent program entities: classes, variables, expressions, signatures
and bodies of methods, respectively. Straight arrows represent the syntactical composition of
programs, whereas wave-like arrows relate the use of entities to their declaration in the context.

For rewriting graphs, we use the standard definition [EEPT06], but insist on injective matching
of rules; it is shown in [HMP01] that this is no restriction. We choose an alternative representa-
tion of rules discussed in [EHP09] so that the rewriting of rules in Sect. 3 can be easier defined,
see also in Appendix A.

Definition 2 (Graph Rewriting) A graph rewrite rule (rule for short) r = (P ↪→B←↩R) consists
of graph inclusions, of a pattern P and a replacement R in a common body B. The intersection
P∩ R of pattern and replacement graph is called the interface of r. A rule is concise if the
inclusions are jointly surjective. By default, we refer to the components of a rule r by Pr, Br, and
Rr.

The rule r rewrites a source graph G into a target graph H if there is an injective morphism
B→U to a united graph U so that the squares in the following diagram are pushouts:

Pr : B R

G U H

m m̃

The diagram exists if the morphism m : P→ G is injective, and satisfies the following gluing
condition: Every edge of G that is attached to a node in m(P\R) is in m(P). Then m is a match
of r in G, and H can be constructed by (i) uniting G disjointly with a fresh copy of the body
B, and gluing its pattern subgraph P to its match m(P) in G, giving U , and (ii) removing the

3 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

nodes and edges of m(P\R) from U , yielding H with an embedding morphism m̃ : R→H.3 The
construction is unique up to isomorphism, and yields a rewrite step, which is denoted as G⇒m

r H.
Note that the construction can be done so that there are inclusions G ↪→U ←↩ H; we will assume
this wlog. in the rest of this paper.

Example 2 (A Refactoring Rule) Figure 2 shows a rule pum′. Rounded shaded boxes enclose
its pattern and replacement, where the pattern is the box extending farther to the left. Together
they designate the body. (Rule pum′ is concise.) We use the convention that an edge belongs
only to those boxes that contain it entirely; so the “waves” connecting the top-most S-node to
nodes in the pattern belong only to the pattern, but not to the replacement of pum′.

The pattern of pum′ specifies a class with two subclasses that contain method implementations
for the same signature. The replacement specifies that one of these methods shall be moved to the
superclass, and the other one shall be deleted. In other words, pum′ pulls up methods, provided
that both bodies are semantically equivalent. (This property cannot be checked automatically,
but has to be verified by the user before applying this refactoring operation.)

The graphs in Figure 1 constitute a rewrite step G⇒m
pum′ H. The shaded nodes in the source

graph G distinguish the match m of pum′, and the shaded nodes in the target graph H distinguish
the embedding m̃ of its replacement. (The red nodes in G are removed, and the green nodes in H
are inserted, with their incident edges, respectively.)

Rule pum′ only applies if the class has exactly two subclasses, and if the method bodies have
the particular shape specified in the pattern. The general Pull-up Method refactoring of Fowler
[Fow99] works for classes with any positive number of subclasses, and for method bodies of
varying shape and size. This cannot be specified with a single plain rule, which only has a
pattern graph of fixed shape and size. The general refactoring will be specified by a single rule
schema (with a set of meta-rules) in Example 5 further below.

We introduce further notions, for rewriting graphs with sets of rules. Let R be a set of graph
rewrite rules. We write G⇒R H if G⇒m

r H for some match m of a rule r ∈R in G, and denote
the transitive-reflexive closure of this relation by ⇒∗R . A graph G is in normal form wrt. R
if there is no graph H so that G⇒R H. A set R of graph rewrite rules reduces a graph G
to some graph H, written G⇒!

R H, if G⇒∗R H so that H is in normal form. R (and ⇒R) is
terminating if it does not admit an infinite rewrite sequence Go⇒R G1⇒R . . . , and confluent
if for every diverging rewrite sequence H1

∗
R⇐G⇒∗R H2, there exists a graph K with a joining

rewrite sequence H1⇒∗R K ∗
R⇐H2. Graph rewrite rules R can be used to compute a partial

nondeterministic function fR from graphs to sets of their normal forms, i.e., fR(G) = {H |
G⇒!

R H}. The function fR is total if R is terminating, and deterministic if R is confluent.
A set of graph rewrite rules, together with a distinguished start graph, forms a grammar, which

can be used to derive a set of graphs from that start graph. Such sets are called languages, as
for string grammars. Graph grammars with unrestricted rules have been shown to generate the
recursively enumerable languages[Ues78]. So there can be no general algorithms recognizing
whether a graph belongs to the language of such a grammar. Until recently, the study of re-
stricted grammars with recognizable languages has focused on the context-free case, where the

3 Even if r is not concise, the nodes and edges of B that are not in the subgraph (P∪R) are not relevant for the
construction as they are removed immediately after adding them to the union.

Selected Revised Papers from GCM 2014 4 / 20

ECEASST

pattern of a rule is a syntactic variable (or nonterminal). Two different ways have been studied
to specify how the neighbor nodes of a variable are connected to the replacement graph. In node
replacement [ER97], this is done by embedding rules for neighbor nodes that depend on the
labels of the neighbors and of the connecting edges. In hyperedge replacement [DHK97], the
variable is a hyperedge with a fixed number of attached nodes that may be glued to the nodes
in the replacement. Unfortunately, the languages derivable with these grammars are restricted in
the way their graphs may be connected: neither a language as simple as that of all graphs, nor the
language of program graphs introduced in Example 1 can be derived with a context-free graph
grammar. To overcome these limitations, Mark Minas and the author have proposed a modest
extension of hyperedge replacement where the replacement graph of a variable x may not only be
glued to the former attachments of x, but also to further nodes in the source graph [HM10]. This
way of contextual hyperedge replacement does not only overcome the restrictions of context-free
graph grammars (both the languages of all graphs and of program graphs can be derived), but
later studies in [DHM12, DH14] have shown that many properties of hyperedge replacement are
preserved, in particular, the existence of a recognition algorithm. Furthermore, they are suited to
specify the refinement of rules by rules (in the next section).

For the definition of these grammars, we assume that the symbols Σ contain a set X ⊆ Σ̄ of
variable names that are used to label placeholders for subgraphs. X(G) = {e ∈ Ḡ | `G(e) ∈ X}
is the set of variables of a graph G, and G is its kernel, i.e., G without X(G). For a variable
e ∈ X(G), the variable subgraph G/e consists of e and its attached nodes.

Graphs with variables are required to be typed in the following way: Variable names x ∈ X are
assumed to come with a signature graph Sig(x), which consists of a single edge labeled with x,
to which all nodes are attached exactly once; in every graph G, the variable subgraph G/e must
be isomorphic to the signature graph Sig(`G(e)), for every variable e ∈ X(G).

Definition 3 (Contextual Grammar) A rule r : (P ↪→ B←↩ R) is contextual if the only edge e in
its pattern P is a variable, and if its replacement R equals the body B, without e.

With some start graph Z, a finite set R of contextual rules forms a contextual grammar Γ =
(Σ,R,Z) over the labels Σ, which derives the language L (Γ) =

{
G | Z⇒∗R G,X(G) = /0

}
.

The pattern P of a contextual rule r is the disjoint union of a signature graph Sig(x) with a
discrete context graph, which is denoted as Cr. We call r context-free if Cr is empty. (Grammars
with only such rules have been studied in the theory of hyperedge replacement [DHK97].)

Example 3 (A contextual grammar for program graphs) Figure 3 shows a set P of contextual
rules. Variables are represented as boxes with their variable names inscribed; they are connected
with their attached nodes by lines, ordered from left to right. (Later, in Sect. 3, we will also
use arrows in either direction.) When drawing contextual rules like those in Fig. 3, we omit the
box enclosing their pattern. The variable outside the replacement box is the unique edge in the
pattern, and green filling (appearing grey in B/W print) designates the contextual nodes within
the box enclosing the replacement graph.

The rules P in Figure 3 define a contextual grammar PG= (Σ,P,Sig(Cls)) for program graphs.
The grammar uses four variable names; they are attached to a single node, which is labeled with C
for variables named Cls and Fea, with B for variables named Bdy, and with E for variables named

5 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

Cls

C

Fea
1 . . .

. . . Fea
k

C
1

Cls

. . .
. . .

. . .

C
n

Cls

Fea

C

V

E

Fea

C

S

V
1 . . .

. . . V
n

Fea

C

S B

Bdy

Bdy

B

E
1

Exp

. . .

. . .

E
n

Exp

Exp

E

V

E

Exp

E

V E

Exp

Exp

S E

E
1

Exp

. . .

. . .

E
n

Exp

classk,n att sign impl bodyn use assign calln

Figure 3: Contextual rules P for generating program graphs

C

Fea C

C C

Fea

E

Fea

Fea

Fea

Exp

2⇒
sig1

C

Fea C

C C

Fea

E

S

S

V

V

Fea

Exp

⇒
impl

C

Fea C

C C

Fea

E

S

S

V

V

B

Bdy

Exp

body1⇒
call1

C

Fea C

C C

Fea

E

S

S

V

V

B

E

E

Exp

⇒
use

C

Fea C

C C

Fea

E

S

S

V

V

B

E

E

Exp

Figure 4: Snapshots in a derivation of a program graph

Exp. The C-node of the start graph Sig(Cls) represents the root class of the program, and the
structure of a program is derived by the rules, considered from left to right, as follows. Every
class has features, and may be extended by subclasses. A feature is either an attribute variable,
or a method signature with parameter variables, or a method body that implements some existing
signature. A method body (or rather, its data flow) consists of a set of expressions, which either
use the value of some existing variable, or assign the value of an expression to some existing
variable, or call some existing method signature with expressions as actual parameters. Actually,
classk,n, sign, bodyn, and calln are templates for infinite sets of rule instances that generate classes
with k > 0 features and n > 0 subclasses, signatures with n > 0 parameters, bodies with n > 0
expressions, and calls with n > 0 actual parameters, respectively. The instances of a template can
be composed with a few replicative rules, so this is just a short hand notation, like the repetitive
forms of extended Backus-Naur form of context-free string grammars.

Figure 4 shows snapshots in a derivation of a program graph. The first graph is derived from
the start graph by applying four instances of the template classk,n, which generate a root class
with two features and one subclass, which in turn has two features and two subclasses, whereof
only one has a feature, and both do not have subclasses. The second graph is obtained by applying
rule instance sig1 at two matches, deriving two signatures with one parameter each. Applying
rule impl yields the third graph, with the root of a body for one of the signatures. The fourth is
obtained by applications of the instances body1 and call1, refining the body to a single call. Then
application of rule use derives the actual parameter for the call. Four further derivation steps,
applying rules impl and att to the remaining Fea-variables, and rules body1 and then use to the
resulting Bdy-variable, yield the target graph of the rewriting step shown in Figure 1.

Selected Revised Papers from GCM 2014 6 / 20

ECEASST

As for context-free string grammars, it is important to know whether a contextual grammar
is ambiguous or not. Unambiguous grammars define unique (de-) compositions of graphs in
their language. Parsing of unambiguous grammars is efficient as no backtracking is needed, and
the transformation of graphs can be defined over their unique structure. This property will be
exploited in Lemma 1 further below.

Definition 4 (Ambiguity) Let Γ = (Σ,R,Z) be a contextual grammar.
Consider two rewrite steps G⇒m

r H⇒m′
r′ K where m̃ : R → H is the embedding of r in H.

The steps may be swapped if m′(P′) ↪→ m̃(P∩R), yielding steps G⇒m′
r′ H ′⇒m

r K. Two rewrite
sequences are equivalent if they can be made equal up to isomorphism, by swapping their steps
repeatedly.

Then Γ is unambiguous if all rewrite sequences of a graph G ∈L (Γ) are equivalent to each
other; if some graph G has at least two rewrite sequences that are not equivalent, Γ is ambiguous.

Example 4 (Unambiguous Grammars) The program graph grammar PG in Example 3 is un-
ambiguous.

3 Schema Refinement with Contextual Meta-Rules

Refining graph rewrite rules means to rewrite rules instead of graphs. A general framework for
“meta-rewriting” can be easily defined. We start by lifting morphisms from graphs to rules.

Definition 5 (Rule Morphism) For (graph rewrite) rules r and s, a graph morphism m : Br→ Bs

on their bodies is a rule morphism, and denoted as m : r→ s, if m(Pr) ↪→ Ps and m(Rr) ↪→ Rs.

Graph rewrite rules and rule morphisms form a category. This category has pushouts, pull-
backs, and unique pushout complements along injective rule morphisms, just as the category of
graphs. As with graphs, we write rule inclusions as “↪→”, and let r be the kernel of a rule r
wherein all variables are removed.

Definition 6 (Rule Rewriting) A pair δ : (p ↪→ b ←↩ r) of rule inclusions is a rule rewrite
rule, or meta-rule for short. With δB we denote its body rule, which is a graph rewrite rule
(Bp ↪→ Bb←↩ Br) consisting of the bodies of p, b, and r.

Consider a rule s, a meta-rule δ as above, and a rule morphism m : p→ s. The meta-rule δ

rewrites the source rule s at m to the target rule t, written s
δ
⇓m t, if there is a pair of pushouts

p b r

s u t

The pushouts above exist if the underlying body morphism mB : Bp→ Bs of m satisfies the graph
gluing condition wrt. the body rule δB and the body graph Bs; the target rule t is constructed by
rewriting Bs to the body Bt with the body rule δB, and extending it to a rule (Pt ↪→ Bt ←↩ Rt).
As for graph rewriting, we assume that the pushouts are constructed so that all horizontal rule
morphisms are rule inclusions, i.e., s ↪→ u←↩ t.

7 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

It is straight-forward to define general rule rewriting on the more abstract level of adhesive
categories. However, this is not useful for this paper, as we will use concrete meta-rules that are
based on the restricted notion of contextual hyperedge replacement.

Let us recall the outstanding feature of rules in the graph rewriting tool GRGEN [BGJ06], the
“recursive pattern refinement” devised by Edgar Jakumeit [Jak08], which we want to model.

• A rule may contain “subpatterns”, which are names that are parameterized with nodes of
the pattern and of the replacement graph of the rule. (If some parameter really is of the
replacement graph, the term “subrule” would be more adequate.)
• The refinement of a subpattern is defined by a “pattern rule” that adds nodes and edges to the

pattern and replacement graphs of a rule. Pattern rules may define alternative refinements, and
may contain subpatterns so that they can be recursive.
• The refinements of different subpatterns must be disjoint, i.e., their matches in the source

graph must not overlap. If a node shall be allowed to overlap with another node in the match,
it is specified to be “independent”.

We shall model subpatterns by allowing variables to occur in the body of a rule (but neither in
its pattern, nor in its replacement); we call such a rule a schema. Pattern rules are modeled by
alternative meta-rules where the body rule is contextual. This supports recursion, since the body
of the meta-rule may contain variables. Rewriting with context-free meta-rules derives disjoint
refinements for different variables in the context-free case; independent nodes can be modeled
as the contextual nodes of contextual meta-rules.

Definition 7 (Schema Refinement) A schema s : (P ↪→ B←↩ R) is a graph rewrite rule with
P∪R = B.

Every schema s : (P ↪→ B←↩ R) is required to be typed in the following sense: every variable
name x ∈ X comes with a signature schema Sigschema(x) with body Sig(x) so that for every
variable e ∈ X(B), the variable subgraph B/e is the body of a subschema that is isomorphic to
Sigschema(x).

A meta-rule δ : (p ↪→ b←↩ r) is contextual if p, b, and r are schemata, and if its body rule
δB : (Bp ↪→ Bb←↩ Br) is a contextual rule so that the contextual nodes CδB are in Pp∩Rp.

In a less contextual variation δ ′ of a meta-rule δ , some contextual nodes are removed from Bp,
but kept in Br. Let ∆ be a finite set of meta-rules that is closed under less contextual variations.4

Then ∆⇓ denotes refinement steps with one of its meta-rules, and ∆⇓∗ denotes repeated refine-
ment, its reflexive-transitive closure. ∆(s) denotes the refinements of a schema s : (P ↪→ B←↩ R),
containing its refinements without variables:

∆(s) = {r | s ∆⇓∗ r,X(Br) = /0}

We write G⇒∆(s) H if G⇒r H for some r ∈ ∆(s), and say that the refinements ∆(s) rewrite G to
H.

Note that the application of a refinement r ∈∆(s), although it is the result of a compound meta-
derivation, is an indivisible rewriting step G⇒r H on the source graph G, similar to a transaction

4 We explain in Example 5 why these less contextual variations are needed.

Selected Revised Papers from GCM 2014 8 / 20

ECEASST

pumk :

C

BSC
1

. . . C
k

C
. . .

B . . . B B

Bdy0

. . .
Bdy0 Bdy1

Figure 5: Pull-up Method: schema

B

E
1

. . . E
n

Bdy0

Exp0 Exp0
· · ·

E

V

Exp0

Exp0

E

E
1

. . . E
n

S

Exp0

Exp0
· · ·

Exp0

E

V E

Exp

Exp0

Exp0

bdy0
n use0 call0n assign0

Figure 6: Deleting meta-rules for method bodies

B

E
1

. . . E
n

B

E
1

. . . E
n

Bdy1

Exp1 Exp1· · ·

E

V

E

Exp

Exp1

Expi

E

E
1

. . . E
n

S

E

E
1

. . . E
n

Exp1

Exp1 · · · Exp1

E

V

E

Exp

Exp1

Exp1

bdy1
n use1 call1n assign1

Figure 7: Replicating meta-rules for method bodies

in a data base. Note also that the refinement process is completely rule-based, and performs
standard rewriting, just on rules instead of graphs.

We illustrate schema refinement by two operations from Fowler’s catalogue of basic refactor-
ings [Fow99].

Example 5 (Pull-Up Method) The Pull-up Method refactoring applies to a class c where all
direct subclasses contain implementations for the same method signature that are semantically
equivalent.5 Then the refactoring pulls one of these implementations up to the superclass c, and
removes all others.

Figures 5-7 show the schema pumk and the meta-rules that shall perform this operation. In
schemata and meta-rules, the lines between a variable e and a node v attached to e get arrow tips
(i) at e if v occurs in the pattern, and (ii) at v if v occurs in the replacement. (Thus the line will
have tips at both ends if v is both in the pattern and in the replacement. However, this occurs
only in Fig. 8 of Example 6.) The pattern of the schema pumk (in Fig. 5) contains a class with
k+1 subclasses, where every subclass implements a common signature, as they contain B-nodes
connected to the same S-node. (Actually, pumk is a template for k > 0 schemata, like some of the
contextual rules in Fig. 3. Analogously to contextual rules, the instances of the schema template
can be derived with two contextual meta-rules.)

The variables specify what shall happen to the method bodies: k of them, those which are
attached to a Bdy0-variable, shall just be deleted, and the body attached to a Bdy1-variable shall
be moved to the superclass. The meta-rules can be mechanically constructed from the contextual

5 This application condition cannot be decided mechanically; it has to be confirmed by the user when s/he applies the
operation, by a priori verification or a-posteriori testing.

9 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

rules M = {bodyn,use,calln,assign} ⊆ P in Fig. 3. The deleting meta-rules {r0 | r ∈M} in Fig. 6
delete all edges and all nodes but the contextual nodes of a method body from the pattern. The
replicating meta-rules {r0 | r ∈ M} in Fig. 7 delete a method body from the pattern, and insert
a copy of this body in the replacement while preserving the contextual nodes. (Meta-rules for
making i > 1 copies of a method body can be constructed analogously.) A context-free meta-
rule, like those for Bdy0 and Bdy1, applies to every schema containing a variable of that name.
A contextual meta-rule (like the other six), however, applies only if its contextual nodes can be
matched in the schema. So the meta-rules call0n and call1n apply to the schema pumk as it contains
an S-node, but the others do not: neither does pumk contain any V-node, nor does any of the
meta-rules derive one. This is the reason for including less contextual variations of a contextual
meta-rule r. In our case, where the rules have one contextual node only, the only less contextual
variation is context-free, and denoted by r̄. We do not not show them here, because the difference
is small: just the green (contextual) nodes in Figure 6 and 7 turn white. Applying less contextual
meta-rules to a schema adds the former contextual nodes to the interface of a schema, i.e., to the
intersection of its pattern and replacement graphs.

If ∆M is the closure of the meta-rules in Figure 6 and 7 under less contextual variation, refine-
ment of the schema pumk may yield method bodies with recursive calls to the signature in the
schema, and calls to further signatures, and (read or write) accesses to variables in the interface.
For instance, the rule pum′ in Fig. 2 is a refinement of pumk with ∆M, i.e., pum′ ∈ ∆M(pumk). For
deriving pum′, only the context-free variations of meta-rules have been used, adding the former
contextual nodes (drawn in green in Fig. 2) to the interface. The upper row in Fig. 13 on page 15
below shows a step in the refinement sequence pumk ∆M

⇓∗ pum′; it applies the context-free varia-
tion assign

1 of the replicating meta-rule assign1 in Fig. 7.

Example 6 (Encapsulate Field) The Encapsulate Field refactoring shall transform all non-local
read and write accesses to an attribute variable by calls of getter and setter methods.

Figure 8 shows a schema ef, two meta-rule templates, and a refinement of the schema. The
schema ef (on the left-hand side) adds a getter and a setter method definition for a variable to a

ef =

C

S

B B

S

V

E E

EV
V

readers writers

readers

SV

E...
E

writers

SV

E...
E

ef′ =

C

S

B B

S

V

E E

EV
V

E

E

E

readers

Figure 8: The schema, the embedding meta-rules, and an instance of Encapsulate Field

Selected Revised Papers from GCM 2014 10 / 20

ECEASST

class, and introduces variables readers and writers that take care of the read and write accesses.
The (context-free) embedding meta-rule templates (in the middle) then replace any number of
read and write accesses to the variable by calls of its getter and setter method, respectively. If
∆E denotes the embedding meta-rules, the rule on the right-hand side of Fig. 8 is a derivative
ef′ ∈ ∆E(ef), encapsulating one read access and two write accesses.

A single rewriting step with a refinement of Pull-up Method copies one method body of ar-
bitrary shape and size, and deletes an arbitrarily number of other bodies, also of variable shape
and size. Refinements of Encapsulate Field transforms the neighbor edges of an unbounded
number of nodes. This goes beyond the expressiveness of plain rewrite rules, which may only
match, delete, and replicate subgraphs of constant size and fixed shape. Many of the basic other
refactorings from Fowler’s catalogue [Fow99] cannot be specified by a single plain rule, but by
a schema with appropriate meta-rules.

Operationally, we cannot construct all refinements of a schema s first, and apply one of them
later, because the set ∆(s) is infinite in general. Rather, we interleave matching and refinement,
in the next section. Before, we study some properties of schema refinement.

The following assumption excludes useless definitions of meta-rules.

Assumption 1 The set ∆(s) of refinements of a schema s shall be non-empty.

Non-emptiness of refinements can be reduced to the property whether the language of a con-
textual grammar is empty or not. It is shown in [DHM12, Corollary 2] that this property is
decidable.

We need a mild condition to show that schema refinement terminates.

Definition 8 (Pattern-Refining Meta-Rules) A meta-rule δ : (p ↪→ b←↩ r) refines its pattern if
X(Rr) = /0 or if Pr 6∼= Pp. A set ∆ of meta-rules that refine their patterns is called pattern-refining.

Theorem 1 For a schema s and a set ∆ of pattern-refining meta-rules, it is decidable whether
some refinement r ∈ ∆(s) applies to a graph G, or not.

Proof. By Algorithm 1 in [Hof13], the claim holds under the condition that meta-rules “do not
loop on patterns”. It is easy to see that pattern-refining meta-rules are of this kind.

We now turn to the question whether the (infinite) set of graph rewrite rules obtained as re-
finements of a schema are uniquely determined by their patterns.

Definition 9 (Right-Unique Rule Sets) A set R of graph rewrite rules is right-unique if dif-
ferent meta-rules r1 : (P1 ↪→ B1 ←↩ R1),r2 : (P2 ↪→ B2 ←↩ R2) ∈ R have different patterns, i.e.,
P1 ∼= P2 implies that r1 ∼= r2.

We define an auxiliary notion first. The pattern rule δP of a meta-rule δ : (p ↪→ b←↩ r) is a
contextual rule obtained from the body rule δB : (Bp ↪→ Bb ←↩ Br) by removing all nodes and
edges in Bb \Rb, and by detaching all variables in δB from the removed nodes. Let ∆P denote the
set of (contextual) pattern rules of a set ∆ of meta-rules. (The graphs in ∆P are typed as well, but

11 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

in the type graph Sig(x) of a variable name x, all nodes that do not belong to the pattern of the
signture schema Sigschema(x) are removed.)

Lemma 1 (Right-Uniqueness of Refinements) A set ∆(s) of refinements is right-unique if the
pattern grammar (Σ,∆P,Ps) of their meta-rules ∆ is unambiguous.

Proof Sketch. Consider rules r1,r2 ∈ ∆(s) with P1 ∼= P2. Then Ps⇒∆P P1 and Ps⇒∆P P2. The
rewrite sequences can be made equal since ∆P is unambiguous. This rewriting sequence has a
unique extension to a meta-rewrite sequence so that r1 ∼= r2.

Example 7 (Properties of Meta-Rules) It is easy to see that the deleting and replicative meta-
rules ∆M in Figures 6-7 of Example 5 satisfy Assumption 1. Because, it has been shown in
[DHM12, Example 3.23] that all rules of the program graph grammar in Example 3 are useful.
Thus its language is non-empty. This property can easily be lifted to the meta-rules ∆M, in
particular as they also contain context-free variations of the rules in P. It is easy to check that
the rules in ∆M are also pattern-refining. The contextual rules P for method bodies in Fig. 3 are
unambiguous, and so are the rules M, which correspond to the pattern rules of the deleting and
replicating meta-rules ∆M in Figures 6-7 of Example 5, so that ∆M is right-unique.

The embedding meta-rules ∆E in Fig. 8 of Example 6 derive a non-empty set of rules, and are
pattern-refining and right-unique as well.

4 Modeling Refinement by Residual Rewriting

The refinement of a schema s with some meta-rules ∆ yields instances ∆(s), which are ordinary
rules for rewriting graphs. However, the set ∆(s) is infinite in general. Unfortunately, many anal-
ysis techniques, e.g., for termination, confluence, and state space exploration of graph rewriting,
do only work for finite sets of graph rewrite rules. To make these techniques applicable, we
translate each schema and every contextual meta rule into a standard graph rewrite rule:

• We turn every schema into an ordinary rule that postpones refinement, by adding its meta-
variables to its replacement.
• We turn every contextual meta-rule δ : (p ↪→ b←↩ r) into an graph rewrite rule that refines the

translated schema incrementally, by uniting its pattern rule r component-wise with the variable
graphs of its body rule δB.

The resulting rule set is always finite.

Definition 10 (Incremental Refinement Rules) Let s : (P ↪→ B←↩ R) be a schema for meta-
rules ∆.

The incremental rule s̃ : (P ↪→ B←↩ Rs̃) of the schema s has the same pattern P and body B as
s, and its replacement Rs̃ = R∪{B/e | e ∈ X(B)} is obtained by extending R with the graphs of
all variables in B.

For a meta-rule δ = (p ↪→ b ←↩ r) in ∆, the incremental rule δ̃ : (P̃ ↪→ B̃ ←↩ R̃) is the
component-wise union of its replacement rule r : (Rp ↪→ Rb ←↩ Rr) with the variable graphs
of its body rule δB : (Bp ↪→ Bb←↩ Br):

Selected Revised Papers from GCM 2014 12 / 20

ECEASST

C

S

B B

S

V

E E

EV
V

readers writers

readers

SV

E...
E

writers

SV

E...
E

Figure 9: Incremental rules for Encapsulate Field in Fig. 8

Pumk :

C

BSC
1

. . . C
k

C
. . .

B . . . B B

Bdy0 Bdy0

Bdy1

Assign
1 :

Exp1

E

V

E

E

E

Exp1Exp

Figure 10: Incremental rules for Pull-up Method in Fig. 5 and Fig. 7

(i) P̃ = Pr ∪{Bp/e | e ∈ X(Bp)} (which equals Bp∪Pr),
(ii) B̃ = Bb∪{Bb/e | e ∈ X(Bb)} (which equals Bb), and

(iii) R̃ = Rr ∪{Br/e | e ∈ X(Br)}.
∆̃ shall denote the incremental rules of the meta-rules ∆.

Example 8 (Incremental Refinement) Figure 9 shows the incremental rule Ef for the schema ef
and of the meta-rules ∆E in Fig. 8 of Example 6.

Figure 10 shows how the schema pumk for the Pull-up Method refactoring in Fig. 5 is trans-
lated into an incremental rule Pumk, and how the context-free variation assign

1 of the meta-rule
assign1 in Fig. 7 is translated into an incremental rule Assign

1. (In the incremental rule Pumk,
red arrow and waves indicate edges that do not belong to the replacement.)

If a schema s is refined with a meta-rule δ to a schema t, the composition s̃ ◦d δ̃ of its incre-
mental rules (as defined in Def. 12 of the appendix) equals the incremental rule t̃ (for a particular
dependency d).

Lemma 2 Consider a schema s = (P ↪→ B←↩ R) and a meta-rule δ : (p ↪→ b←↩ r).
Then s

δ
⇓m t for some schema t iff there is a composition rd = s̃ ◦d δ̃ for a dependency

13 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

Bp Bb Br

B U B′
m

Figure 11: B⇒m
δB

B′

Bp

R{B/e | e ∈ X(B)}∪

B

P

O

Bp∪Rp

Bb

Rr∪{Br/e | e ∈ X(Br)}J1 J2

Pd RdBd

m

Figure 12: rd = s̃◦d δ̃

d : (R←
m

Bp→ (Bp∪Rp)) so that rd = t̃ .

Proof Sketch. Let s, δ be as above, t : (P′ ↪→ B′←↩ R′), s̃ : (P ↪→ B←↩ Rs̃) with Rs̃ = R∪{B/e |
e∈ X(B)}, and δ̃ : (P̃ ↪→ B̃←↩ R̃) with P̃ = Bp∪Pr, R̃ = Rr∪{Br/e | e∈ X(Br)}, and B̃ = Bb, see
Def. 10. Their composition according to the dependency d : (R←

m
Bp→ (Bp∪Rp) is constructed

as in Def. 12, and shown in Fig. 12.
Consider the underlying body refinement B⇒m

δB
B′. (See Fig. 11, where we assume that the

lower horizontal morphisms are inclusions.) By uniqueness of pushouts, U ∼= Bd . Then (Bb \
Bp) = X(Bp) since δB is contextual, and B′ =U \ m̄(X(Bp)).

It is then easy to show that the body B′
δ̃

equals the body Bd of the composed incremental rule,
and an easy argument concerning the whereabouts of variables shows that t̃ = rd .

Example 9 (Schema Refinement and Incremental Rules) Figure 13 illustrates the relation be-
tween schema refinement and the composition of their incremental rules established in Lemma 2.
As already mentioned in Example 5, the upper row shows a step in the refinement sequence
pumk ∆M

⇓∗ pum′ that applies the context-free variation assign
1 of the meta-rule assign1 in Fig. 7.

The original meta-rule does not apply to the source schema, as it does not contain a node labeled
V. The less contextual rule does apply; the refined rule is constructed so that The V-node will be
matched in the context when it is applied to a source graph.

The lower row shows the composition of the corresponding incremental rule with the corre-
sponding incremental refinement rule Assign

1, where the dashed box specifies the dependency d
for the composition. The composed rule equals the incremental rule for the refined schema.

Using a refined schema has the same effect as applying its incremental rule, and the incremen-
tal rules of the corresponding meta-rules. This must follow a strategy that applies incremental
rules as long as possible, matching the residuals of the source graphs, before another incremental
rule is applied.

We define the subgraph that is left unchanged in refinement steps and sequences. The track
of G in H (via the match m of the rule r) is then defined as trm

r (G) = (G∩H).6 For a rewrite
sequence d = G0⇒m1

r1
G1⇒m2

r2
. . .⇒mn

rn
Gn, the track of G in H is given by intersecting the tracks

6 Recall that G ↪→U ←↩ H for the graphs and morphisms of a rewrite step.

Selected Revised Papers from GCM 2014 14 / 20

ECEASST

C

BSC CC

B B E

EE

Exp0 Exp1

Exp1

E

V

E

E E

Exp1 Exp

C

BSC CC

B B E

E

E

EV

E

Exp0 Exp1

C

BSC CC

B B E

EE

Exp0 Exp1

←−
m

↓
E E

Exp1

d

◦d

Exp1

E

V

E

E

E

Exp1Exp

=

C

BSC CC

B B E

E

E

EV

E

Exp0 Exp1

Figure 13: Schema refinement and incremental composition

of its steps:

trd(G) = trm1
r1
(G0)∩·· ·∩ trmn

rn
(Gn−1)

The incremental rules have to be applied so that the patterns of the refinements of the original
meta-rules do not overlap.

Definition 11 (Residual Incremental Refinement) Consider an incremental refinement se-
quence

G0
m1⇒
δ̃1

G1
m2⇒
δ̃2

. . .
mn⇒
δ̃n

Gn

with incremental rules δ̃i for meta-rules δi : (pi ↪→ bi←↩ ri) (for 1 6 i 6 n).
The step Gi−1⇒mi

δ̃i
Gi is residual if mi(Pri) ⊆ trm1...mi−1

r1...ri−1 (G). The sequence is residual if every
of its steps is residual. Residual steps and sequences are denoted as V and V∗, respectively.

Lemma 3 Consider a schema s for meta-rules ∆ with incremental rule s̃ and incremental
rules ∆̃.

Then a rule r : (P ↪→ B←↩ R) is a refinement in ∆(s) if and only if P⇒s̃ P′V!
∆̃

R.

15 / 20 Volume 71 (2015)

More on Graph Rewriting With Contextual Refinement

Proof. By induction over the length of meta-derivations, using Lemma 2 and the fact that com-
positions correspond to residual rewrite steps.

Theorem 2 Consider a schema s with meta-rules ∆ as above. Then, for graphs G, H, and K,
G⇒∆(s) H if and only if G⇒s̃ K V!

∆̃
H.

Proof. Combine Lemma 3 with the embedding theorem [EEPT06, Sect. 6.2].

5 Conclusions

In this paper we have continued earlier attempts in [HJG08, Hof13] to model graph rewriting
with recursive refinement, which are the outstanding feature of rules in the graph rewriting tool
GRGEN [BGJ06]. The definition here is by standard graph rewriting—contextual hyperedge
replacement on the meta-level and standard graph rewriting on the object level—and allows to
specify conditions under which refinement “behaves well”, i.e., terminates, and yields unique
refinements. It is simple enough so that it can be translated to standard graph rewriting rules that
perform the refinement incrementally, using a strategy—residual rewriting—where matches do
overlap only in contextual nodes (and in attached nodes of variables).

Related Work has occurred with two respects. On the one hand, expressive rules allowing trans-
form subgraphs of variable shape and size have been proposed by several authors: D. Janssens
has studied graph rewriting with node embedding rules [Jan83]. The Encapsulate Field refac-
toring in Example 6 could be defined in this way. D. Plump and A. Habel have proposed rules
where variables in the pattern and the replacement graph can be substituted with isomorphic
graphs [PH96]. There, variables could be substituted by arbitrary graphs, which is rather pow-
erful, but difficult to use (and to implement). The author has later proposed substitutions with
context-free (hyperedge replacement) languages [Hof01]. This turned out to be too restricted so
that we now decided to propose contextual hyperedge replacement. The Pull-Up Method refac-
toring in Example 5 is a candidate for substitutive graph rewriting. In [Hof13] we have shown
that embedding and substitutive rules are special cases of rules with contextual refinement.

On the other hand, the core of standard graph rewriting theory [CEH+97], with its results
on parallel and sequential independence, critical pair lemma [Plu93] etc., has been extended
considerably over the years. The framework now covers graph with attributes and subtyping,
rules with positive and negative application conditions [EEPT06], and, as of recently, also nested
application conditions [EHL+10, EGH+12].
Future Work should attempt to integrate the extensions of the standard theory to rule refinement,
as all these concepts are supported by the graph rewriting tool GRGEN [BGJ06] as well. This
should be straight-forward for attributes and subtyping. Application conditions require more
work, in particular when conditions shall be translated to incremental rules. Obviously, applica-
tion conditions are useful for modeling complex operations like refactorings: (i) The definition
of program graphs in Example 1 could be more precise if the choice of a contextual node could
be subject to a condition. E.g., the rule impl should require that the signature being implemented
is contained in a super-class of the body. (See [HM10] for a definition of program graphs using
application conditions.) (ii) The Pull-up Method refactoring in Example 5 should require that

Selected Revised Papers from GCM 2014 16 / 20

ECEASST

the method body to be pulled up does not access variables or methods outside the name space
of the superclass. (iii) The Encapsulate Field refactoring in Example 6 should be required to
encapsulate all non-local accesses of a variable. For some of the conditions mentioned here,
application conditions need to specify the (non)-existence of paths in a graph. This cannot be
done by nested application conditions, but only if the conditions allow recursive refinement, as
studied by H. Radke in [HR10]. But this is not (yet?) integrated into the standard theory.

Our ultimate goal is to provide support for analyzing GRGEN rules, e.g., for the existence of
critical pairs. The negative result shown in [Hof13, Thm. 3] indicates that considerable restric-
tions have to be made to reach this aim. Our idea now is to restrict rewriting with contextual
refinement to graphs that are shaped according to a contextual grammar like that for program
graphs.

Acknowledgments.

The author thanks Annegret Habel and Rachid Echahed for their encouragement, and the review-
ers for their detailed constructive comments.

Bibliography

[BGJ06] J. Blomer, R. Geiß, E. Jakumeit. GRGEN.NET: A Generative System for Graph-
Rewriting, User Manual. www.grgen.net, Universität Karlsruhe, 2006. Version 4.4
(29.07. 2014).

[CEH+97] A. Corradini, H. Ehrig, R. Heckel, M. Löwe, U. Montanari, F. Rossi. Algebraic
Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout
Approach. In Rozenberg (ed.), Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. I: Foundations. Chapter 3, pp. 163–245. World Scien-
tific, 1997.

[DH14] F. Drewes, B. Hoffmann. Contextual Hyperedge Replacement. Uminf report 14.04,
Institutionen för datavetenskap, Umeaå universitet, 2014. 28 pages.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars.
Chapter 2, pp. 95–162 in [Roz97].

[DHM12] F. Drewes, B. Hoffmann, M. Minas. Contextual Hyperedge Replacement. In Schürr
et al. (eds.), Applications of Graph Transformation with Industrial Relevance (AG-
TIVE’11). Lecture Notes in Computer Science 7233, pp. 182–197. Springer, 2012.
Long version as UMINF report 14.04, Institutionen för datavetenskap,Umeå univer-
sitet.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs. Springer, 2006.

17 / 20 Volume 71 (2015)

http::/www8.cs.umu.se/research/uminf/index.cgi?year=2014&number=4

More on Graph Rewriting With Contextual Refinement

[EGH+12] H. Ehrig, U. Golas, A. Habel, L. Lambers, F. Orejas. Adhesive Transformation Sys-
tems with Nested Application Conditions. Part 2: Embedding, Critical Pairs and
Local Confluence. Fundam. Inform. 118(1-2):35–63, 2012.

[EHL+10] H. Ehrig, A. Habel, L. Lambers, F. Orejas, U. Golas. Local Confluence for Rules
with Nested Application Conditions. In Ehrig et al. (eds.), ICGT. Lecture Notes in
Computer Science 6372, pp. 330–345. Springer, 2010.

[EHP09] H. Ehrig, F. Hermann, U. Prange. Cospan DPO Approach: An Alternative for DPO
Graph Transformations. Bulletin of the EATCS 98:139–149, 2009.

[EPS73] H. Ehrig, M. Pfender, H. Schneider. Graph Grammars: An Algebraic Approach. In
IEEE Conf. on Automata and Switching Theory. Pp. 167–180. Iowa City, 1973.

[ER97] J. Engelfriet, G. Rozenberg. Node Replacement Graph Grammars. Chapter 1, pp. 1–
94 in [Roz97].

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG Approach: Language and Environment.
In Engels et al. (eds.), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. II: Applications, Languages, and Tools. Chapter 14, pp. 551–
603. World Scientific, Singapore, 1999.

[Fow99] M. Fowler. Refactoring—Improving the Design of Existing Code. Object Technology
Series. Addison-Wesley, Reading, MA, 1999.

[HJG08] B. Hoffmann, E. Jakumeit, R. Geiß. Graph Rewrite Rules with Structural Recursion.
In Mosbah and Habel (eds.), 2nd Intl. Workshop on Graph Computational Models
(GCM 2008). Pp. 5–16. 2008.

[HM10] B. Hoffmann, M. Minas. Defining Models – Meta Models versus Graph Grammars.
Elect. Comm. of the EASST 29, 2010. Proc. 6th Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT’10), Paphos, Cyprus.

[HMP01] A. Habel, J. Müller, D. Plump. Double-Pushout Graph Transformation Revisited.
Mathematical Structures in Computer Science 11(5):637–688, 2001.

[Hof01] B. Hoffmann. Shapely Hierarchical Graph Transformation. In Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments. Pp. 30–37. IEEE Com-
puter Press, 2001.

[Hof13] B. Hoffmann. Graph Rewriting with Contextual Refinement. Electr. Comm. of the
EASST 61:20 pages, 2013.

[HR10] A. Habel, H. Radke. Expressiveness of graph conditions with variables. Elect.
Comm. of the EASST 30, 2010. International Colloquium on Graph and Model
Transformation (GraMoT’10).

[Jak08] E. Jakumeit. Mit GRGEN zu den Sternen. Diplomarbeit (in German), Universität
Karlsruhe, 2008.

Selected Revised Papers from GCM 2014 18 / 20

ECEASST

[Jan83] D. Janssens. Node Label Controlled Graph Grammars. PhD thesis, Antwerp, 1983.

[MEDJ05] T. Mens, N. V. Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with
graph transformations. Journal of Software Maintenance 17(4):247–276, 2005.
doi:10.1002/smr.316
http://dx.doi.org/10.1002/smr.316

[PH96] D. Plump, A. Habel. Graph Unification and Matching. In Cuny et al. (eds.), Proc.
Graph Grammars and Their Application to Computer Science. Lecture Notes in
Computer Science 1073, pp. 75–89. Springer, 1996.

[Plu93] D. Plump. Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In Sleep et al. (eds.), Term Graph Rewriting, Theory and Practice. Pp. 201–213.
Wiley & Sons, Chichester, 1993.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Nagl
et al. (eds.), Applications of Graph Transformation with Industrial Relevance (AG-
TIVE’03). Lecture Notes in Computer Science 3062, pp. 479–485. Springer, 2004.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. I: Foundations. World Scientific, Singapore, 1997.

[Ues78] T. Uesu. A System of Graph Grammars which Generates all Recursively Enumerable
Sets of Labelled Graphs. Tsukuba J. Math. 2:11–26, 1978.

[VJ03] N. Van Eetvelde, D. Janssens. A Hierarchical Program Representation for Refactor-
ing. Electronic Notes in Theoretical Computer Science 82(7), 2003.

A Double-Pushout Rewriting

The standard theory of graph rewriting is based on so-called spans of (injective) graph mor-
phisms [EEPT06], where a rule consists of two morphisms from a common interface I to a
pattern P and a replacement R. An alternative proposed in [EHP09] uses so-called co-spans
(or joins) of morphisms where the pattern and the replacement are both included in a common
supergraph, which we call the body of the rule.

Rewriting is defined by double pushouts as below:

Pr̂ : I R

G C H

m

Př : B R

G U H

m

Intuitively, rewrites are constructed via a match morphism m : P→ G in a source graph G; for a
span rule r̂, removing the match of obsolete pattern items P\ I yields a context graph C to which
the new items R\ I of the replacement are then added; for a co-span rule ř, the new items B\P
are added first, yielding the united graph U before the obsolete pattern items B\R are removed.
The constructions work if the matches m satisfy certain gluing conditions.

19 / 20 Volume 71 (2015)

http://dx.doi.org/10.1002/smr.316
http://dx.doi.org/10.1002/smr.316

More on Graph Rewriting With Contextual Refinement

D

R1

B1

P1

O

P2

B2

R2J1 J2

Pd RdBd

Figure 14: Sequential composition of graph rewrite rules

The main result of [EHP09] says that ř is the pushout of r̂, making these rules, their rewrite
steps, and gluing conditions dual to each other. Therefore we feel free to use the more intuitive
gluing condition for r̂ together with a rule ř.

The following definition and theorem adapt well-known concepts of [EEPT06] to our notion
of rules.

Definition 12 (Sequential Rules Composition) Let r1 : (P1 ↪→ B1←↩ R1) and r2 : (P2 ↪→ B2←↩
R2) be rules, and consider a graph D with a pair d : (R1← D→ P2) of injective morphisms.

1. Then d is a sequential dependency of r1 and r2 if D 6↪→ P1 (which implies that D 6= 〈〉).
2. The sequential composition r1 ◦d r2 : (Pd ↪→ Bd ←↩ Rd) of r1 and r2 along d is the rule con-

structed as in the commutative diagram of Fig. 14, where all squares are pushouts.
3. Two rewrite steps G⇒r1 H⇒r2 K are d-related if d is the pullback of the embedding R1→H

and of the match P2→ O.7

Proposition 1 Let r1 and r2 be rules with a dependency d and a sequential composition rd as
in Def. 12.

Then there exist d-related rewrite steps G⇒r1 H⇒r2 K if and only if G⇒rd K.

Proof. Straightforward use of the corresponding result for “span rules” [EEPT06, Thm. 5.23]
and of the duality to “co-span rules” [EHP09].

7 A pullback of a pair of morphisms B→ D←C with the same codomain is a pair of morphisms B← A→C that is
commutative, i.e., A→ B→ D = A→C→ D, and universal, i.e., for every pair of morphisms B← A′ →C so that
A′→ B→ D = A′→C→ D, there is a unique morphism A′→ A so that A′→ A→ B = A′→ B and A′→ A→C =
A′→C. See [EEPT06, Def. 2.2].

Selected Revised Papers from GCM 2014 20 / 20

	Introduction
	Graphs, Rewriting, and Contextual Grammars
	Schema Refinement with Contextual Meta-Rules
	Modeling Refinement by Residual Rewriting
	Conclusions
	Double-Pushout Rewriting

