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Abstract: Our work aims to build a bridge between constructive (top-down) and
analytical (bottom-up) approaches to software verification. This paper presents a
tool-supported method for linking two existing verification methods: Event-B (con-
structive) and Dafny (analytical). This method combines Event-B abstraction and
refinement with the code-level verification features of Dafny. The link transforms
Event-B models to Dafny contracts by providing a framework in which Event-B
models can be implemented correctly. The paper presents a method for transforma-
tion of Event-B models of abstract data types to Dafny contracts. Also a prototype
tool implementing the transformation method is outlined. The paper also defines
and proves a formal link between property verification in Event-B and Dafny. Our
approach is illustrated with a small case study.

Keywords: Formal Methods, Hoare Logic, Program Verification, Event-B, Dafny

1 Introduction

Various formal methods communities [CW96, HMLS09, LAB+06] have suggested that no single
formal method can cover all aspects of a verification problem therefore engineering bridges be-
tween complementary verification tools to enable their effective interoperability may increase the
verification capabilities of verification tools. We distinguish two major approaches to software
correctness based on their target phases in the development cycle: the constructive approach
and the analytical approach. The constructive approach focuses on the early stages of the de-
velopment and aims at formal modelling of the intended behaviour and structure of a system
in different levels of abstraction and verifying properties of models. The analytical approach
focuses on the code level and its target is to verify properties of the final program code. A wide
range of verification tools exist to support both the approaches provided by formal methods com-
munities worldwide. A high level look at these two approaches suggests that the constructive and
analytical approaches should complement each other well. Nevertheless, our understanding and
experience of how these approaches can be combined at a large scale is very limited. This repre-
sents a wasted opportunity, as these approaches are not benefiting from each other effectively.

We have chosen Event-B [Abr10] and Dafny [Lei10] as examples of constructive and analyti-
cal approaches respectively. Event-B is a formal approach for modelling and verifying software
systems. An Event-B model is built through a number of successive refinement steps starting
from an abstract representation of the system and proceed towards a concrete level. Event-B is
supported by an open platform called Rodin [ABH+10]. Dafny is a programming language and
verifier. Given a program code and its formal specification, the Dafny tool [LW14] (which is an
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SMT-based verifier) can verify the program against its contract. In Dafny, contracts are annota-
tions within the code. Event-B in its initial form does not have any support for the final phase
of the development (implementation phase). On the other hand, Dafny has very little support
for abstraction and refinement. In this work we present a tool-supported development method
by linking two verification technologies: Rodin and Dafny. Our combined methodology is ben-
eficial for both Event-B and Dafny users. It makes the abstraction and refinement of Event-B
available for generating Dafny specifications which are correct with respect to a higher level of
abstract specification in Event-B and provides a framework in which Event-B models can be
implemented and verified in a programming language.

We provide a method for transforming Event-B models to Dafny code contracts (method pre-
and post-conditions). In this paper we use the terms code contracts and annotations interchange-
ably. Transformation of Event-B formal models to annotated Dafny method declarations is
achieved by defining a set of transformation rules. Using this set of transformation rules, one
can generate code contracts from Event-B models but not implementations. The generated code
contracts must be seen as an interface that can be implemented. The implementation can be ver-
ified later against the generated annotations using an automatic verifier to prove the correctness
of the implementation with regards to the high level Event-B specification. We also developed
a tool that is based on these translation rules for generating Dafny code contracts from Event-B
models. The transformation rules are validated by being applied to a number of case studies
including a map, a queue, and a stack abstract data types. This paper extends our previous short
paper [DBR15] by providing full details of our transformation method and its proof of correct-
ness.

The organisation of the rest of the paper is as follows: in Section 2, background information
on Event-B and Dafny is given. Section 3 and Section 4 explain the methodology, transformation
rules, and the formal basis of our work. A small example of transformation of Event-B models to
Dafny contracts is presented in Section 5. Section 6 provides an overview to the tool support for
our method. In Section 7 related and future works are discussed and finally Section 8 contains
the conclusions.

2 Background

2.1 Event-B

Event-B is a formal modelling language for system level modelling based on set theory and
predicate logic for specifying, modelling and reasoning about systems, introduced by Abrial
[Abr10]. Modelling in Event-B is facilitated by an extensible platform called Rodin [ABH+10].
A model in Event-B consists of two main parts: contexts and machines. The static part(types
and constants) of a model is placed in a context and is specified using carrier sets, constants and
axioms. The dynamic part (variables and events) is specified in a machine by means of variables,
invariants and events. An event models the state change in the system. Each event may have a
number of assignments called actions. Each event may also have a number of guards. Guards are
predicates that describe the necessary conditions which should be true before an event can occur.
An event may have a number of parameters. Event parameters are considered to be local to the
event. Figure 1 illustrates machine m0 with two events Add and Remove. KEYS and VALUES
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are carrier sets in context c0 which is not shown here.

 

Machine m0 Sees c0 

Variables map 

Invariants map ∈KEYS ⇸VALUES 

Initialisation map ≔∅ 

Event Add 

 any k,v 

 where  

   grd1: k ∈KEYS 

   grd2: v ∈VALUES 

then 

   act1: map(k) ≔ v 

Event Remove 

any k 

where  

   grd1: k ∈dom(map) 

then 

  act1: map ≔{k}⩤map 

 

Figure 1: Machine m0: the Most Abstract Level of Map ADT Model

Modelling a complex system in Event-B can largely benefit from refinement. Refinement is a
stepwise process of building a large system starting from an abstract level and proceeds towards
a more concrete level by a series of successive steps in which new details of functionality are
added to the model in each step [But13]. The abstract level represents key features and the main
purpose of the system. It is essential to prove the correctness of refinement steps in Event-B.
Refinement of a model may consist of refining existing events, adding new events, and adding
new variables and invariants. The new events must not diverge. This means that they should not
run for ever. Each refinement may involve introducing new variables to the model. This usually
results in extending abstract events or adding new events to the model. It is also possible to
replace abstract variables by newly defined concrete variables. Concrete variables are connected
to abstract variables through gluing invariants. A gluing invariant associates the state of the
concrete machine with that of its abstraction. All invariants of a concrete model including gluing
invariants should be preserved by all events. All abstract events may be refined by one or more
concrete events.

The built-in mathematical language of the Rodin platform is limited to basic types and con-
structs like integers, boolean, relations and so on. The Theory Plug-in [BM13] has been devel-
oped to make the core language extension possible. A theory, which is a new kind of Event-B
component, can be defined independently from a particular model and it is the means by which
the mathematical language and mechanical provers may be extended.

2.2 Dafny

Dafny [Lei10] is an imperative sequential programming language. A program in Dafny usually
contains two parts, namely implementation and specification. Dafny supports generic classes
with some basic features such as method definitions, dynamic allocation, and inductive types for
implementation. A method in Dafny is a piece of imperative, executable code. The verification
power of Dafny originates from its specification constructs. A program behaviour can be speci-
fied in Dafny using constructs such as methods’ pre- and post-conditions, framing constructs and
termination metrics. The specification language also offers updatable ghost variables, recursive
functions, sets, sequences and some other features. The Dafny verifier which is based on an
SMT-solver called Z3 [DB08] uses specification to verify the implementation.

As mentioned above Dafny specification supports functions. A function has a very similar
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concept to mathematical functions and cannot write to memory and is defined by an expression.
Functions are required to have only one unnamed return value. A special form of function which
returns a boolean value is called predicate. Dafny uses the ensures keyword for post-condition
declarations. A post-condition is always a boolean expression. Each method can have more
than one post-condition which can be either joined with boolean and (&&) operator or defined
separately using the ensures keyword. To declare a pre-condition the requires keyword is
used. Like post-conditions, multiple pre-conditions are allowed in the same style. Pre- and post-
conditions are placed after method declarations and before method bodies. Dafny does not have
any specific construct for specifying class invariants. A work around is to place all class-level
invariants in a predicate and then include this predicate in the pre- and post-conditions of all the
class methods. In this we enforce the verifier to check if each method preserves all invariants.

3 Transforming Event-B Machines to Dafny Classes

Event-B supports a richer mathematical language than Dafny. For this reason, before an Event-B
model is transformed to Dafny contracts, it must be refined to a level where the data types and
operators have a Dafny counterpart. For example, relations do not have any Dafny counterpart
so they are refined to a more concrete data structure (e.g. sequences) before transformation takes
place. This is essential for reducing the syntactic gap between Event-B and Dafny. When the
aforementioned point in the refinement process is reached then a machine and its elements (e.g.
variables, invariants,...) are translated to a Dafny class. The translation of variables, generic
types, and invariants is almost one-to-one. Transformation of events to method contracts is
discussed in the next section. Generic types in an Event-B model, as mentioned earlier, are
defined using carrier sets in a context. In Dafny, generics are declared in angle brackets after the
name of a class. The following example shows how generic types are defined in Dafny:

class class name <T1, T2,...,Tn>{ ...class body...}

When a machine is translated to a Dafny class, all carrier sets which are defined in the context
that is seen by that machine are translated as Dafny generics. Note that it is assumed at the
moment that the context of the model only contains carrier sets. In an Event-B model variables
are declared in the variables part of a machine and their types are specified using typing invariants
which are defined separately in the invariants part of the machine. All machine’s variables are
translated as class variables in Dafny. Event-B invariants can be categorised as follows:

• Typing invariants that declare the types of a variable.

• Model invariants that express the properties of a model.

• Gluing invariants that relate the concrete variables to abstract variables.

As explained earlier, typing invariants are used for variable declarations. Preservation of typing
invariants are checked implicitly by the Dafny type system. Gluing invariants are not translated
to Dafny because at the moment we assume that the machine that is being translated is a data
refinement of the abstract machine and none of the abstract variables are present in the refined
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machine. Preservation of gluing invariants must be proved in Event-B. Only model invariants
are translated to Dafny. The conjunction of all model invariants are placed in a Dafny predicate
called Invariants(). It is explained later how the predicate Invariants() is used in pre-condition
generation.

4 Transforming Events to Annotated Method Declarations

In the previous section we discussed how the declaration elements of an Event-B machine should
be translated to Dafny class members. In this section we present the way in which machine events
are transformed to annotated Dafny method declarations.

4.1 Constructor Statement

Machine events are translated to Dafny methods. In Event-B, each event has three main parts:
parameters, guards, and actions. Parameters may have different implicit roles (e.g. input or
output) in an event. During the translation process, the role of each parameter must be made
explicit by the modeller. There might be cases where the modeller decides to merge several
events to form a single Dafny method. This is because the Event-B style is to represent different
cases of some conceptual operation as separate events. Events that are going to be merged
together and the target Dafny method should also be made explicit by the modeller. To cater
for this we have have extended the underlying representation of Event-B machines with a new
element called constructor statement. Constructor statements are used to make the parameters’
roles and the merging events explicit. A constructor statement has the following form:

method mtd name(in1, in2,...) returns (out1, out2,...) {Evt1, Evt2,...}

Each constructor statement has four parts: name of the target method (mtd name), a comma
separated list of the method’s input arguments (in1, in2,...), a comma separated list of the method’s
output arguments (out1, out2,...) and a comma separated list of events placed between braces
(Evt1, Evt2,...). A constructor statement may or may not have input and/or output arguments.

4.2 Method Contract Generation

As mentioned before, to transform a group of events to a single method contract, constructor
statements are used. Because Dafny uses Hoare logic [Hoa69] as the basis for verification, each
defined constructor statement gives rise to generation of a Hoare triple. Pre- and post-conditions
of each Hoare-triple are generated from listed Event-B events in the constructor statement. Each
generated Hoare triple then is translated to Dafny method contracts. Any implementation that
satisfies the generated contracts would be considered as a correct implementation of the Event-B
model.

Assume there is a model with n events, a set of variables v, invariants I(v) and a constructor
statement as follows:

Evt1 , any x1 where P1(x1,v) then v := E1(x1,v) end

5 / 15 Volume 72 (2015)



Transforming Event-B Models to Dafny Contracts

...
Evtn , any xn where Pn(xn,v) then v := En(xn,v) end

method EVT(x) returns(y) {Evt1, ...,Evtn} (1)

As mentioned earlier, one of the purposes of having a constructor statement is to assign a
role to each event parameter. For the purpose of generating contracts, event parameters can be
categorised with regards to the constructor statement that the event is listed in as follows:
• Input parameter (x): the parameter has input behaviour (receives a value from the envi-

ronment of the machine) and is listed as an input parameter in the constructor statement

• Output parameter (y): the parameter has output behaviour (returns a value to the envi-
ronment of the machine) and is listed as an output parameter in the constructor statement

• Internal parameter (z): the parameter is a local variable to the event and is not listed as
input/output parameter in the constructor statement

All input and output parameters that are listed in a constructor statement must exist in all
listed events. They are used as a method’s input or return arguments. Parameters that are not
listed in the constructor statement are treated as internal parameters. Internal parameters are
local variables to events. It is explained later how internal parameters are dealt with. Events
Evt1...Evtn can be represented based on constructor statement 1 as follows:

Evt1 , any x,y, z1 where P1(x,y, z1,v) then v := E1(x,y, z1,v) end
...

Evtn , any x,y, zn where Pn(x,y, zn,v) then v := En(x,y, zn,v) end

In the above events, the union of x, y, and z is equal to the set of all parameters of the respective
event.

A number of pre-conditions may be defined for each method in Dafny to specify the conditions
which must be true before a method is called. Pre-conditions are generated from invariants and
some of the event guards. As was mentioned previously, conjunction of all model invariants are
translated to a Dafny predicate. This predicate should be a pre-condition for all generated Dafny
methods. The reason for this is that from the Event-B model, it is expected that invariants are
true before execution of each event therefore it can be expected that invariants are true before
execution of each method as well.

Event guards are used in both pre- and post-conditions depending on the role that they play in
the event. Guards of each listed event in a constructor statement can be categorised as follows:

• Typing guard (GT): a guard that declares the type of an event’s input or output parameters

• Method guard (GP): a guard that is being shared between all listed events in a constructor
statement and only refers to input parameter and variables and not to output or internal
parameters and is not a typing guard

• Output guard (GO): a guard that determines the value of an output parameter
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• Internal guard (GI): a guard that refers to internal parameters and is not an output guard

• Case guards (GC): a guard that makes the enabling condition of its respective listed event
distinct from other listed events and only refers to input parameters and machine variables

Each guard can only fall into one of the above categories. For generating pre-conditions from
event guards we only consider method guards. If there is only one listed event then there would
not be any case guards. With regards to the above categorisation, listed events in constructor
statement 1 can be represented as follows:

Evt1 , Evtn ,
any x, y, z1 any x, y, zn
where where

GT(x) GT(x)
GT(y) GT(y)
GP(x, v) GP(x, v)
GC1(x, v) . . . GCn(x, v)
GI1(x, z1, v) GIn(x, zn, v)
GO1(x, y, z1, v) GOn(x, y, zn, v)

then then
v := E1(x, y, z1, v) v := En(x, y, zn, v)

end end

To form method pre-conditions based on a constructor statement, model invariants (I), method
guards (GP), and typing guards (GT) of input parameters are used. From Event-B model we ex-
pect that all invariants are true before execution of each event hence invariants are pre-conditions
of the method. Method guards are conditions that are shared by all listed events and they must
hold before execution of each of the listed events thus method guards are also pre-conditions of
the method. Typing guards of input parameters are also a pre-condition of the method to guaran-
tee that the input value is a valid one. Based on this, the following predicate is the pre-condition
for the method that is generated based on the given constructor statement (1):

I(v)∧GT (x)∧GP(x,v) (2)

For generating post-conditions from events we use case guards, internal guards, output guards
and before-after predicates of event actions. A before-after predicate denotes the relation that
exists between the value of a variable just before and just after the execution of an action. As
mentioned before, a case guard makes the enabling condition of its respective listed event distinct
from the other listed events. Case guards are used to determine which case is enabled at each
time and therefore what is the expected outcome of the method. Internal parameters are used
to determine the outcome of an event. An output parameter is treated as a free variable whose
value is determined by the body of the method in Dafny. The value of an output parameter in
Event-B is determined by output guards. Before-after predicate of actions specify the value of
variables after the execution of an event. Due to this, internal guards, output guards and before-
after predicates of each listed event are used to form post-conditions of the method. Therefore,
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each listed event in constructor statement 1 gives rise to generation of a predicate as follows
where i∈1..n:

GCi(x,v) =⇒ GT (y)∧ (∃zi.GIi(x,zi,v)∧GOi(x,y,zi,v)∧ v′= E i(x,y,zi,v)) (3)

By convention, all primed variables appearing in a before-after predicate refer to the value of the
variables after execution of an event and all unprimed variables refer to the value of the variable
before the execution. It was discussed before that input and output parameters are treated as
constants and free variables, respectively. To determine the value of internal parameters we
existentially quantify over them. As mentioned before, if there exists only one listed event in a
constructor statement then there is no case guard. In this case, only one post-condition will be
generated in the following form:

GT out ∧ (∃ z . GI ∧ GO ∧ v′= E) (4)

Given the constructor statement 1, the following Hoare triple is generated:

{
I∧GT in ∧ GP

}
impl

{
GT out ∧ ((GC1 =⇒ (∃z1.GI1∧GO1∧ v′= E1))

∧·· ·∧ (GCn =⇒ (∃zi.GIn∧GOn∧ v′= En)))
}

(5)

where impl is a placeholder for the (yet to be constructed) correct implementation of the
method. The above Hoare triple can be translated to annotations of a Dafny method which is
generated based on constructor statement 1:

method Evt (x : T) returns(y : R)
requires Invariants()
requires GP
ensures GC1 ==> ∃ z1 :: GI1 && GO1 && v == E1
...
ensures GCn ==> ∃ zn :: GIn && GOn && v == En

Note that all non-typing and non-gluing invariants are translated to Invariants predicate in Dafny.
Preservation of typing invariants and guards are checked by the Dafny type system, hence, they
are implicitly part of the translated annotations. T and R in the above method declaration are the
type of input and output parameters and are determined by typing guards.

4.3 New Proof Obligations

To ensure that the translation is sound and the generated code contracts are implementable a
number of proof obligations should be discharged. These proof obligations are discussed in this
subsection.
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4.3.1 Internal and Output Parameter Feasibility

We should make sure that the specification of an internal or an output parameter is feasible by
showing that there exists a value that satisfies internal and output guards:

I, GT, GP, GCi ` ∃y,zi. GIi ∧ GO

We split the above sequent to have two separate proof obligations for internal parameter fea-
sibility and output feasibility. For internal parameter feasibility, if there are n listed events in a
constructor statement and I is the conjunction of typing and model invariants and GCi and GIi

where i ∈ 1..n are the conjunction of case guards and the conjunction of internal guards of ith
listed event respectively, then we can generate n proof obligations with the following form:

I, GT, GP, GCi ` ∃zi.GIi

Similar to internal parameter feasibility proof obligation, if there are n listed events in a con-
structor statement and I is the conjunction of typing and model invariants and GCi, GIi and GOi

where i ∈ 1..n are the conjunction of the case guards, the conjunction of the internal guards and
the conjunction of the output guards of ith listed event respectively, then we can generate n proof
obligations with the following form:

I, GT, GP, GCi, GIi ` ∃y.GOi

4.3.2 Disjointness

As explained in previous sections on generating post-conditions, if there is more than one listed
event in a constructor statement then for each listed event (case) a predicate that specifies the
behaviour of that event is generated and the conjunction of all the generated predicates would
form the post-condition of the generated method. If there are situations where more than one of
the cases are available then the generated Dafny specification would not be implementable. To
avoid this, the specifier must make sure that case guards of all listed events are disjoint.

In principle, we could deal with non-disjoint events. But that would mean that the post-
conditions corresponding to the separate events would need to be combined through disjunction.
For pragmatic reasons we prefer to generate a separate Dafny post-condition for each listed
event in an constructor statement. Since separate post-conditions are implicitly conjoined, the
case guards need to be disjoint. This means that we remove any non-determinism arising from
overlapping event guards prior to translation to Dafny contracts.

To prove the disjointness of the case guards a number of proof obligations must be discharged.
If there are n events listed in the constructor statement and I is the conjunction of typing and
model invariants and GCi where i ∈ 1..n is the conjunction of all case guards of ith event then n
sequent can be generated with the following form:

I, GT, GP, GCi ` ¬GC1∧ ... ∧ ¬GCi-1 ∧ ¬GCi+1 ∧ ... ∧ ¬GCn

The number of proof obligations can be reduced by simplifying the above sequent:

I, GT, GP, GCi ` ¬GCi+1 ∧ ... ∧ ¬GCn
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4.3.3 Completeness

As explained in previous sections, when there is more than one event listed in a constructor
statement, case guards are one of the forming components of each generated post-condition.
There might be situations in which the generated post-conditions do not specify the intended
behaviour of the method for all possible values specified by the method’s pre-conditions. This
problem can be referred to as an incompleteness issue i.e. the specification is not complete. If
there are n events listed in the constructor statement and I is the conjunction of typing and model
invariants and GCi where i ∈ 1..n is the conjunction of all case guards of ith event and GP is the
conjunction of method guards, to avoid incompleteness issue, the following sequent should be
proved:

I, GT, GP ` GC1 ∨ ... ∨ GCn

Completeness is a desirable but not a must-have property and can be ignored by the modeller. If
a method is executed in a state that satisfies the pre-condition but is not covered by any of the
cases (i.e., all post-conditions are trivially satisfied), then any outcome for the method is allowed.

4.4 Invariant Preservation Proof

The validity of our transformation scheme is based on the fact that invariants of the Event-B
model are also invariants of any Dafny implementation that satisfies the generated contract. Here
we outline the proof of this for the case where a method contract is defined by one event. The
proof easily generalises to multiple events as the cases are separate.

Assume we have a model M with variable v and invariant I(v) and event Evt:

Evt , any x where P(x,v) then v := E(x,v) end

Consider a method specified from an Event-B machine as follows:

method Evt(x) returns() {Evt}

The following Hoare triple characterises the correctness of the implementation of the contract
generated from this method specification:{

I(v)∧P(x,v)
}

impl
{

v = E(x,old(v))
}

(6)

where old(v) refers to the value of variable v before execution of impl. We have the following
rule with regards to the operator old [PM99]:

{P(v)}C {>}
{P(v)}C {P(old(v))}

(7)

This rule says that if the pre-conditions of the triple hold for the value of the variable v before the
execution, then they still hold for the old value of the variable v after the execution. By applying
these new rules to Hoare triple 6, it can be rewritten as follows:{

I(v)∧P(x,v)
}

impl
{

I(old(v))∧P(x,old(v))∧ v = E(x,old(v))
}

(8)
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The invariant preservation proof within Event-B guarantees the following:

I(old(v))∧P(x,old(v))∧ v = E(x,old(v)) =⇒ I(v) (9)

Finally, based on 8 and 9, we have that impl preserves the invariants:{
I(v)∧P(x,v)

}
impl

{
I(v)

}
(10)

5 Example: Map Abstract Data Type

Our method and tool for transforming Event-B models to Dafny code contracts have been vali-
dated through a number of case studies including a map, a stack, and a queue abstract data type.
Due to space limitation, we only present the map ADT case study in this paper.

A map (also called associative array) is an abstract data type which associates a collection of
unique keys to a collection of values. The abstract level of the map which is shown Figure 1
is modelled as a partial function which links a key to a value. Types KEYS and VALUES are
defined in the context as sets. The variable map is the only variable in this level and initialised
with empty.

The abstract model (machine m0) is refined by machine m1 (Figure 2). Event Add is refined
by two events Add1 and Add2 to deal with two different cases. Event Add1 will prepend a new
key k to the sequence keys and value v to the sequence values . Event Add2 modifies the value
associated with an existing key k, in sequence of values. Event Remove is refined in this level
to be able to remove an existing key k and its associated value from both the sequences. Now,
machine m1 has only those Event-B constructs that have a Dafny counterpart, hence it can be
transformed to Dafny contracts. To do this, two constructor statements are provided:

method Add(k, v) returns () {Add1, Add2}
method Remove(k) returns () {Remove}

Given the above constructor statements and the presented transformation approach in Section
4, the following method contracts are generated:

method Add (k : KEYS, v: VALUES) returns()
requires Invariants()
ensures k !in keys ==> keys == [k] + old(keys) && values == [v] + old(values)
ensures k in keys ==> ∃ i :: i in (set k0| 0<=k0 && k0<=|old(keys)| - 1)

&& old(keys)[i] == k
&& values == old(values)[i:=v] && keys == old(keys)

method Remove (k : KEYS) returns()
requires Invariants()
requires k in keys
ensures ∃ i :: i in (set k0| 0<=k0 && k0<=|old(keys)| - 1)

&& old(keys)[i] == k && keys == old(keys)[..i] + old(keys)[i + 1..]
&& values == old(values)[..i] + old(values)[i + 1..]
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Machine m1 Refines m0 Sees c0 

Variables keys, values 

Invariants  
  inv1: keys אseq(KEYS) 

  inv2: values אseq(VALUES) 

  inv3: seqSize(keys) = seqSize(values) 

  inv4: ∀i,j· i0א‥seqSize(keys)−1 ∧ j0א‥seqSize(keys)−1 ∧ i≠j ⇒ keys(i)≠keys(j) 

  g_inv1:  map={i·i0א‥seqSize(keys)−1∣keys(i)↦values(i)} 

Initialisation keys ≔∅, values ≔∅ 

Event Add1 refines Add 

 any k,v 

 where  
   grd1: k אKEYS 

   grd2: v אVALUES 

   grd3: kבran(keys) 

then 

   act1: keys≔seqPrepend(keys,k) 

   act2: values≔seqPrepend(values,v) 

Event Add2 refines Add 

any k,v,i 

where  
   grd1: k אKEYS 

   grd2: v אVALUES 

   grd3: k אran(keys) 

   grd4: i0א‥seqSize(keys)−1 

   grd5: seqElemAccess(keys,i)=k 

then 

  act1: values≔seqElemUpdate(values,i,v) 

Event Remove refines Remove 

 any k,i 

 where  

   grd1: k אKEYS 

   grd2: i0א‥seqSize(keys)−1 

   grd3: seqElemAccess(keys,i)=k 

then 

   act1: keys ≔ seqSliceToN(keys,i) seqConcat seqSliceFromN(keys,i+1) 

   act2: values ≔ seqSliceToN(values,i)  seqConcat seqSliceFromN(values,i+1) 

Figure 2: Machine m1: Refinement of Abstract Model of Map

We have constructed Dafny implementations of the methods by hand and used the Dafny verifier
to verify these against the generated contracts.

When the abstract model of the map is refined, the correctness of the refined event Add2 can
be proved without guard grd3. After the introduction of the method Add constructor statement, a
number of proof obligations are generated. As discussed in 4.3, one of the proof obligations that
should be discharged before the transformation takes place is the internal parameter feasibility
PO. Internal parameter feasibility for event Add2 without grd3 has the following form:

I(v), k∈KEYS ∧ v∈VALUES
`
∃ i. i∈0..seqSize(keys)-1 ∧ seqElemAccess(keys,i) = k

I(v) denotes the model invariants. This proof obligation is not provable. A counter-example for
this PO is a key that is not already in the sequence of the keys. To be able to prove this PO, grd3
should be introduced. The new PO is as follows and can be discharged trivially:

I(v), k∈KEYS ∧ v∈VALUES, k∈ran(keys)
`
∃i. i∈0..seqSize(keys)-1 ∧ seqElemAccess(keys,i) = k
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6 Tool Support

A Rodin plug-in has been developed to facilitate the automatic transformation of Event-B mod-
els to annotated Dafny method declarations. The plug-in extends Event-B with a new machine
element for storing constructor statements. Whenever a new constructor statement is added to a
machine, the plug-in will generate a number of new proof obligations based on the constructor
statement (See 4.3). After discharging all PO’s in Rodin the user can invoke the contract genera-
tor to generate a Dafny class including variable declarations, predicate Invariants and annotated
Dafny method declarations. The tool has been validated by being applied to a number of small
case studies.

7 Related and Future Work

As far as we are aware no attempt has been made to generate annotated Dafny programs from
Event-B models. However, there are a number of research on linking abstract development to
verified implementation in the literature. For example, Sennett in [Sen92] presents a notation
to demonstrate how a program written in Ada satisfies a specification written in Z, Hamie in
[Ham04] explains an approach for translating OCL to JML-specified Java code and Nielsen and
et al. in [NLL12] discuss the combination of VDM with executable code.

EventB2Dafny [CLR12] is a Rodin plug-in for translating Event-B proof obligations to Dafny
code to use Dafny verifier as an external theorem prover for proving Event-B proof obligations.
A Rodin plug-in called EventB2JML [RC14] has been developed to translate Event-B models to
Java JML-specified code. EventB2JML implement Event-B models by producing a Java thread
implementation for each event and does not impose any control flow on events. Also at the code
level invariants need to be verified again using an static verifier. Mery and Monahan in [But09]
proposed a transformation technique from an Event-B specification to an executable algorithm.
In their approach the specification of the algorithm is provided at the start of the development
in form of Spec# [BLS05] pre- and post-conditions and the algorithm is modelled in Event-B
with regards to those code contracts. At the end the generated code from the Event-B model is
verified against the code contracts in Spec#. Tasking Event-B [EB11] is a code generator that
generates code from Event-B models to a target language but it does not support verification of
the generated code.

Our current transformation rules allow us only to transform Event-B models of abstract data
types to Dafny contracts. In the future we want to be able to transform Event-B model of more
complex algorithms to Dafny contracts. One possible way is to use Event Refinement Structure
(ERS) [FBR14]. By using ERS we will be able to impose algorithmic structures at Event-B level.
This will ease the contract generation for more complex structures like loops.

8 Conclusion

We have presented a tool supported method for transforming Event-B models to Dafny code
contracts. Using this method, Dafny users will enjoy the abstraction and refinement power of
Event-B for building specifications that are correct with regards to an abstract specification.

13 / 15 Volume 72 (2015)



Transforming Event-B Models to Dafny Contracts

This approach provides a framework in which Event-B models can be implemented correctly
in a sequential programming language. Our method also provides a way for merging Event-B
events in order to generate contracts for a single method which implements different cases. We
have also proved that if generated contracts are satisfied by an implementation in Dafny then
it also satisfies the invariants of the abstract model and there is no need to reprove invariant
preservation in the Dafny level. A tool in the form of a Rodin plug-in has been developed in
order to implement the link. Given a machine and a number of constructor statements, the tool
automatically generates relevant code contracts. A number of extra proof obligations (discussed
in 4.3) should be discharged in order to guarantee the soundness of the generated contracts.

Acknowledgements: This work was funded in part by a Microsoft Research 2014 Software
Engineering Innovation Foundation Award.
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