Electronic Communications of the EASST

Volume 72 (2015)

Proceedings of the
15th International Workshop on
Automated Verification of Critical Systems (AVoCS 2015)

Computing Bounds for Counter Automata
Maximilien Colange, Dimitri Racordon, Didier Buchs

15 pages

Guest Editors: Gudmund Grov, Andrew Ireland

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Computing Bounds for Counter Automata

Maximilien Colange', Dimitri Racordon', Didier Buchs'

! first.last@unige.ch
Centre Universitaire d’Informatique
University of Geneva, Switzerland

Abstract: Qualitative formal verification, that seeks Boolean answers about the
behavior of a system, is often insufficient for practical purposes. Observing quan-
titative information is of greater interest, e.g. for the calibration of a battery or a
real-time scheduler. Historically, the focus has been on quantities in continuous do-
main, but recent years showed a renewed interest for discrete quantitative domains.

Counter Automata (CA) is a quantitative extension of classical w-automata. Re-
cently a nice theory has been developed for them that extends the qualitative setting,
with counterparts in terms of logics, automata and algebraic structure. We propose
an adaptation, with plenty of practical applications, of this formalism to express
properties over discrete quantitative domains. The behavior of a Counter Automa-
ton defines a function from infinite words to integers. Finding the bounds of such a
function over a given set of words can be seen as an extension of qualitative univer-
sal and existential model-checking. Although the problem of determining whether
such bounds are finite have already been addressed, efficient algorithms to compute
their exact values still lack.

We propose an non-naive method for the computation of the exact values of these
bounds. It relies on a generalization of the emptiness problem of w-automata. To
solve this generalized emptiness problem, we propose an algorithm that extends
emptiness check algorithms based on SCC enumeration.

Keywords: model checking, non-stochastic quantitative properties, counter au-
tomata, @-automata, emptiness check

1 Introduction

Qualitative verification, asking questions with Boolean answers about a system may be too strict
for various applications. Calibrating a battery, timing a scheduler, measuring quality of service
are practical problems of systems designers for which formal verification can offer a guarantee.
Many works focus on the case of continuous quantitative domains (stochastic systems, real-time
systems ...), and the case of discrete domains have long been overlooked.

The ability to count events is an important feature, e.g. to evaluate logical time (number of ac-
tions done by a robot, number of context switches done by a scheduler ...). Such measurements
are of primary interest to evaluate the behavior of a system at early stages of development. Logi-
cal time can also serve as a first approximation of real-time, when events have a known bounded

1/15 Volume 72 (2015)

mailto:first.last@unige.ch

Computing Bounds for Counter Automata E}

duration. We seek in this paper to use a model of automata able to count events in a system with
infinite behaviors, with a focus on applicability.

Among numerous quantitative extensions to finite automata, we focus on the one defined by
Colcombet and Bojariczyk [BC06]. Finite automata are extended with a finite set of counters that
can be incremented and reset. A special operation observe allows to store the current value of a
counter to further determine the value of a run, as the infimum or the supremum of such stored
values. They are part of a vast theory that nicely extends the finite automata theory, with their
logical and algebraic counterparts, closure properties, over finite and infinite words and finite
trees. Such automata define functions from words to integers, termed cost functions. Due to the
undecidability of comparing two cost functions, many interesting features of this theory rely on
the consideration of cost functions up to an equivalence relation that erases the exact values and
only retains their boundedness of functions.

Regarding infinite words, on which we focus in this paper, the theory of cost functions has
links with other extensions of automata or logics, by bounding a discrete quantity: bounding the
maximal time between two returns to an accepting state in @-automata [AHK10], or bounding
the wait time for the finally operator in LTL [KPVO07]. Considering exact values to count events
is nevertheless a great tool for verification. Think for example to the maximal number of energy
units consumed by a robot between two returns to its charging base, to calibrate a battery. Or
the maximal number of simultaneous threads in a parallel computation, to tune an appropriate
scheduler. Or the number of false steps permitted to a human operator before a safeguard re-
striction occurs. For such properties, determining whether the bound is finite or not is of little
help. We thus propose to use the tools and methods developed towards cost function theory (over
infinite words) to practical model-checking.

Our contribution is threefold:

e we propose a method to compute the bound of a counter automaton, through the construc-
tion of a so-called capped configuration automaton (Section 3);

e we define a generalized version of the emptiness check problem for w-automata, to which
our bound problem is reduced (Section 3);

e we adapt existing emptiness check algorithms to solve the latter problem (Section 4).

The paper is organized as follows: Section 2 recalls essential definitions and concepts of ®-
automata, then introduces Counter Automata and their semantics through their configuration
automata. Section 3 defines the bound value problem, and its reduction to a problem on a
finite automaton, labeled the capped configuration automaton. Section 4 discusses algorithmic
solutions for the latter problem, by adapting existing emptiness check algorithms for w-automata.
Section 5 presents related work. Finally Section 6 concludes the paper and presents perspectives
for future work.

Notations IN denotes the set of nonnegative integers, and < denotes the usual order on integers.
We define N, = NU{w}, and we extend < to IN. such that n < @ for every n € IN.

Throughout the paper, X denotes a finite alphabet. X" denotes the set of words of length n for
n € IN, * denotes the set of finite words over ¥ and the empty word is noted €. £ denotes the
set of infinite words, or @w-words over X. The length of a word u € X*UX® is noted |u|. For
i < |ul, the i-th letter of u is noted u(i), so that u = (u(i));<|u|-

Proc. AVoCS 2015 2/15

Eg ECEASST

Given a set A and = an equivalence relation on A, the equivalence class of a € A is noted [a]=.

For M € IN, we define the cap relation ~j; on IN. as follows: n; ~ys ny iff ny = ny and
np < M, or both n and n, are greater than M. Thus, ~, is an equivalence relation that has M + 1
equivalence classes [0].,,, [1]~,, --., [M]~,,, among which the M first are singletons. ~;, is
compatible with < on IN..: for every n < p, for every n’ ~y; n and p’ ~y p, we have n’ < p’ or
n' ~y p'. Thus < is well-defined on the quotient N/ ~ps: [0],, < [1]~,, < -+ < [M]~,,-

When a variable denotes a vector, we add an arrow above it to distinguish it from scalar values.
For instance, ¥ € IN* denotes a vector ([x,])sca of nonnegative integers indexed by set A.

2 Counter w-Automata

This section recalls the definition of w-automata, and extends them to Counter @-Automata.

2.1 w-Automata

We first recall the concept of @-automaton, a finite automaton running on infinite words. An ®-
automaton defines (or recognizes) a regular w-language. They are largely used to represent sets
of infinite behaviors, such as the actual behaviors (or abstraction thereof) of an actual discrete
event system, or the desired behaviors of a specification. Depending on the representation, each
letter of a word represents a state or an action of said system or specification. A common practice
uses sets of system observables as letters. We use w-automata to represent the infinite behaviors
of systems to be verified. w-automata satisfy numerous closure properties (especially union,
intersection, complementation) of great importance for verification algorithms design.
We use in this paper transition-based generalized Biichi conditions, for several reasons:

e m-automata are often used to check whether a LTL formula holds on every execution of a
system. In this approach, the (negation of the) LTL formula is translated into an equivalent
w-automaton. For such a translation, using generalized transition-based Biichi condition
is quite natural, and almost all translation algorithms produce automata with generalized
transition-based Biichi conditions [DG12]. Similarly, Counter Automata can be produced
from a quantitative variant of LTL, named Cost LTL [KB12]. The translation algorithms
are little affected by the addition of quantitative information, and also produce Counter
Automata with generalized transition-based Biichi conditions.

e generalized conditions are more concise than degeneralized ones, i.e. they allow smaller
automata for a given regular @-language. Similarly, transition-based conditions are usu-
ally more concise than state-based ones. The complexity of emptiness check algorithms
depends on the size of the input automaton, so conciseness is primordial. We will see later
that conciseness is also particularly important when it comes to Counter Automata.

Definition 1 An @-automaton is a tuple ¥ = (Q,X, A, Qp, F) such that:
e () is a finite set of states;

e Y is a finite alphabet;
e AC O xXx2F x Qis the transition relation;

e Oy C Qis aset of initial states.

3/15 Volume 72 (2015)

Computing Bounds for Counter Automata E}

e F is a finite set of acceptance marks;

Let t = (gs,a, f,q;) € A be a transition, we say that g, is its source and g, its target. A step
is a triple ¢; — ¢, where ¢; and ¢, are states, a € X and (¢1,a, f,q2) € A for some f € 2F. Let
u € X*UL® be a word. A path on u is a sequence of transitions (tl-)K‘ « such that the source of
ti4+1 is the target of #; for every i + 1 < |u/, and such that the i-th letter of u is the label of 7;, for
every i < |u|. An execution on u is a path (#;);,] on u together with a state g, from which the
path is to be executed. A run on u is an execution starting from a state in Qp. A run is accepting
if it sees all acceptance marks of F infinitely often. For u € £°, Acc/(u) is the set of accepting
runs on « in the automaton <7

Note that several kinds of acceptance conditions for infinite words have been proposed over
the years, namely Biichi, Rabin, Streett, Miiller, parity. They happen to be equivalent in ex-
pressivity (on non-deterministic automata), although some allow more compact automata than
others. As explained above, our choice of transition-based generalized Biichi conditions is not
arbitrary. But our constructions and results actually do not depend on the type of acceptance
condition, and therefore naturally extend to any acceptance flavor. Note however that Biichi are
positive: they describe what transitions are to be seen infinitely often. On the other hand, all
other types of acceptance conditions describe both required and forbidden sets: transitions to be
seen infinitely often, and transitions to be seen finitely often. The positive formulation allows
simple enumeration algorithms, as needed in Section 4. Furthermore, due to its practical interest
for LTL verification, Biichi acceptance conditions have received almost all the attention for the
design of efficient verification algorithms. This provides a handful of algorithms to choose from
in Section 4.

2.2 Counter Automata

We now equip w-automata with a finite set of integer-valued counters. They are initially set to
0. Transitions in the automaton act on counters, by incrementing, resetting or observing them.
Note that the counter values do not constraint the behavior of the automaton (there are no guards
on transitions): counters act as observers of the behavior. Observation keeps track of the values
encountered during a run to associate it a value. Specifically, the value of a run is the smallest
value observed during the run (or o if no observation has been undertaken).

Formally, C = {i,or,r, 7} denotes the set of counter actions: i increments a counter, r resets
a counter to 0 and or observes the value of the counter and resets it to 0. 7 is a no-op. If a counter
has value n, its value after an action { € C is noted n.{, and we have n.T=n ; ni=n+1;
n.r = n.or = 0. This operation naturally extends to sequences of counter actions. It is also
compatible with ~, for M € IN: for { € C and ny,n; € N, if ny ~,, ny then ny.§ ~,, no.¢. Thus,
the operation of C on the quotient N,/ ~,, is well-defined.

Definition 2 A counter automaton is a tuple &7 = (Q,X,A, T, Qo, F) where:
e () is a finite set of states;

e Y is a finite alphabet;

e I is a finite set of counters;

Proc. AVoCS 2015 4/15

Eg ECEASST

e F is a finite set of acceptance marks;

e AC QO xXxClx2F x Qis the transition relation;

e (p C Qis aset of initial states.

A counter automaton is not interpreted as an automaton over the alphabet £ x CT, but as a
cost function that associates integer values to words. The semantics of a counter automaton is
given through its configuration automaton, which we describe below. A configuration of <f is a
triple n = (g1, m,v1) where gq; € Q, m; € N, and v} € INT. q1 is the state of the configuration
1M, my its value and v} its counter values. For a configuration n = (g1, m,v}) and a transition
t=(q1,a, E,f, q2) € A, we write 1.t = (q2,my,v3) the configuration such that v5 = \71.5 and my
is the infimum of m; and the values of the counters observed by : my = inf({m }U{vi(y) | ye

Is.t. z(y) =or}). <<q1 JM1, V1), d, z,f, (q2,m2, \7’2)> is a transition in the configuration automa-

ton if, and only if, 7 = (ql,a,f,f,qz) € A for some f € 2F and (g1, m, V) .t = (q2,ma,v>). The
initial states in the configuration automaton are the configurations 1 = <q0, , 6> with go € Q.

Note that the configuration automaton has the same set of acceptance marks F as its initial
counter automaton.

Let p = ((#;)iev, Mo) be an infinite run, let n;4; = n;.t; and 1; = (q;,m;, Vi) for every i € IN.
The sequence (m;);c is nonnegative and decreasing. Thus, it eventually stabilizes to a value
Val(p), the value of the run p. 7 thus defines a cost function [<] that associates to each word
u € £ the value [/ (u) = sup,cace,, () Val(P)-

We are interested in this paper in finding the bound over all words of a counter automaton, i.e.
sup,exo[#/](u). By definition of [</], this bound is also suppcacc,, (zo) Val(p), the supremum
value of all accepting runs in .«7. We also write sup[.</] to ease the notation.

Definition 3 The sup-bound value problem asks, for an input automaton 7, the value in IN.
of sup[.«/].

Strictly speaking, information on the counters are all pushed in the states of the configuration
automaton, so that there is no need to keep counter actions on its transition (although keeping
them helps understanding the link with its initial counter automaton). Thus, a configuration
automaton can rather be seen as a plain automaton, together with a value function that associates
integers to states. Since the value of configurations decrease along a run, all configuration in an
SCC have the same value. Thus, the value function may be defined on maximal SCCs instead of
states. Our bound search problem can be thus restated as searching for the highest value among
accepting SCCs of a (plain) automaton. Note however that at this point, there is no guarantee
that the configuration automaton is finite.

Example 1 Figure la presents an example of Counter Automaton. Non-deterministic, it fea-
tures a single counter, and associates to a word the maximal distance between a a and the next b.
b stands for any letter but b. The automaton has a single acceptance mark, represented by a black
bullet on transitions. An accepting run necessarily leaves the initial state qy on a letter a. After
leaving qo, a b may be read only in state q;. Thus, the automaton guesses the positions of the
a and its next b that are the most distant in the input word. The maximum over accepting runs,

5/15 Volume 72 (2015)

Computing Bounds for Counter Automata E}

(a) Example of Counter Automaton (b) A partial view of its configuration automaton

Figure 1: An example of counter automaton and its (partial) configuration automaton

in the definition of [</], eliminates wrong guesses. Note for example that [</]((a*b)®) =k — 1
for every k € IN, and [/ (aba*ba’ba*h . ..a"ba" b . ..) = oo, so that sup[.</] is not finite.

Such an automaton can be used to observe the behavior of another one. For instance, when
studying an autonomous robot, say event a represents the consumption of one unit of energy,
and b represents a full recharge of the battery. A synchronized product between the automaton
representing the behaviors of the robot and our example automaton produces a new counter
automaton </’ and sup[.</'] represents the maximal quantity of energy consumed between two
recharges of the battery. Computing this bound can thus be used to properly calibrate the battery.

We also show on Figure 1b the first states of the corresponding (infinite) configuration automa-
ton. A configuration is a triple whose first component is a state of the original counter automaton,
second component is the current value of the run, and third component is the current value of the
counter. Note how counter actions act on the counter value and on the run value.

3 From the bound value problem to generalized emptiness check

The answer to the sup-bound value problem in is IN.,, which raises the question of whether the
sought value is finite or infinite. The latter question is known as the boundedness problem. It
has already been investigated and shown decidable [Col09]. It seems quite natural that sup[.</]
can be obtained from the configuration automaton, which is possibly infinite. We present in this

Proc. AVoCS 2015 6/15

Eg ECEASST

section a reduction of the configuration automaton to a finite one, based on an analysis of the
boundedness problem.

3.1 Boundedness

The main problem towards finding sup[.<7] is whether this supremum is finite or infinite, which
we call the boundedness problem, known to be decidable [Col09].

For M € IN, we extend the relation ~ to configurations: (gy,my,v}) ~uy (q2,mz,v3) iff g1 =
qa, my ~yr my and V] ~yy Vs, where ~yy is extended component-wise to vectors of integers.

Lemma 1 Let G be a finite path, and M € IN. Let 1y and My be two configurations such that
M~y M2. Then 1.0 ~y N2.0.

Proof. This lemma is the consequence of the compatibility of both < and the action of C with
~y: for every transition ¢ and configurations 1y, 1, if N1 ~p M2, then M.t ~y M.2. We then
conclude by induction on the size of ©. 0

We restate a result first established (although in a slightly different setting) by [Kup14]. We
also provide a direct proof.

Proposition 1 Let © be the length of the longest run (i.e. starting from an initial state) that
visits every state at most once in <, plus 1. The following three are equivalent:

(a) sup[] = o.
(b) sup[</] > @.

(c) o7 has an accepting ultimately periodic run in which, for every vy € T, every occurrence of
or for vy is preceded by a cycle that increments 7y at least once and does not reset 7.

Proof. Obviously, (a) implies (b), and (c) implies (a). We prove that (b) implies (c). Assume
that sup,cyo[.97](u) > ©, and consider an accepting run p such that Val(p) > ©. We first build
an accepting lasso from p, and we will then show that it satisfies (c).

Consider the sequence (1; = (g;,m;,V;))icv of configurations visited by p, and let p o =
({gi, [Mi]~g, [Vil~e) Jiew. By definition of p, for every i € IN, m; > @O, so that [m;]., = [O].
The [Vi],’s have a finite number of possible values, and Q is finite, so there is some iy € IN
such that (gjy, [®]~e, [Vi)]~e) Occurs infinitely often in p, .. Consider 7 = p(0)...p(ip — 1)
and 6 = p(ip)...p(j) for some j > iy such that (g;,m;,v;) ~e (gi,,mi,,vi,) and all acceptance
marks in F appear between positions iy and j. Such a ¢ exists because p is accepting. Let p’ be
the run 76®. By definition of w and o, p’ is an accepting run of .. Furthermore, 1;,.0 ~g 1;,
by definition of 6. By Lemma 1, a simple induction shows that 7;,.6* ~g 1;, for every k € IN.
Therefore Val(p') ~e Val(p), and Val(p’) > ©.

Let y € I and consider an occurrence of or for ¥ in p’, say at position i. Val(p’) > © implies
that the value of Y is greater than or equal to ® when observed, so that this occurrence of or for y
is preceded by at least @ increments of . A transition carries at most one action for 7, so there are
© positions jy < --- < je_ before i in p’ that increment y. Obviously, ¥ is never reset between

7/15 Volume 72 (2015)

Computing Bounds for Counter Automata Eﬁ

positions jo and i. By definition of ®, among the source states of the transitions (p’(jk))i<e»
there is one that occurs twice, say at positions j, and j, (p < g). Thus, p’(j,)...p'(j;—1)isa
cycle in &7 that occurs before position i, increments Y at least once and never resets 7. Such a
cycle exists whatever the occurrence of or for ¥ in p’, and whatever y. Therefore, the accepting
ultimately periodic run p’ satisfies condition (c). O

Example 2 We illustrate Proposition 1 on the automata of Figure 1. The longest run without
loop in the automaton of Figure 1a is go — q2 — q1, so that ® = 3. A run p of value greater than

5/
3 necessarily goes through state g, passes at least once through the loop q» —L1—> q», and goes

.. b/or . . b/i .
to state g, through transition g — q. By repeating n times the loop g» — ¢», one builds a
new accepting run p’ of value Val(p') = Val(p) +n. Thus </ has accepting runs of arbitrarily
high values, which shows that sup[.</] is infinite. The key to this construction is the third item
of Proposition 1: there must be an incrementing cycle to be repeated before every operation or.
In this example, Proposition 1 also holds for ® = 2. However, runs of value O or 1 are not

. . b/i
guaranteed to go through the incrementing loop g» i> q», and can be the base of the above
construction of accepting of arbitrarily high values.

3.2 Reduction to a finite automaton

Proposition 1 simplifies our problem: it suffices to search [sup[.</]].,. Recall that the quotient
IN../ ~@ is totally ordered, and that [m] ., < [n]~ iff m <nand m < ©. Thus, [sup,cyo[< (4)]]~
sup,cyo ([(1)]. Similarly, for u € T2, [/ ()] = UPperce.) [Val(P)]-o.

We define the configuration automaton capped at ® of o7 as follows:

e (O x N x]NF)/NG) is the set of states;

o (Qox{m}x {6})/N® is the set of initial states;

o N LN [n.t]~, for every configuration n € 7] and every transition 7. Lemma | ensures that
this transition relation is well-defined, as [1.f] in fact does not depend on the choice of
7 in the class 7). The acceptance marks of ¢ in the capped configuration automaton are the
same as in the original automaton.
Note that the constructed automaton is finite since ® is finite. In the limit case where ® = @, the
capped configuration automaton would be the original configuration automaton.

We define the value of a run as in the capped configuration automaton. Let p = ((¢;)ie, fo)
be an infinite run, ;11 = 7);.t; and 7); = <cj,-,ﬁ1,-,1_},-> for every i € IN. The sequence (1;);cv is
decreasing in the finite set IN../ ~@. Thus, it eventually stabilizes to a value noted Val.,(p) €
N,/ ~g, the value of the run p in the capped configuration automaton.

Proposition 2 For every accepting run p of <7, there is an accepting run p' in the capped
configuration automaton such that Val..,(p") = [Val(p)|~,. Conversely, for every run p' in the
capped configuration automaton, there is a run p of </ such that Val.,(p") = [Val(p)]~e.

Proof. (=) Let p = ((t;)iew,MNo) be an accepting run of «/. We write ;41 = 1;.t; and 1; =
(gi,mj,v;) for every i € IN. By definition, [no].,, is an initial state of the capped configuration

Proc. AVoCS 2015 8/15

Eg ECEASST

automaton, and [1;]~, LN [Mi+1]~e 18 @ step of the capped configuration automaton for every
i € IN. Thus, the p’ = ((t;)iev, [0 ~e) 18 @ run in the capped configuration automaton. It is not
hard to see that it is accepting iff p is accepting. Recall that the sequence (m;);cy converges to
the value Val(p), so that the sequence ([m;],)icv converges to [Val(p)].,. But the limit of this
sequence is also Val., (p') by definition, so that Val,(p’) = [Val(p)] -

(<) Let p’ = ((#;)ien, Tlo) be an accepting run of the capped configuration automaton. We
call g the state of the configuration 7)o, Mo = (go,°,0...0) and define p = ((#;)icN,q0). The
definition of the transition relation of the capped configuration automaton guarantees that p is a
run of &7 (all steps are well-defined, and gq is an initial state of 7). It is also immediate that
p is accepting iff p’ is accepting. Let 1,11 = 1;.t; and ;11 = f);.t; for every i € IN. Obviously
No € fo, and Lemma 1 then guarantees that n; € f); for every i € IN. This last property ensures
that the limit Val(p) belongs to the equivalence class Val.,(p'): Val.,(p') = [Val(p)]~e. O

(a) Example of capped configuration automaton (b) The pattern in the configuration automaton
abstracted away by the capped configuration au-
tomaton

Figure 2: Illustration of the capped configuration automaton construction

Example 3 Figure 2a shows the capped configuration automaton of the automaton of Figure 1a.
Its configuration automaton indeed exhibits the pattern of Figure 2b, a pattern abstracted two
nodes of the capped configuration automaton. Following Proposition 1 (and its illustration in the
previous example), the capped configuration automaton does not keep track of counter values
beyond ©® = 3 as this value suffices to build runs with arbitrarily high values. The exact behaviors
of the original automaton must be kept for values below ®, as they do not exhibit a pattern to be

9/15 Volume 72 (2015)

Computing Bounds for Counter Automata E}

abstracted away.

4 SCC enumeration to find the bound

We now reformulate the sup-bound value problem, in order to provide algorithms to solve it.
Suppose we are given an @-automaton, along with a function that associate integer values to
its maximal Strongly Connected Components (SCC). Our problem is to find the largest values
among accepting maximal SCCs, which we call the largest accepting value problem. We will
consider only maximal SCC, abusively called SCC in the remaining of the paper.

This problem generalizes the classical emptiness problem for Biichi automata. In the latter
context, all SCCs have the same value T, and 1 denotes the neutral element for the operation
sup, so that sup@® = L. The largest value among accepting SCCs is thus T if the language of the
automaton is not empty, and L otherwise.

To solve the largest accepting value problem, we naturally propose to take inspiration from
classical Biichi emptiness check algorithms. Two families of emptiness check algorithms can
be distinguished: those based on Nested Depth-First Search (NDFS), and those based on SCC
enumeration. We focus on the latter category for two reasons. First, SCC enumeration matches
exactly the definition of the largest accepting value problem, and thus seems more natural. Sec-
ond, SCC enumeration-based algorithms are more suited to generalized Biichi conditions. While
the nesting depth of DFS walks in NDFS-based algorithms depends on the number of acceptance
conditions, SCC enumeration-based algorithms deal with generalized acceptance conditions in a
single walk of the input automaton, which is a great advantage towards efficiency.

SCC-based emptiness checks enumerates the SCC of the input automaton, keeping track of
the accepting conditions to detect accepting ones. As shown in algorithm 1, they typically return
as soon as an accepting SCC is detected, but are in fact able to enumerate all accepting SCCs.
The adaptation of such algorithms to the largest accepting value problem is straightforward, and
is shown in algorithm 2. The algorithm keeps track at every moment of the largest accepting
value encountered so far, and updates it whenever a new accepting SCC is found. At the end of
the enumeration, the largest accepting value is known.

Algorithm 1: Typical SCC enumeration- Algorithm 2: SCC enumeration-based
based emptiness check algorithm largest accepting value algorithm
// Based on a SCC // Vv is the SCC value
enumeration keeping track function
of acceptance conditions 1 value < —oo
1 foreach maximal SCC s do 2 foreach maximal SCC s do
2 if s is accepting then 3 if s is accepting then
3 L return “not empty” 4 L value <— max(value, v(s))
4 return “empty” 5 return value

Proc. AVoCS 2015 10/15

Eg ECEASST

4.1 A smaller automaton

Informally, Proposition 1 indicates that there is no need to keep track of the exact run values
above O to compute sup[.</]. Similarly, as the value of a single run p is the smallest one among
the counter values observed in p, there is no need to keep track of the exact values of counters
beyond the current run value. Once a value n has been observed, all counter values larger than
n can be dismissed as they have no impact on the value of the run. We thus propose a slight
improvement of our capped configuration automaton.

Formally, we first define a new equivalence relation over configurations: for M € IN, (q;,m;, V1)
(q2,ma,V3) iff g1 = g2, my ~p my and V) ~min(m; M) V2. Note that the action of C on configura-
tions is compatible with ~g, so that we have an analogous of Lemma 1.

Lemma 2 Let G be a finite path, and M € IN. Let 1y and M, be two configurations such that
M =y Na. Then M1.6 =y N>.0.

We define the double capped configuration automaton of <7 as:
e (Qx N, xIN),_ is the set of states;

o (Qox{m} x {6})/% is the set of initial states;

e M)~ = [N']~e Whenever 1y = 1, is a step for 7.
Lemma 2 ensures that this transition relation is well-defined. Once again, current values of runs
are positive are decreasing, and thus eventually stabilizes. This stabilization value defines the
value Val~,(p) of a run in the double capped configuration automaton.

Proposition 3 For every accepting run p of </, there is an accepting run p’ in the double
capped configuration automaton such that Val~, (p') = [Val(p)]~,. Conversely, for every run p’
in the capped configuration automaton, there is a run p of </ such that Val~,(p') = [Val(p)]~e-

We do not detail the proof of Proposition 3 as it does not really differ from the proof of Propo-
sition 2.

4.2 A note on complexity

All in all, sup[</] can be computed by enumerating the accepting SCC of either the capped
configuration automaton or the double capped configuration automaton. Many variants have
been proposed, sequential or parallel, based either on Dijkstra’s or Tarjan’s SCC enumeration
algorithms, to handle simple or generalized, state-based or transition-based Biichi acceptance
conditions. It is not the scope of this paper to detail all existing algorithms and their variants,
and we refer the reader to [RDKP13] for a survey. SCC enumeration algorithms have time and
space complexity related (mostly linear) to the size of the input automaton (in terms of number
of transitions and/or number of states). For the sake of generality, we estimate the size of the
both capped configuration automata, rather than the complexity of a specific algorithm.

We denote by |<7|s the number of states of .o/, and by |<7|r its number of transitions. In
the capped configuration automaton, each state and each transition of o7 is duplicated at most
(®+1)"*! times. The capped configuration automaton is thus at most (® + 1)T*! larger than

11/15 Volume 72 (2015)

Computing Bounds for Counter Automata E}

/. We recall that ® depends on the graph structure of .o only, not on the transition labels (letters
and counter actions).

The ratio is slightly better for the double capped configuration automaton, as each state and
each transition of the initial counter automaton is duplicated at most Zl@;{l il'l. The latter sum is
a polynomial in ® of degree |I'| 4 1, whose coefficient of highest degree is \Flﬁ For a fixed |T"
the double capped configuration automaton is asymptotically smaller by a factor |I'| + 1 than the
capped configuration automaton. This is a mild compensation of the size exponential in |T|.

It is easy to see that @ < |.<7 s, which gives in the worst-case a capped configuration automaton
with |« UF‘” states. Yet, expressing the size ratio in terms of ® is much finer. Observe that
the capped and double capped configuration automaton construction are still correct when ®
is over-approximated: unnecessary values may be tracked, which only impacts efficiency. For
best performance, knowing the exact value of ® is thus desirable. Yet, ® can be computed by
enumerating the SCC of <7, i.e. in time linear in |</|, a simple pre-computation dominated by
the complexity of the subsequent search for the bound.

’

4.3 Improvement and optimizations

The (double) capped configuration automaton has a very specific structure that hints for several
possible optimizations. The first feature to exploit is the fact that the current run value decreases
along a run. A change of the current run value guarantees that a new SCC is entered. Such
information, usually not accessible in the general setting of SCC enumeration, can be taken ad-
vantage of. When a new SCC is entered, say at state s, the exploration of the sub-automaton
reachable from s does not need any information about the path from the root. This enables a re-
cursive enumeration of the sub-automaton, with s as its initial state. Such recursive enumeration
is particularly interesting for parallelism.

The second feature to exploit is the fact that a SCC value (current run value) is computable
from a single state, and does not necessitate the whole maximal SCC to be known. Recall that
the algorithm searches for the largest value among the accepting SCCs, by enumerating the SCC
and maintaining the largest SCC value, say o, encountered so far. Those SCC whose values are
smaller than the current & need not be explored, and can be pruned from the enumeration. This
can considerably reduce the size of the automaton to be explored. A simple heuristic may further
be used: when such a choice occurs, the algorithm should explore the SCC with the larger value
first. If it happens to be a accepting SCC, it yields a larger @ and maximized the previous pruning
optimization.

5 Related Work

A famous problem in language theory is the star-height problem: given a language L (of finite
words) and an integer k, is there a regular expression for L with at most k nested Kleene stars?
Proposed in 1963 [Egg63], it was proven decidable in 1988 [Has88] by exhibiting an algorithm
with non-elementary complexity, and a much more efficient algorithm was then proposed in
2005 [Kir05]. Both algorithms translate the problem to the existence of a bound for a function
mapping words to integers, represented in both cases by an automaton equipped with counters

Proc. AVoCS 2015 12/15

Eg ECEASST

(distance automata for the former, nested distance desert automata for the latter). This problem
of the existence of a bound is then shown decidable. This is the first of many problems that
reduce to the existence of a bound for such automata.

This motivated an in-depth study of automata with counters (as we use it) as a general frame-
work, that came up with a theory extending the one of regular languages, with logical and al-
gebraic counter-parts [Col09]. On infinite words, the logical counter-part motivated the intro-
duction and study of Cost Linear Temporal Logics [KB12], an extension of LTL able to count
discrete events. This theory also encompasses promptness properties, a variant of liveness where
a bound on the wait time of a recurring event must exist [KPV07, AHK10]. But all these works,
motivated by the boundedness problem, overlook the exact values of the functions. On one
hand, this relaxation enables nice closure properties (such as the equivalent expressiveness for
inf-automata and sup-automata). On the other hand, it only allows to reason about the existence
of a bound, not to compute values.

In verification, not all questions have a boolean answer, so that various quantitative exten-
sions of automata have been considered, such as weighted automata (see [DGO07] for a survey).
Despite their various domains of application, they have limited expressivity, as the domain of
weights is required to be a semi-ring. An extension to arbitrary operations on weights have been
recently proposed [ADD ™ 13]. It encompasses various extensions of weighted automata, such as
Discounted Sum Automata [AHMO03] and Counter @-Automata as considered in this paper. All
these formalisms can be characterized by the absence of guards on register values. These ex-
tensions sometimes have equivalent logics (such as discounted linear temporal logics [ABK14]
or counting LTL [LMP10]). We have already studied the problem of computing bounds for the
aforementioned Cost Linear Temporal Logics [CRB15]. The present work on Counter Automa-
ton is an extension of our previous work on CLTL, as Counter Automata are more expressive
than CLTL.

Most of the works cited above only focus on expressivity, decidability and complexity prob-
lems, with little consideration to the practical use of such quantitative extensions of automata.
This situation contrasts with older formalisms: @-automata have already received great focus
towards practical applications, illustrated by numerous emptiness checks algorithms (see [SE05]
or [RDKP13] for an overview) and many implementations, principally oriented towards LTL
model-checking (see [RV10] for a survey). Some quantitative extensions of automata pos-
sess a similar maturity towards practical applications, especially timed automata [BDL"06] and
weighted automata [KNP11].

6 Conclusion

We have presented in this paper a method to compute the sup-bound value problem on Counter
w-automata. It is based on a reduction of the configuration automaton to a finite automaton,
thanks to previous results on the boundedness of such automata. On this finite automaton, the
sup-bound value problem is translated into a generalization of the emptiness check problem,
as a single-player game with (generalized) Biichi objectives. This problem is itself solved by
enumerating accepting SCCs of the finite automaton. Such enumeration algorithms being used
for instance for w-automata emptiness checks, our approach thus builds upon methods already

13/15 Volume 72 (2015)

Computing Bounds for Counter Automata Eﬁ

tried and tested for qualitative verification. To our knowledge, it is the first time that such a
method for Counter Automata is proposed. It opens perspectives for the practical use of Counter
w-automata towards system verification.

Future works include two axis. First, the method we have presented should now be imple-
mented, in order to perform experimental evaluation. Second, we believe that there is still rooms
for optimization of the algorithms, and for heuristics that would increase performance. The set-
ting of the intermediate problem of a single-player game with Biichi objectives would be an
appropriate setting for such a study.

Bibliography

[ABK14] S. Almagor, U. Boker, O. Kupferman. Discounting in LTL. In Abrahdm and
Havelund (eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems. LNCS 8413, pp. 424-439. Springer Berlin Heidelberg, 2014.

[ADD'13] R. Alur, L. Dantoni, J. Deshmukh, M. Raghothaman, Y. Yuan. Regular Functions
and Cost Register Automata. In Logic in Computer Science (LICS), 2013 28th An-
nual IEEE/ACM Symposium on. Pp. 13-22.2013.

[AHK10] S. Almagor, Y. Hirshfeld, O. Kupferman. Promptness in @w-Regular Automata. In
Proc. 8th International Symposium on Automated Technology for Verification and
Analysis (ATVA’10). LNCS 6252, pp. 22-36. Springer, 2010.

[AHMO3] L.de Alfaro, T. Henzinger, R. Majumdar. Discounting the Future in Systems Theory.
In Baeten et al. (eds.), Automata, Languages and Programming. Lecture Notes in
Computer Science 2719, pp. 1022-1037. Springer Berlin Heidelberg, 2003.

[BCO6] M. Bojaiiczyk, T. Colcombet. Bounds in @-Regularity. In Proc. 21st Annual IEEE
Symposium on Logic in Computer Science. LICS 06, pp. 285-296. IEEE Computer
Society, Washington, DC, USA, 2006.

[BDL1T06] G.Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi, M. Hendriks.
UPPAAL 4.0. In Proc. 3rd International Conference on the Quantitative Evalua-
tion of Systems. QEST °06, pp. 125-126. IEEE Computer Society, Washington, DC,
USA, 2006.

[Col09] T. Colcombet. The theory of stabilisation monoids and regular cost functions. In
Automata, languages and programming. Pp. 139-150. Springer, 2009.

[CRB15] M. Colange, D. Racordon, D. Buchs. A CEGAR-like Approach for Cost LTL
Bounds. Technical report, CoRR, June 2015.
http://arxiv.org/abs/1506.05728

[DGO7] M. Droste, P. Gastin. Weighted Automata and Weighted Logics. Theoretical Com-
puter Science 380(1):69-86, 2007.

Proc. AVoCS 2015 14 /15

http://arxiv.org/abs/1506.05728

E

ECEASST

[DG12]

[Egg63]

[Has88]

[KB12]

[Kir05]

[KNP11]

[KPVO07]

[Kup14]

[LMP10]

[RDKP13]

[RV10]

[SEO5]

S. Demri, P. Gastin. Specification and Verification using Temporal Logics. In
D’Souza and Shankar (eds.), Modern applications of automata theory. 1ISc Re-
search Monographs 2, chapter 15, pp. 457-494. World Scientific, July 2012.

L. C. Eggan. Transition graphs and the star-height of regular events. Michigan Math.
J. 10(4):385-397, 12 1963.

K. Hashiguchi. Algorithms for determining relative star height and star height. In-
formation and Computation 78(2):124 — 169, 1988.

D. Kuperberg, M. V. Boom. On the expressive power of cost logics over infinite
words. In Automata, Languages, and Programming. Pp. 287-298. Springer, 2012.

D. Kirsten. Distance desert automata and the star height problem. RAIRO-
Theoretical Informatics and Applications 39(03):455-509, 2005.

M. Kwiatkowska, G. Norman, D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In Gopalakrishnan and Qadeer (eds.), Proc. 23rd International
Conference on Computer Aided Verification (CAV’11). LNCS 6806, pp. 585-591.
Springer, 2011.

O. Kupferman, N. Piterman, M. Vardi. From liveness to promptness. In Damm and
Hermanns (eds.), Proc. 19th International Conference on Computer Aided Verifica-
tion (CAV’07). LNCS 4590, pp. 406—419. Springer, 2007.

D. Kuperberg. Linear Temporal Logic for Regular Cost Functions. Logical Methods
in Computer Science 10(1), 2014.

F. Laroussinie, A. Meyer, E. Petonnet. Counting LTL. In Proc. 2010 17th Interna-
tional Symposium on Temporal Representation and Reasoning. TIME 10, pp. 51—
58. IEEE Computer Society, Washington, DC, USA, 2010.

E. Renault, A. Duret-Lutz, F. Kordon, D. Poitrenaud. Three SCC-based Emptiness
Checks for Generalized Biichi Automata. In McMillan et al. (eds.), Proceedings of
the 19th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’13). Lecture Notes in Computer Science 8312, pp. 668—682.
Springer, Dec. 2013.

K. Rozier, M. Vardi. LTL Satisfiability Checking. International journal on software
tools for technology transfer 12(2):123-137, 2010.

S. Schwoon, J. Esparza. A Note on On-The-Fly Verification Algorithms. In Halb-
wachs and Zuck (eds.), Proceedings of the 11th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS’05). Lecture
Notes in Computer Science 3440, pp. 174-190. Springer, Edinburgh, Scotland, UK,
Apr. 2005.

15/15

Volume 72 (2015)

	Introduction
	Counter -Automata
	-Automata
	Counter Automata

	From the bound value problem to generalized emptiness check
	Boundedness
	Reduction to a finite automaton

	SCC enumeration to find the bound
	A smaller automaton
	A note on complexity
	Improvement and optimizations

	Related Work
	Conclusion

