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Graph Transformation with Symbolic Attributes via Monadic
Coalgebra Homomorphisms

Wolfram Kahl*

McMaster University, Hamilton, Ontario, Canada,

Abstract: We show how a coalgebraic approach leads to more natural represen-
tations of many kinds of graph structures that in the algebraic approach are fre-
quently dealt with using ad-hoc constructions. For the case of symbolically at-
tributed graphs, we demonstrate how using substituting coalgebra homomorphisms
in double-pushout rewriting steps yields a powerful and easily understandable trans-
formation mechanism.

Keywords: Transformation of symbolically attributed graphs, attributed graphs as
coalgebras, categoric approach to graph transformation

1 Introduction

An attributed graph is a graph where (some of) the items (nodes and edges) carry “attributes”,
which are taken from some attribute datatypes.

Formal treatments of datatypes [EMS85, BKL"91, BM04] typically characterise datatypes as
algebras, or “sets with operations”; they are most frequently implemented as software libraries
where the sets are only abstract entities, the operations are executable code, and only the elements
of the sets are represented as static data.

Graphs, too, can be characterised as algebras, most prominently in the “algebraic approach
to graph transformation” [CMR*97, EHK*97, EEPT06]. However, the sets in question are the
sets of nodes and edges, and the “operations” are the incidence relations; the whole algebra,
understood as a graph, is typically represented as static data.

In attributed graphs, these two conflicting views of algebras come together, and formalisations
that consider an attributed graph as a single algebra that includes both graph item sorts and
attribute value sorts do not correspond to the way attributed graphs are understood in terms of
data organisation. For graph transformation, the theory of the algebraic approach also contributes
to the necessity of keeping the graph algebra separate from the attribute value algebra, since
pushouts of graph structures, customarily considered as unary algebras [Low90, CMR*97], can
be calculated component-wise, while for typical attribute value algebras, this is not the case.
Indeed, most applications have no need to transform the attribute value algebras, since most
transformation concepts for attributed graphs expect the transformation results to be attributed
over the same attribute datatypes. An exception to this consideration are symbolic attributes,
which can easily be drawn from term algebras over different variable sets during different stages
of transformation.

* This research is supported by the National Science and Engineering Research Council of Canada, NSERC.
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Unary algebras are in fact also co-unary coalgebras, and many kinds of graphs that do not fit
the mould of unary algebras can actually naturally be considered as more general coalgebras.
This argument was first made in [Kah14]; in the current paper we continue that development
and show how to use substituting coalgebra homomorphisms for DPO rewriting of symbolically
attributed graphs.

After discussing related work in the next section and providing necessary notation in Sect. 3,
we explain the basic technicalities for modelling graph structures using coalgebras in Sect. 4.
Using the example of edge-labelled and node-attributed graphs, we move to substituting coal-
gebra homomorphisms in Sect. 5. The resulting category is an instance of the monadic product
coalgebra categories introduced in [Kah14]; we summarise definition and basic results in Sect. 6.
The resulting pushouts are used in Sect. 7 to obtain direct derivations of attributed graphs. We
contrast our approach with the adhesive approach of [EEPT06] in more detail in Sect. 8. Since
the rules and direct derivations of Sect. 7 are not using monomorphisms where most of the cur-
rent DPO graph transformation literature, and in particular the adhesive approach, prescibe them,
we prove a characterisation of monomorphisms in categories of substitutions in Appendix A.

2 Related Work

Lowe et al. [LKW93] appear to have been the first to consider attributed graphs in the context
of the algebraic approach to graph transformation; they propose to extend the customary unary
graph structure signature with an arbitrary attribute signature, and a set of unary attribution oper-
ators connecting the two. These attribution operators typically may have as their source special
sorts of attribute carriers, which can be deleted and re-created for relabelling.

Konig and Kozioura [KKO0S8] essentially follow the approach of [LKW93], but choose a rigid
organisation of unlabelled nodes, and labelled hyperedges with a single attribute the sort of which
is determined by the edge label. Homomorphisms include algebra homomorphisms. In a rule
(L,R,ct,g), the two rule sides L and R are attributed graphs over the term algebra over a globally
fixed set of variables, with L attributed only with variables, and only variables occurring in L
may occur in R. The rule morphism is defined by an injective node mapping «; rule morphisms
are not defined for edges and attributes, and therefore are a special case of partial morphisms.
(The Boolean guard term g controls applicability of the rule.) Matches need to be injective on
edges; rewrite steps preserve the data algebra.

In the double-pushout approach, [HKTO02, EPT04] use attribution edges connecting graph
items with attribute values, and are essentially predecessors of [EEPT06], the approach of which
is discussed in more detail in Sect. 8.

All the above consider arbitrary attribute algebras for the application graphs, with term alge-
bras a special case.

For the “symbolic graphs” of [Orel1, OL10b], the data algebra is not considered an explicit
part of the graph structure; instead, a “symbolic graph” is an E-graph over a sorted variable set
together with a set of formulae (most typically equations) that may refer to constants drawn from
the data algebra.

Since the conventional M-adhesive approach does not cover rule applications that change
attributes, [Gol12] presents a variant of adhesive categories that softens the adhesive restrictions

Selected Revised Papers from GCM 2014 2/17



Eg ECEASST

to only affect the pushouts that are actually needed during transformation, avoiding spurious
non-unifiability problems for attributes. Similarly, Habel and Plump [HP12] restrict the class
of morphisms to be used in “vertical” roles in the rewriting steps, to be able to capture the
relabelling DPO graph transformations of [HP02, Plu09] which use partially labelled interface
graphs.

A different approach to relabelling is that of Rebout [RFS08], which combines de-facto-partial
attribution relations with a special mechanism for relabelling via “computations” in the left-hand
side of the rule.

Rutten’s overview article [Rut00] is useful for general theory of coalgebras. Related with
our current work is the part of the coalgebra literature that deals with combining algebras and
coalgebras; one approach considers separate algebraic and coalgebraic structures in the same car-
riers, for example Kurz and Hennicker’s “Institutions for Modular Coalgebraic Specifications”
[KHO2]. A further generalisation are “dialgebras” [Hag87, PZ01], which have a single carrier X,
and operations f; : F; X — G; X, where both F; and G; are polynomial functors.

3 Notation and Background: Categories and Monads

We assume familiarity with the basics of category theory; for notation, we write “f : A—B” to
declare that morphism f goes from object A to object BB, and use “4” as the associative binary
forward composition operator that maps two morphisms f :A—Band g: B—>C to (fig):A—C.
The identity morphism for object A is written 4. We assign “” higher priority than other binary
operators, and assign unary operators higher priority than all binary operators.

The category of sets and functions is denoted by Set.

A functor F from one category to another maps objects to objects and morphisms to mor-
phisms respecting the structure generated by —, I, and composition; we denote functor applica-
tion by juxtaposition both for objects, F A, and for morphisms, F f. Although we use forward
composition of morphisms, we use backward composition “o” for functors, with (Go F) A =
G (F A).

A monad on a category C consists is a functor M : C—C for which there are two natural
transformations (“polymorphic morphisms”) returny : A - M A and joing : M (M A) > M A
satisfying returnpg 4joiny = I and M returng ;joiny =1 and M join, s join, = join g 45 joiny.
Important monads are the List monad, and the term monad 75 for any (algebraic) signature X.
For the former, join i 4 : List (List A)—List A is the function that flattens (or concatenates)
lists of lists. For the latter, Ts V is the set of terms with elements of set V used as variables; the
function join y: Tz (7x V) — Tz V maps nested terms (or terms using V-terms as variables) into
“flattened” V-terms. Each monad M on C induces the so-called Kleisli category K p, that has the
same objects as C, but C-morphisms A — M B as morphisms from A to B. Kleisli-composition
of f:A - M B with g: B— M C will be written f §g; this is defined by fsg=f:(M g):join,.

In the term monad 7y, Kleisli morphisms are substitutions ¢ : V| - 75 V,, and Kleisli compo-
sition is just composition of substitutions. Application of a substitution ¢ : Vi - Ty V; to a term
t: Ty Vy will be written o »7. (Appendix A contains a few more details about the term monad.)
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The double-pushout (DPO) approach to high-level rewriting [CMR*97] uses transformation
rules that are spans L« G—#+R in an appropriate category between the left-hand side L,
gluing object G, and right-hand side R. A direct transformation step from object A to object B
via such a rule is given by a double pushout diagram, with host object H, where the morphism u
is called the match.

L < G - R

u n 14

A -~ H - B
v YR

4 The Coalgebra View of Graph Structures

In the context of the algebraic approach to graph transformation, graph structures have tradi-
tionally been presented as unary algebras [Low90, CMR"97]. However, as such they are the
intersection between algebras and coalgebras, and in [Kah14], we showed how more general
coalgebras are useful in modelling graph features. Recall: Given a (unary) functor F,

* an F-algebra A = (Cy,fy) is an object Cy together with a morphism fy : F C4 — Cy
* an F-coalgebra A = (Cy,f4) is an object C4 together with a morphism fy : C4 = F Ca.

Whereas non-unary algebras allow structured types for the arguments of their operations, non-
unary coalgebras allow structured types for their results. Also, while in practical algebras, the
shape of the arguments can typically be described by a polynomial functor, more general functors
are routinely considered for the shape of the results in coalgebras.

In the signatures for such coalgebras, we therefore allow additional syntax for such functors,
like List, with fixed interpretation, just like the product functor x that is used for the argument
shapes of non-unary algebras. In general, we assume a language of functor symbols (with arity),
and a signature introduces first, after “sorts:”, a list of sort symbols, and then, after “ops:”, a list
of function symbols (or operation symbols), and for each operation symbol, an argument type
expression and a result type expression (separated by “—”’) each built from the functor symbols
and the sort symbols.

* An algebraic signature has only single sort symbols as result types.

* An coalgebraic signature has only single sort symbols as argument types.

For example, the following is a coalgebraic signature for directed hypergraphs where each hy-
peredge has a sequence of source nodes and a sequence of target nodes, and each node is labelled
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with an element of the constant set L:

sigDHG:= ( sorts: N,E
ops: src:E—List N
trg:E— List N
nlab:N— L )

The coalgebra functor corresponding to sigDHG is a functor between product categories because
of the two sorts:

FsigDHG (N , E) = (L, ((LiStN)X(LiStN)))

Since in algebras, all operations must have a sort as result, modelling labelled graphs as al-
gebras always has to employ the trick of declaring the label sets as additional sorts, and then
consider the subcategory that has algebras with a fixed choice for these label sets, and mor-
phisms that map them only with the identity. Similarly, list-valued source and target functions
are frequently considered for algebraic graph transformation, but with ad-hoc definitions for mor-
phisms and custom proofs of their properties. In contrast, declaring these features via a coalgebra
signature such as sigDHG directly captures the mathematical intent.

5 Attributed Graphs as Coalgebras

The expressive power of coalgebraic signatures extends to attributed graphs without any effort.
For example, the following is a coalgebraic signature for edge-labelled (with label set £) and
node-attributed graphs, with symbolic attributes taken from the term algebra over some term
signature ¥ and with variables from the variable carrier set for sort V:

sigSNAGy := ( sorts: N,E,V
ops: src:E—-N
trg:E—-N
lab:E—~ L
attr:N->TzV )

The resulting homomorphism concept only allows renaming of variables:

Fact 5.1 A sigSNAGy-coalgebra homomorphism F : G| — G, consists of three mappings Fy :
N; - Ny and Fg : E| — E; and Fy : V| — V3 satisfying the following conditions:

FE;SrCZ SrC1;F|\| FE;labz = Iab1

Feitrg, = trg;iFn Fnsattrp, = attr:Tg Fy O

DPO rewriting in this category would have to rely on deletion and re-creation of attribute carrying
nodes to implement relabelling, similar to [LKW93, KKO08]. In addition we also lack the ability
to instantiate rules via variable substitution as part of the morphism concept, and might therefore
be tempted to add such instantiation outside the DPO rewriting framework, as in [PS04].
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The homomorphism concept for sigSNAG;-coalgebras can be “fixed” to allow substitution, by
also adapting the morphism conditions to take the substituted variables inside the image terms of
the attribution function into account:

Definition 5.2 We define the category SNAGy to have sigSNAGy-coalgebras as objects, and
a morphism F : G; — G, consists of three mappings typed as shown to the left, satisfying the
conditions shown to the right:

Fn @ Ni—>N
FN El —)EZ FEa'SI’Cz = SrC1§FN FE:Iab2 = |ab1
E ¢ Ri—EB
Festr = trg;;FN Fysattrp = attri§Fy

Note that Fy, is now a morphism in the Kleisli category of the term monad 7y, and accordingly
the homomorphism condition for F\, employs Kleisli composition §. It is not hard to verify that
this category is well-defined — the key to the proof is to recognise that the F\, components are
substitutions and compose via Kleisli composition of the term monad.

6 Monadic Product Coalgebras

In [Kah14], we introduced the concept of “monadic product coalgebras” as abstract setting for
graph structures with substituting homomorphisms, which distinguishes “graph item sorts” from
“variable sorts” by setting the formalisation in the product category C; x C;, assuming:

* two categories C; and Cy,
¢ amonad M on C,,
« a functor F from C; xC, to Cj.

In terms of coalgebraic signatures, this implements the restriction that sorts mentioned as monad
arguments do not occur as source sorts of operators, and that the monad must not depend on
sorts that do occur as source sorts of operators. This restriction is satisfied by all simple kinds
of symbolically attributed graphs where the monad is typically a term monad, is applied only to
sets of free variables, and these variables do not otherwise participate in the graph structure.

Definition 6.1 ([Kah14]) An M-F-product-coalgebra A is a triple (A1,A;,0p, ) consisting of

* an object A of Cy, and
* an object A, of Cy, and
e amorphismop, :A; > F (A, M Ay)

A M-F-product-coalgebra homomorphism f from (A;,A;,0p,) to (B1,Ba,0pp) is a pair (fi,f>)
consisting of a C;-morphism f; from A; to B; and a morphism f; from A, to B; in the Kleisli
category of M such that

fisopg =opyi F (fi, Mfaijoin) .

Morphism composition is composition of the corresponding product category. O
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This morphism composition is well-defined, and induces a category. If we let M be the
product monad of the identity monad on C; and M, then we see that M-F-product-coalgebra
homomorphism are in fact morphisms of the Kleisli category K ,,, and also use its composition.
If we further define Fy as endofunctor on C; xC; by Fo(X1,X3) = (F(X1,X2), 1), then an M-
JF-product-coalgebra is indeed a (Fpo My )-coalgebra. (This factorisation is further explored in
[Kah14], and is too general for pushout creation).

Example 6.2 The category SNAGy of Def. 5.2 is equivalent to the category of Ty-FsigSNAG-
product-coalgebras, where C; = Set x Set for nodes and edges, C, = Set for variables (or terms),
and

}—sigSN/-\G ((N>E)7T) = (Ta (NXNX‘C)) :

The four constituents of the result type of Fgsgsnag correspond to the four operators attr, src,
trg, and lab of sigSNAG, with attr being the first constituent, since it is the only operator starting
from sort N, while the remaining three all start from sort E.

Since M is a product monad, pushouts in K4, are calculated component-wise, that is, they
consist of a pushout in C; and a pushout in the Kleisli category of M, and we have:

Theorem 6.3 ([Kah14])  The forgetful functor from the category of M-F-product-coalgebra
homomorphisms to the Kleisli category of M creates pushouts. O

More explicitly, if a span B<l-A-8.Cof M-F -product-coalgebra homomorphisms is given,
and also a cospan (By,B;) —">(Dy,D:)<~*—(C},Cy) in Ky, that is a pushout for the Kleisli
morphisms underlying F and G, then (D;,D;) can be extended to a M-F-product-coalgebra
D=(Dy,D,0pp,) such that B—+~ D% C is a pushout for B«/—A—%» C in the M-F-product-
coalgebra category.

Together with the equivalence of categories of Example 6.2, pushouts for node-attributed
graphs essentially reduce to unification for their variable components (due to the fact that Set
as underlying category has pushouts):

Corollary 6.4 A span B<2—A—5+C in the category SNAGs of node-attributed graphs (as
sigSNAG;s structures) has a pushout if Fy and Gy, as substitutions, have a pushout. O

7 DPO Transformation with Substituting Homomorphisms

Most DPO approaches to attributed graph transformation insist that the “data algebra” supplying
the attribute values remains unchanged by transformation. In contrast, our approach has the data
algebra generated by a monad from selected carrier sets — most typically, the data algebra is the
term algebra of the variable carrier set. And since variables are just elements of one of the carrier
sets, adding and deleting variables is as easy as adding and deleting nodes and edges.

For the sake of readability, we limit the discussion in this section to the symbolically attributed
graphs of Sect. 5, but it obviously applies to arbitrary M-F-product-coalgebra categories.
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For rewriting of symbolically attributed graphs, we organise the variable set V of the gluing
graph as a coproduct Vg = T + R of

e the set T of transfer variables, and
* the set R of replacement variables.
We demand that
* the graph parts (node and edge components) of the rule morphisms are injective,
* the rule morphisms map transfer variables injectively to variables,
* all replacement variables occur in attributes of gluing graph items.

A (rule) morphism satisfying these conditions is called rigid.

For human-oriented presentation, and for simplifying the technical arguments below, the
transfer-variable parts of the rule morphisms, namely ¢, 7: T — Ty Vp and @r7:Tg = Tz Vi,
will be subset inclusions, with T = VN Vg. In the following example drawings, we explicitly
list the variable set for each graph, and the variable component (substitution) for each homomor-
phism.

L PL G R
{z,y} {xay7rlar2} {xayad}
1
Tog._ R S B y+d
F G
Y - T~ 7T = T —d
T2

In the rule drawn above, the transfer variables are x, and y, and the replacement variables are
r1 and ry; the latter are mapped to different terms on the two rule sides, thus implementing “re-
attribution”. Furthermore, variable d is “added by the RHS”; if the host graph H had already
contained a variable d, then the d of the RHS would have been mapped to some fresh variable in
the result graph B.

Note that ¢y, is not a monomorphism in the category SNAGy, of Def. 5.2: Consider a graph Z
with empty node and edge sets and with variable set {z}, and homomorphisms

e A :Z— G with 117V(z) =x and
. )Lz :Z — G with AZ,V(Z) =7y,

then A1 3¢r = 4250, but A; # A,. (The homomorphism @g “accidentally” happens to be a
monomorphism, but it would not be one if, e.g., “x—d” had been replaced with “x—1". See
Appendix A for more information about monomorphisms in categories of substitutions.)

Selected Revised Papers from GCM 2014 8/17



Eg ECEASST

Although the replacement variables in the example above correspond to undefined labelling
in, e.g., [HP12], this is not their only possible use; replacement variables can also occur deeper
in the term structure of graph item attributes. This could be used for example to emulate multiple
attributes via record-valued single attributes, and then replacing selected attributes could employ

EX]

gluing nodes with attributes like “pair(x,r;)” or even “(aj — x,ap = ry,a3 = 3-r)".

Existence of a pushout complement in the category SNAGy requires, besides the conventional
gluing condition for the graph part, the following additional clause for the attribution part:

Definition 7.1 (Variable gluing condition) Each deleted variable (i.e., each variable in V; — Vi)
is mapped by the matching i to a variable in A that does not occur in attributes outside the image
of the deleted part of L (which is the “dangling” aspect), and also does not occur in the result of
Uy for any other variable (which is the “identification” aspect). O

Since variable deletion is probably a relatively rarely-useful operation, we show an example
redex and DPO transformation step not involving variable deletion on the left-hand side, and
therefore trivially satisfying the variable gluing condition (we do not indicate the obvious node
and edge mappings for the application span A«~—H ——B):

L 2 G ¥R R

{z,y,d}

U t+d

{z,y,71,7r2}

M= . Tmr—-

wL {aa b> C, T17r2}
A H B

Recall that 1y is a function of type Vi, — Ty, V4, that is, a substitution that maps variables from
VL to terms over V4. We will apply it to terms ¢: 7y V; using the notation Ly > introduced in
Sect. 3.

The pushout complement, consisting of the host graph H and the morphisms 1 and y;, is
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obtained via the following steps:

* The graph part (nodes and edges) is constructed as the pushout complement of the graph
part of G—%>L—E+ A

* We then calculate a least unifier v: Rg — Ty R¢ that simultaneously unifies (without in-
stantiating any variables of A) all pairs

(kv e (attrg(m)), py e (attr(n2)) )

for different preimages n; # ny € Ng of nodes identified by , that is, with uy(@pn(71)) =
un(@zn(n2)). Such a least unifier exists since the matching u proves unifiability.

* The variable set Vy is the disjoint union of the preserved variables of A, that is, Vp:= V4 —
tv (VL - Vi), with the replacement variables of R that occur in the range of y. (Variables
that have been unified away must be removed.)

* For the attribution function, we then define (note that v and py replace disjoint sets of
variables):

attry(n) = { v (v > (attrg(m))) i n=1(m) with m e Ng
H attra (N (n)) if wyn (n) ¢ (VL)

* The substitution 1y is the identity on replacement variables, and coincides with ty on
transfer variables.

* The substitution yz v is the identity on preserved variables, and coincides with @y v § ty
on replacement variables.

Commutativity v § Yz v = @ v § My is then trivial; the attribute preservation properties

NN attry = attrgsny

and
Y Nsattrg =attrgsyry

are trivial when 7 is trivial (that is, when uy does not identify any nodes), and in general require
careful analysis for the different variable sets.

The variable gluing condition (Def. 7.1) is essential to show the universality property of the
cospan L—£~A <YL H: altogether we obtain:

Theorem 7.2 (Existence and uniqueness of the pushout-complement) For G—%~L—X+A in
the category SNAG, if @y is a rigid morphism, then a pushout complement G—1~H Y-+ A exists
iff the extended gluing condition is satisfied. If a pushout complement exists, it is unique up to
isomorphism. OJ
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Since the category SNAG does not have all pushouts, the right-hand side of a rule might
contribute additional application conditions. Now we define a SNAG-transformation rule to be
a span L« G-+ R of rigid SNAG-homomorphisms. With that restriction, it is easy to see
that right-hand side pushouts always exist at least if the matching pt does not identify any nodes.
In the case of node identification via U, the extended gluing condition is only sufficient for
construction and well-definedness of the pushout complement; for the construction of the result
graph, the following additional condition is necessary:

Definition 7.3 (Attribute identification condition) There is a unifier 0 : Vg — Ty Vi that simul-
taneously unifies all pairs

(kv e (attrr(@rn(n1))), by > (attre(Prn(n2))) )

for different preimages n; # ny € Ng of nodes identified by u, that is, with pun(@pn(n1)) =
Un (PN (n2)). D

Theorem 7.4 (Existence of direct derivation) For A<*—L<%-— G -#+R in the category SNAG,
if or and Qg are rigid morphisms and the attribute identification condition is satisfied in addition
to the gluing condition for G—2~L—+ A, then the usual double-pushout diagram for a direct
derivation from A via the rule L~*—G—®+R and the matching | can be constructed. O

8 Comparison with Attributed Graph Transformation in the Adhe-
sive Approach

In the adhesive HLR approach to attributed graph transformation, presented in detail in [EEPT06,
Chapters 8—12], each attributed graph contains its own X-algebra for attribute values. Attributes
are associated with graph items (nodes or edges) through special “attribute edges” that have a
graph item as source and an attribute value as target. This has the advantage that the source of
a matching needs to have only those attributes defined that are relevant for the matching, but
also has the disadvantage that “attribute names” require separate mechanisms for distinguishing
attributes belonging to different names (achieved via “typing”, i.e., move to a slice category,
in [EEPTO06, Def. 8.7]), for enforcing existence (achieved via “constraints” in [EEPTO06, Sec-
tion 12.1]), and for enforcing uniqueness (apparently requiring tuning a global parameter of the
“constraint” mechanism, see [EEPT06, Example 12.2]).

For the implementation AGG, [EEPTO06, p. 308] mentions that “AGG allows neither graphs
which are only partially attributed, nor several values for one type. This restriction is natural,
[...]. In the theory, this restriction can be expressed by adding [...] constraints [...]".

We agree that “this restriction is natural”, and we consider coalgebras a far more natural way
to incorporate this restriction into the theory of attributed graphs: Any number of attribution
operators can be added to a coalgebraic signature, each of these is then necessarily interpreted
(implemented) as a (conceptually separate) total function in all coalgebras for that signature.

The typed attributed graph transformation rules of [EEPT06, Chapter 9] are restricted to a
“term algebra with variables” for attributes, and the choice of class M implies that all three
graphs of a rule L~— G——R share the same term algebra. Therefore, “[the] definition of the
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match [L — A] already requires an assignment for all variables” [EEPT06, p. 183], including
those that one might otherwise consider as “introduced in the RHS”.

The fact that all horizontal morphisms are restricted to isomorphisms on the value algebra
implies that that algebra cannot be modified by transformations. In particular, if the application
graph contains a term algebra, it is not possible to add or delete variables.

9 Conclusion and Outlook

The theory of coalgebras, where operations map carrier set elements to arbitrary types con-
structed via functors from all carrier sets, provides inherent flexibility for modelling of graph
structures that is sorely missing from the theory of unary algebras traditionally employed for
this purpose in the “algebraic” approach to graph transformation. In particular, coalgebras can
model attributed graph structures effortlessly. In contrast, the non-unary value algebras needed
for practical applications of attribution form an alien element in the traditional unary algebras
modelling graph structures, and therefore require complex auxiliary constructions to properly
capture even the simple fact that attribution is a total function from (e.g.) nodes to attribute
values, as explained in the previous section.

While the traditional approach handles substitution (typically as a special case of evaluation)
via algebra homomorphisms, we use the approach of [Kah14] to handle substitution via Kleisli
composition, by factoring the coalgebra functor over an appropriate monad.

In the current paper, we restricted our attention to the term monad, and therefore only consid-
ered symbolic attribution with terms in more detail; due to the fact that the set of variables is one
of the carrier sets of our coalgebras, adding and deleting variables via DPO transformations is
essentially as easy as adding and deleting nodes or edges. Because of this possibility of adding
variables via transformation steps, we obtain a symbolic rewriting system that is closer in spirit
to that of [OL10a] than to the point of view of [EEPT06], where additional variables in the RHS
need to be instantiated as part of the rule application (and indeed already as part of the matching,
for technical reasons).

Even though the Kleisli category of the term monad does not have all pushouts (since not
all terms are unifiable), we still managed to obtain a rule concept with an application condition
that is an only slightly strengthened gluing condition, and that guarantees that a DPO rewriting
step can be constructed. Interestingly, the rule sides, although injective on their graph parts,
are not monomorphisms in our coalgebra category, so none of the current M-adhesive, W-
adhesive [Gol12], or M, N -adhesive [HP12] approaches is directly applicable. The general
approach of e.g., [Gol12], should however still be applicable to DPO rewriting in categories
of monadic product coalgebras — the concrete instance of a VV-adhesive category of attributed
graphs presented in [Goll12] (implicitly) uses, for enabling attribute change, a partiality monad,
which, like the term monad, is a “guarded monad” [GLDO5]; we conjecture that guarded monads
might be used to unify the two approaches.

For future work, we therefore hope to identify an appropriate variant of the adhesive HLR ap-
proaches that does not require monomorphisms for the rule sides, and still supports typical HLR
results. The fully abstract generalisation of the results of Sect. 7 to arbitrary M-F-product-
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coalgebra categories will then require monads with membership [FHMO93] for the gluing condi-
tion.

Besides the DPO-based HLR approaches, we also plan to investigate applying to monadic
product coalgebras for example also the sesqui-pushout (SqPO) approach of [CHHKO06], which
is aplied to attributed graph transformation in [DEPR14]. While the approach of Sect. 7 can
only delete variables that are matched to variables, sesqui-pushout rewriting should give us more
flexibility there. It may even be advantageous to explore applying the fibred apprach to rewrit-
ing [Kah97], as this provies a principled approach to distinguish the different ways substitution
and/or partiality are employed in the horizontal versus the vertical arrows of “double-square
rewriting”.

We also plan to investigate moving from term algebras to more general algebras as target types
for attributions.
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A Monomorphisms in Substitution Categories

Let 7y denote the term functor for signature ¥, that is, 7z X is the set of X-terms with elements
of set X as variables. Let FV/(¢) denote the set of (free) variables occurring in term ¢.

Tz is an endofunctor on the category Set, and naturally extends to a monad (see Sect. 3), the
term monad. Its “join” natural transformation, joinr;, produces for each set A (of variables) the
function joinE 4: Tz (Tg A) = Ty A which “flattens” nested terms over variables in A (that is,
terms over Ty A as their set of variables).

Substitutions, that is, functions X — 7Ty Y, are morphisms in the Kleisli category of the term
monad 7y, and therefore compose via Kleisli composition, which is defined for arbitrary substi-
tutions F: X - 7Ty Y and G: Y — Tx Z as follows:

F3G=F:Ts G:joing, 7

Conventionally, this would be described via “application” of substitutions to terms — since we
write F o ¢t for the application of substitution F : X - 7y Y to term ¢ : 7y X, the composition F § G
can defined by

(FsG)(v)=F»>(G(v)) , forall v:X.

When starting from the monadic setting, application of substitutions can be defined as follows:

Fet=((Tz F):joiny)(t)

Monomorphisms

In any monad, if the “return” natural transformation produces monomorphisms (which it does
for 7y), then monomorphisms in the Kleisli category of this monad are also monomorphisms in
the underlying category. Monomorphisms F of the underlying category that are preserved by
the monad functor give rise to monomorphisms F;return in the Kleisli category.

The term functor preserves all monomorphisms: An injective variable mapping F: V| — V,
gives rise to an injective term mapping 7y F: 7y V| - Tz V; that only renames variables. The
resulting substitution F;return: V| — Ty V; is an injective variable renaming, which is therefore
a mono in the category of substitutions, too — this also can easily be seen directly.

The category of substitutions has pushouts along such variable renamings; these pushouts
implement name-clash-avoiding extension of the domain of substitutions.
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For o, being a monomorphism in the category of substitutions exactly means that substitution
application of o does not unify any two different terms. That is, ¢ is a monomorphism in the
category of substitutions iff for any two terms #; and #, we have

o>t =0v>lh implies =t .

From this, it is easy to see that monomorphisms in the category of substitutions cannot map any
variables to ground terms.

However, this condition is not easy to check directly.

Fortunately a much simpler condition is (necessary and) sufficient: We can show that monomor-
phisms in the Kleisli category of the term monad are those substitutions that do not identify
variables with different terms:

Theorem A.1 A substitution 6 : Vi — Ty V, is a monomorphism in the category of substitutions
iff for every variable v: V| and every term t : Ty V|, we have:

ov=0r»t implies V=t .

Proof. “=" follows directly by applying the monomorphism property to the two terms v and .
“«<": Assume that o satisfies the given condition. To show that ¢ is a monomorphism in the
category of substitutions it suffices to show that for any two terms t,u: 7y V| with o >t=0c v,
we have ¢ = u. Since this is actually equivalent to restricting Vj to a one-element set, it suffices
to show that for all terms #;,%, : Ty Vi with 6 >#; = 6 >, we have t; = 1.

e If t =vis a variable, then 0 v= 0 vt = 0 »u, from which the given property yields v = u.
(The case where u is a variable is analogous.)

o Ifr=f(t1,...1,) and u=g(uy,...u,), then o >t = ¢ >u implies f = g and o »t; = ¢ >u;, from
which the induction hypothesis yields ¢; = u; for all i, implying ¢ = u. O

For finite substitutions, this condition directly translates into a decision procedure that for each
variable v : V| checks whether for any different variable u : V1, its image o u occurs as a subterm
inov.
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