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Abstract:

Program verification tools use verification condition generators to produce logical
formulas whose validity implies that the program is correct with respect to its speci-
fication. Different tools produce different conditions, and the underlying algorithms
have not been properly exposed or explored so far. In this paper we consider a sim-
ple imperative programming language, extended with assume and assert statements,
to present different ways of generating verification conditions. We study the ap-
proaches with experimental results originated by verification conditions generated
from the intermediate representation of LLVM.

Keywords: software verification, LLVM, bounded verification, single-assignment

1 Introduction

Formal verification of programs is an approach to achieve required reliability levels of software-
intensive systems. Given a correctness criterion, expressed as a set of assertions, we generate
a formula in a suitable logic that encodes all potential execution paths together with the asser-
tions (cf. [AFPS11]). Such a formula, known as a verification condition (VC), is then sent to a
proof tool. If the proof succeeds, then we can conclude that the program under analysis satisfies
the given correctness criterion. If it does not succeed, we hopefully extract as much information
as possible to debug the program and/or the specification.

In the early days the reasoning methods relied on manual proof (cf. [LSS87]). Introducing
some automation then became one of the major topics in the subject matter [FLL+02]. With the
advancement of Boolean satisfiability (SAT) methods [MMZ+01] and the successful introduc-
tion of bounded model checking (BMC) [CKY03], program verification methods also adopted
the SAT [CKL04] and the satisfiability modulo theories (SMT) [DM06] approaches to auto-
mated proof. If the VC refers to a formula in a decidable sub-fragment of a first-order theory, it
is automatically discharged.

Whether with manual or with automatic proofs, the VC encoding is crucial for the efficiency
and precision of the program verification method. Precision here refers to how much detailed
information is obtained for debugging if the VC is not satisfied. Indeed, many different methods
for generating VCs are used by existing program verification tools [CKL04, AMP08, MFS12,
BCD+06, FP13]. In spite of this large diversity, systematic analyses of such VCs are lacking so
far. Users may experience that a certain tool, adapting a certain encoding of VCs, is efficient for
particular classes of programs, but not so well suited to other types of programs.
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We have developed a tool infrastructure for systematic analyses of various VCs. Although the
algorithm employed to generate VCs is different for each method, many components in the tool
are common, such as the parser, the intermediate representation, and the interface to the backend
solver. The algorithm to generate different VCs can be plugged into the framework. Since we
can focus on a specific generation algorithm, comparing VCs can be transparent. We used the
LLVM compiler infrastructure [LA04] as host, and developed our framework on top of it.

The first contribution of this paper is the presentation of different algorithms that generate
VCs using different methods. Although the algorithms are standard in software verification, as
far as we know, they have never been systematically presented – they are normally formalized
using different notations and formalisms, or they are not formalized at all. With a common
formalization we can highlight the differences on the generated VCs and reason about them.

This paper also reports empirical results from a study we have conducted with several VC
generation algorithms implemented in our framework. The study reinforces the impression,
from our use of various program verification tools mentioned above, that the choice of a method
is not irrelevant. Furthermore, our study shows that choosing the most efficient VCs is not an
easy task – no algorithm is better than the others in most situations – and that using proved assert
statements as lemmas can improve solving time significantly.

This paper is organized as follows: Section 2 reviews the background. Section 3 describes sev-
eral algorithms to generate VCs. In Section 4 after presenting the VCs comparison framework,
we present our empirical results. Section 5 concludes the paper.

2 Background

Program verification tools are generally divided into two main categories: deductive verification
tools [BCD+06, FP13] and model checking tools [JM09] (a third important category of tools
is that of abstract interpretation-based program analyzers, which fall outside the scope of our
paper since they are not based on VC generation). While the former allows for a rich and ex-
pressive system of annotations through the use of first-order logic, the latter only allows simple
quantifier-free properties to be used. In deductive verification, specifications are normally given
as contracts (such as preconditions and postconditions of subprograms), as well as loop invari-
ants, which are in general very difficult to generate automatically in a way that allows correctness
to be proved. Although loop invariants are mandatory for the verification to proceed, in general
user intervention is required in order to find them. In model checking, the verification process can
proceed in a fully automatic way by automatically inserting properties (namely safety checks,
such as overflow, division by zero, array out-of-bounds checks, etc.), or else, by inserting simple
properties through the use of assume and assert statements. An assume statement is used to
indicate that a property should be considered to hold at a given point of the program, and assert
statements are used to check if a property is true at a given location.

The price to pay for automation in model checking is the lack of scalability due to state-
space explosion [JM09]. To address this problem, two different approaches have been proposed
along the years, which increase scalability either by sacrificing completeness (possibly report-
ing false alarms) in the case of abstraction techniques [JM09], or else by sacrificing sound-
ness (considering only bounded executions) in the case of bounded model checking of soft-
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assume ( n >= 0 ) ;
pp := 0 ; p := 1 ; i := 2 ;
i f ( n == 0) r := pp e l s e r := p ;
w h i l e ( i <= n ){ a s s e r t ( pp <= p ) ;

r := p + pp ;
pp := p ;
p := r ;
i := i + 1 ;

}

assume ( n0 >= 0 ) ;
pp0 := 0 ; p0 := 1 ; i 0 := 2 ;
i f ( n0 == 0) r 1 := pp0 e l s e r 2 := p0 ;
r 3 := ( n0 == 0 ) ? r 1 : r 2 ;
i f ( i 0 <= n0 ){ a s s e r t ( pp0 <= p0 ) ;

r 4 := p0 + pp0 ;
pp1 := p0 ;
p1 := r 4 ;
i 1 := i 0 + 1 ;
assume ( ! ( i 1 <= n0 ) ) ; }

r 5 := ( i 0 <= n0 ) ? r 4 : r 3 ;
pp2 := ( i 0 <= n0 ) ? pp1 : pp0 ;
p2 := ( i 0 <= n0 ) ? p1 : p0 ;
i 2 := ( i 0 <= n0 ) ? i 1 : i 0 ;

Figure 1: Fibonacci function (left) and its conversion to SSA after unwinding loop once (right)

ware [CKL04, AMP08, MFS12]. The latter technique generates potentially very large VCs,
since it is based on loop unfolding, and for this reason the choice of a VC generation method
may be particularly relevant.

In spite of the fundamental differences between deductive verification and BMC, the tech-
niques also share many similarities. In both cases, state-of-the-art tools rely on the conversion
of standard programs to an intermediate single-assignment form, from which a specific algo-
rithm, called a verification condition generator (VCGen), generates VCs in the form of logical
formulas. These VCs must then be discharged, that is, they must be sent to a solver for validity
checking. If they are valid, the program is correct with respect to its specification.

In this paper, we will focus on single-assignment programs with no loops. Note, however, that
we are not limiting our approach – programs with loops can be transformed into programs free of
loops that can be verified instead of the original. In BMC tools (e.g. CBMC [CKL04]), loops are
unwound k times (where k is given by the user or fixed/inferred by the tool) and an assume state-
ment is inserted to ignore executions requiring further iterations. An alternative that generates
sound VCs as opposed to BMC, is described in [BL05] and implemented in Boogie [BCD+06].
Loops are replaced by a series of statements that simulates an arbitrary iteration of the loop.
Here, loop invariants are required to restrict the verification to feasible iterations. In this paper
we will focus exclusively on the BMC approach, because it generates larger VCs, resulting in
more interesting formulas for our evaluation.

The basic principle of single-assignment (SA) forms is that once a variable has been used,
it cannot be assigned. The most popular SA form, Static Single-Assignment (SSA) [CFR+91],
has been part of compiler pipelines for decades, and more recently it has been used in software
verification tools. In this form each variable in a program can be assigned at most once. To
synchronize variables assigned in branching blocks, Phi-functions (often replaced by conditional
expressions) are used to capture the correct values at the merging point. An alternative approach,
known as Dynamic Single-Assignment (DSA) form (e.g. [BL05, CFP12]), allows variables to be
assigned more than once, as long as it is in different execution paths.

The example shown in Figure 1 (left) calculates the n-th Fibonacci number. On the right we
show the result of unwinding the loop once and converting it to SSA form, following the BMC
approach. The first assume statement is used as a precondition to specify that the verification
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VCse : Γ
∗×Comm→ Γ

∗×Γ
∗

VCse(Φ,skip) = (Φ, /0)

VCse(Φ,x := e) = ({φ ∧ x = e | φ ∈Φ}, /0)

VCse(Φ,assumeθ) = ({φ ∧θ | φ ∈Φ}, /0)

VCse(Φ,S1 ; S2) = (Φ2,V1 ∪V2)

where (Φ1,V1) = VCse(Φ,S1)

(Φ2,V2) = VCse(Φ1,S2)

VCse(Φ, if b then St else S f ) = (Φt ∪Φ
f ,V t ∪V f )

where (Φt ,V t) = VCse({φ ∧b | φ ∈Φ},St)

(Φ f ,V f ) = VCse({φ ∧¬b | φ ∈Φ},S f )

VCse(Φ,assertθ) = (Φ,{φ → θ | φ ∈Φ})

VCsp : Γ×Comm→ Γ×Γ
∗

VCsp(φ ,skip) = (>, /0)

VCsp(φ ,x := e) = (x = e, /0)

VCsp(φ ,assumeθ) = (θ , /0)

VCsp(φ ,S1 ; S2) = (F1 ∧F2,V1 ∪V2)

where (F1,V1) = VCsp(φ ,S1)

(F2,V2) = VCsp(φ ∧F1,S2)

VCsp(φ , if b then St else S f ) = ((b∧F t)∨ (¬b∧F f ),V t ∪V f )

where (F t ,V t) = VCsp(φ ∧b,St)

(F f ,V f ) = VCsp(φ ∧¬b,S f )

VCsp(φ ,assertθ) = (>,{φ → θ})

Figure 2: SE (left) and SP (right) auxiliary functions

procedure should only consider executions where n is greater than or equal to 0 (to perform
modular verification, the same property must be checked with an assert statement at each calling
point). The assert statement is used to check a basic property that in the recurrence relation of
the Fibonacci sequence corresponds to Fn−2 ≤ Fn−1. The second assume statement is introduced
when the loop is unwound; its role is to cause executions requiring more iterations to be ignored.

3 Verification Condition Generators

This section presents different VCGens for SA programs whose loops and function calls have
been previously removed as explained in the previous section. The presented VCGens are sound
and can be used interchangeably. We will be considering an elementary SA language of branch-
ing programs with integer type expressions, whose commands are as follows:

Comm 3C ::= skip | assumeθ |C ; C | x := e | if b then C else C | assertθ

with x ranging over a set of SA variables, e over integer expressions, and b and θ over Boolean
expressions (θ may range instead over some richer assertion language, for instance in the context
of deductive verification). We do not fix the language of integer and Boolean expressions, but we
do restrict it to be a language that can be encoded in the chosen backend solver. The VCGens will
take as input a command C ∈Comm, and will return a set of VCs in the form of logical formulas
(in what follows we denote those as Γ) whose validity implies that the program is correct. The
program in Figure 1 will be used as a running example to show differences in the generated VCs.
For more details about theoretical aspects, such as soundness results, refer to [BFS15].

3.1 Symbolic Execution

Symbolic execution (e.g. [JMNS12]) is the simplest way of generating VCs. The approach
consists of generating a VC for every single execution path that reaches an assert statement, such
that the validity of each VC ensures that executions going through the encoded path satisfy the
assert statement. To prove that a program is fully correct, a VC for each possible execution path
and each assert statement must be generated and then discharged.
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Definition 1 (SE VCGen) Given an SA program C, its Symbolic Execution VCs are given by
the set V where (E,V ) = VCse( /0,C), and VCse is the function given in Figure 2 (left).

Function VCse in Figure 2 receives an extra parameter in addition to the input program and
also returns an extra formula in addition to the set of VCs. The extra parameter corresponds to
the encoding of the part of the program that precedes the current statement. The extra formula
is composed by the conjunction of the received formulas, with the encoding of the current state-
ment. When an assert statement is encountered, the extra parameter contains the encoding of
all possible execution paths that reach this assert statement. A VC will be generated for each of
these paths. The generated SE VCs for our running example are as follows:

VC1 : n0 ≥ 0∧ pp0 = 0∧ p0 = 1∧ i0 = 2∧n0 = 0∧ r1 = pp0 ∧ r3 = ((n0 = 0)?r1 : r2)∧ i0 ≤ n0→ pp0 ≤ p0
VC2 : n0 ≥ 0∧ pp0 = 0∧ p0 = 1∧ i0 = 2∧¬(n0 = 0)∧ r2 = p0 ∧ r3 = ((n0 = 0)?r1 : r2)∧ i0 ≤ n0→ pp0 ≤ p0

The first VC corresponds to executions going through the then branch in the first if statement,
and the other to executions going through the else branch. Even though the generated VCs are
only two and they are relatively small in this case, it is important to note that the number of paths
is, in the worst case, exponential with respect to the size of the program, and so is the number of
generated VCs [CFP12].

3.2 Efficient Strongest Postcondition

The weakest precondition (WP) and strongest postcondition (SP) predicate transformers intro-
duced by Dijkstra [Dij76] for his guarded commands language may also be used to generate
VCs. These techniques predate symbolic execution, and in their original form do not require the
program to be transformed into an SA form. For non-SA programs the technique produces VCs
whose size is, in the worse case, exponential with respect to the size of the program. Flanagan
and Saxe showed that when the technique was applied to SA programs, the size of the generated
VCs was, in the worst case, quadratic [FS01]. In this paper we focus exclusively on SP VCs for
SA programs. Due to lack of space we omit the discussion of WP which generates similar VCs.

Definition 2 (SP VCGen) Given an SA program C, its Strongest Postcondition VCs are given
by V where (E,V ) = VCsp(>,C), and VCsp is the function given in Figure 2 (right).

Definition 2 differs slightly from the standard definition of SP, because the asserted properties
are not being introduced into the context – we leave this discussion for Section 3.5. The function
VCsp, similarly to VCse (Figure 2), receives an auxiliary parameter and returns an extra formula
containing exclusively the encoding of the present statement. The part of the program that has
already been encoded is now propagated by the if and sequence rules. A disjunction is introduced
to encode each branching statement. The generated SP VC for our running example is as follows:
n0 ≥ 0∧ pp0 = 0∧ p0 = 1∧ i0 = 2∧ ((n0 = 0∧ r1 = pp0)∨ (¬(n0 = 0)∧ r2 = p0))∧ r3 = (n0 = 0?r1 : r2)∧ i0 ≤ n0→ pp0 ≤ p0

3.3 Conditional Normal Form

In the context of BMC, after unwinding loops, inlining function calls and converting the code
to an SA form, VCs are generated by performing a series of transformations on the code. In
particular the following rules are applied to conditional branches:
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VCcnf : Γ×Γ
∗×Comm→ Γ

∗×Γ
∗

VCcnf (π,C,skip) = ( /0, /0)

VCcnf (π,C,x := e) = ({π → x = e}, /0)

VCcnf (π,C,assumeθ) = ({π → θ}, /0)

VCcnf (π,C,S1 ; S2) = (C1 ∪C2,P1 ∪P2)

where (C1,P1) = VCcnf (π,C,S1)

(C2,P2) = VCcnf (π,C∪C1,S2)

VCcnf (π,C, if b then St else S f ) = (Ct ∪C f ,Pt ∪P f )

where (Ct ,Pt) = VCcnf (π ∧b,C,St)

(C f ,P f ) = VCcnf (π ∧¬b,C,S f )

VCcnf (π,C,assertθ) = ( /0,{π → θ})

VCscnf : Γ×Γ
∗×Comm→ Γ

∗×Γ
∗

VCscnf (π,C,skip) = ( /0, /0)

VCscnf (π,C,x := e) = ({x = e}, /0)

VCscnf (π,C,assumeθ) = ({π → θ}, /0)

VCscnf (π,C,S1 ; S2) = (C1 ∪C2,P1 ∪P2)

where (C1,P1) = VCscnf (π,C,S1)

(C2,P2) = VCscnf (π,C∪C1,S2)

VCscnf (π,C, if b then St else S f ) = (Ct ∪C f ,Pt ∪P f )

where (Ct ,Pt) = VCscnf (π ∧b,C,St)

(C f ,P f ) = VCscnf (π ∧¬b,C,S f )

VCscnf (π,C,assertθ) = ( /0,{π → θ})

Figure 3: CondNF (left) and SCondNF (right) auxiliary functions

1. if b then C1 else C2 =⇒ if b then C1 ; if ¬b then C2
2. if b then {C1 ; C2}=⇒ if b then C1 ; if b then C2
3. if b1 then if b2 then C =⇒ if b1∧b2 then C

Note that these transformations would not be sound in a standard imperative program (a program
not in SA form). For instance, in the case 1 above, the execution of C1 could modify some
variable used in b causing both branches of the conditional branch to be executed. Since in the
SA form, once a variable has been used cannot be assigned, we have a sound transformation.

After the above transformations the program consists of a sequence of conditional statements
of the form if b then C, with C an atomic (assignment, assume, or assert) statement. This is
the so-called conditional normal form (CondNF) of an SA program. From this form, it is easy
to extract a VC. In this paper, instead of applying each transformation individually, we present
an algorithm that internally captures the above transformations with a single pass through the
program and generates the corresponding VC.

Definition 3 (CondNF VCGen) Given an SA program C, its Conditional Normal Form VC
is the formula

∧
E →

∧
P, where (E,P) = VCcnf(>, /0,C), and VCcnf is the function given in

Figure 3 (left).

The VCcnf takes two parameters in addition to the program. The first contains the path condi-
tion for the present statement to be reached. The second, which is not being used in this defini-
tion, contains the encoding of the program up to the present statement. The set E contains the
operational encoding of the program (assignment statements) and assume statements, and the set
P contains the asserted properties. Regardless of the number of execution paths and the number
of properties, only one VC, whose size is in the worse case quadratic, is generated [CFP12].

The use of a single global context implies that the semantics of assume statements is different
from the previous techniques: whereas before an assume statement dispensed executions from
having to pass subsequent assert statements, in the CondNF the use of a global context means
that an assume statement now dispenses executions from passing any of the assert statements
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they meet. An alternative approach consists of generating multiple VCs with partial contexts –
each assert property is only implied by the relevant part of the program. This can be done by
generating a VC each time an assert statement is encountered – recall that the second parameter
in the auxiliary function VCcnf contains the encoding of the program up to the present statement.

Definition 4 (PCondNF VCGen) Given an SA program C, its Partial context Conditional Nor-
mal Form VCs are given by V , where (E,V ) = VCpcnf(>, /0,C), and VCpcnf is the function
in which VCpcnf(π,C,assertθ) = ( /0,

∧
C→ π → θ) and VCpcnf(π,C,S) = VCcnf(π,C,S), for

S ∈ Comm\assert and VCcnf given in Figure 3 (left).

For our running example, VCcnf produces the following sets of formulas which are then used
by CondNF VCGen (Definition 3) to generate a VC:

E = {>→ n0 ≥ 0,>→ pp0 = 0,>→ p0 = 1,>→ i0 = 2,n0 = 0→ r1 = pp0,¬(n0 = 0)→ r2 = p0,>→ r3 = ((n0 = 0)?r1 : r2),
i0 ≤ n0→ r4 = p0 + pp0, i0 ≤ n0→ pp1 = p0, i0 ≤ n0→ p1 = r4, i0 ≤ n0→ i1 = i0 +1, i0 ≤ n0→¬(i1 ≤ n0),
>→ r5 = (i0 ≤ n0)?r4 : r3,>→ pp2 = (i0 ≤ n0)?pp1 : pp0,>→ p2 = (i0 ≤ n0)?p1 : p0,>→ i2 = (i0 ≤ n0)?i1 : i0}

P = {i0 ≤ n0→ pp0 ≤ p0}

The VC generated by PCondNF VCGen (Definition 4) is as follows:

((>→ n0 ≥ 0)∧ (>→ pp0 = 0)∧ (>→ p0 = 1)∧ (>→ i0 = 2)∧ (n0 = 0→ r1 = pp0)∧ (¬(n0 = 0)→ r2 = p0)
∧ (>→ r3 = ((n0 = 0)?r1 : r2)))→ (i0 ≤ n0→ pp0 ≤ p0)

In the case of CondNF, as opposed to PCondNF, the whole program is used as a context even
though only part of it is required. In both cases, every statement is encoded with its path condi-
tion, resulting in larger formulas than those coming from the predicate transformer VCGens.

3.4 Simplified Conditional Normal Form

The previous VCGens generate sound VCs from programs in either SSA or DSA form. There
exists however an additional point of interest in the use of SSA form. Since a new variable is
introduced after each branch statement to synchronize both branches, we can encode assign-
ment statements without considering their path conditions. This approach omits part of the
control flow, but this is not a problem because the relevant information is propagated through
Phi-functions. Although the transformation does not produce operationally equivalent programs,
it captures the necessary information to generate sound VCs. The next definition enhances the
CondNF VCGen (Definition 3) in this way.

Definition 5 (SCondNF VCGen) Given an SSA program C, its Simplified Conditional Normal
Form VC is the formula

∧
E →

∧
P, where (E,P) = VCscnf(>, /0,C), and VCscnf is the function

given in Figure 3 (right).

Note that, in the auxiliary function VCscnf , only the rule that encodes assignments is different
from VCcnf . As for CondNF, the previous definition can be adapted to generate multiple VCs
with partial contexts, resulting in a similar algorithm as the one used by CBMC [CKL04].

Definition 6 (PSCondNF VCGen) Given an SSA program C, its Partial context Simplified
Conditional Normal Form VCs are given by V , where (E,V ) = VCpscnf(>, /0,C), and VCpscnf
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is the function in which VCpscnf(π,C,assertθ) = ( /0,
∧

C → π → θ) and VCpscnf(π,C,S) =
VCscnf(π,C,S), for S ∈ Comm\assert and VCscnf given in Figure 3 (right).

Function VCscnf produces the set of formulas as follows to be used by SCondNF (Definition 5)

E = {n0 ≥ 0, pp0 = 0, p0 = 1, i0 = 2,r1 = pp0,r2 = p0,r3 = ((n0 = 0)?r1 : r2),r4 = p0 + pp0, pp1 = p0, p1 = r4, i1 = i0 +1,
i0 ≤ n0→¬(i1 ≤ n0),r5 = (i0 ≤ n0)?r4 : r3, pp2 = (i0 ≤ n0)?pp1 : pp0, p2 = (i0 ≤ n0)?p1 : p0, i2 = (i0 ≤ n0)?i1 : i0}

P = {i0 ≤ n0→ pp0 ≤ p0}

and the PSCondNF VCGen (Definition 6) produces the following VC:

((n0 ≥ 0)∧ (pp0 = 0)∧ (p0 = 1)∧ (i0 = 2)∧ (r1 = pp0)∧ (r2 = p0)∧ (r3 = ((n0 = 0)?r1 : r2)))→ (i0 ≤ n0→ pp0 ≤ p0)

The observations we made about the number and size of the VCs generated by CondNF and
PCondNF are also applied to SCondNF and PSCondNF. Note however that the size of the for-
mulas is slightly smaller, because the path conditions are not used for assignment statements.

3.5 Assert Statements as Lemmas

We have presented different ways of generating verification conditions, but we have not actually
discussed how to solve them. It is important to note that we are assuming that one VC is checked
at a time. Whenever a VC is false, one can stop the verification process because a violation has
been found. If all VCs are valid, one can say that the program is correct.

It is interesting to point out that assert statements, once proved, can be used as lemmas to prove
the subsequent properties. One way of doing it is by inserting the proved assert statements’
properties in the context of the subsequent assert statements. In this case the VCs must be
generated and solved in the same order as they appear in the code, so that all lemmas are proved
before they are referred to. The previous VCGen algorithms can be modified to reproduce this
behavior as in the following definition.

Definition 7 (VCGens with assert statements as lemmas) Given a VCGen∈{SE,SP,PCondNF,
PSCondNF} and its corresponding auxiliary function VC ∈ {VCse,VCsp,VCpcnf ,VCpscnf}, we
write VCGenl (resp. VCl) to indicate that assert statements are used as lemmas. In this case,
VCl(S) = VC(...,S) for S ∈ Comm\assert and VCl(...,assertθ) is given as follows:

1. VCse
l (Φ,assertθ) = ({φ ∧θ | φ ∈Φ},{φ → θ | φ ∈Φ})

2. VCsp
l (φ ,assertθ) = (θ ,{φ → θ})

3. VCpcnf
l (π,C,assertθ) = ({π → θ},{

∧
C→ π → θ})

4. VCpscnf
l (π,C,assertθ) = ({π → θ},{

∧
C→ π → θ})

These lemmas cannot be used by VCcnf and VCscnf because only one formula is generated
with the whole encoding of the program and the assert statements – if we added the asserted
properties to the global context, the generated VC would be trivially (and wrongly) discharged.

For our running example this modification would not produce any effect, because only one
assert statement is present. Note however that if the loop statement was unwound twice, two as-
sert statements would exist, one from each iteration. The assert statement from the first iteration
could be used as lemma for the second iteration.
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x1 = ∆1 ;
a s s e r t ( θ1 ) ;
. . .
xn = ∆n ;

CondNF VC: x1 = ∆1∧ ...∧xn =
∆n→ θ1

SP VC: {x1 = ∆1→ θ1}

x1 = ∆1 ;
a s s e r t ( θ1 ) ;
. . .
xn = ∆n ;
a s s e r t ( θn ) ;

CondNF VC: x1 =∆1∧ ...∧xn =∆n→ θ1∧θ2

SP VCs: {x1 = ∆1 → θ1, ...,x1 = ∆1 ∧ ... ∧
xn = ∆n→ θn}

Figure 4: Left: example whose CondNF VC’s size is linear and SP is constant; Right: example
whose CondNF VC’s size is linear and SP is quadratic

3.6 A Glance Over the Differences

Both the efficient predicate transformers and CondNF VCGens are able to curb the exponen-
tial growth of the global VCs’ size that is characteristic of SE and of the original predicate trans-
former methods. Although both algorithms produce VCs that cannot grow faster than quadrati-
cally in the size n of the program, one cannot be said to be better than the other: think for instance
of the program shown in Figure 4 (left), consisting only of a sequence of assignment statements
and a single assert statement at the beginning – the CondNF VC has linear size because it con-
tains a global context, and the SP VC has constant size; now, imagine a similar program as shown
in Figure 4 (right), where an assert statement follows each assignment – CondNF VC still has
linear size, but the SP VCs have quadratic size, since there are n conditions, of size 1 to Θ(n).
In these examples PCondNF would generate similar VCs to those generated by the SP VCGen.
For different VCs to be generated, examples with conditional branches (as was the case of our
running example) must be considered.

The size of CondNF and PCondNF verification conditions can be reduced by taking advantage
of the SSA form. This is achieved by the SCondNF and PSCondNF VCGens, where the flow
of the program is captured by the Phi-functions only. Note however, that in this case, the solver
might have to evaluate all assignments because they are not guarded by the path condition.

Lastly we have shown that VCs generated with partial contexts can be easily modified to make
use of valid assert statements as lemmas for subsequent properties. Note however that it is not
guaranteed that the lemmas will simplify the proofs. Therefore if this approach is applied blindly
it may produce bigger encodings without adding useful information to the context.

4 Evaluation

Let us now present the results of an empirical study to compare the VCGens in terms of solving
time. We focus exclusively on the solving time, disregarding other factors such as the time for
parsing, applying the transformations referred in Section 2, generating VCs, or even encoding the
formulas in the backend solver, since it is clearly the solving process that dominates the growth
of the verification time. Moreover, in the present paper we base our study on VCs generated by
unwinding loops (VCs generated in a deductive verification setting may well be more complex).
In what follows, when we write that a VCGen is more efficient than another, we mean that the
VCs generated by the first are faster to solve than those generated by the second.

We have created a VCGen comparison framework based on components from the SNIPER
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Figure 5: Time to solve VCs generated from Fibonacci running example

tool set [LN14]. New VCGens can easily be added to the framework, and we have adapted all
the previous definitions for the LLVM intermediate representation (IR) [LA04]. We have chosen
LLVM IR firstly because it is already in SSA form, and secondly because different languages,
such as C, Ada or Objective-C, can be compiled into LLVM IR, which means that a single
framework can be used for multiple input languages (this paper focuses on a subset of the C
programming language). Yices [DM06], version 1.2, is used as backend SMT solver; following
[AMP08] we use linear integer arithmetic to check the validity of the generated VCs. The user
can choose whether asserts are added to the context with a command line flag.

The first part of this section shows the evaluation of the VCGens with the Fibonacci function.
We compare how the solving time grows as the unwinding bound is increased. Even though
the example is very simple, it already illustrates some properties of the VCGens. We then use
more complex programs taken from different benchmarks previously used to validate verification
tools (e.g. [GCNR08, GR09]). First we expose the difficulties of selecting the most efficient
VCGen, then we motivate the use of assert statements as lemmas. Due to the inefficiency of the
SE VCGen we only consider it for Fibonacci, where the exponential growth is not manifest. All
tests were performed on a 1.7GHz MacBook Air with 4GB of RAM and OS X 10.10.

4.1 The Fibonacci Running Example

Let us start by analysing our running example as the unwinding bound increases. The solving
time for each VCGen is shown in Figure 5. For this particular example, adding assert statements
as lemmas does not produce significant differences in the solving time (neither positively nor
negatively). In the log-scale chart on the left we have merged SP, PCondNF, and PSCondNF
together, since their solving time is almost the same. From the chart on the right we can see that
SP and PSCondNF are slightly faster than PCondNF (on average 13% faster). The use of path
conditions in the PCondNF to guard the assignment statements does not improve the solving
time – instead it just increases the formula size and the solving time.

It can be observed from the results that the SE solving time is not growing exponentially. This
is justified by the fact that the number of paths that reach each assert statement is always two:
only one path results from the code obtained from unwinding the loop; this code consists of
nested if statements, where the assert statement is always in the path in which all precedent if
conditions are true. Therefore, the most relevant difference when comparing with SP, PCondNF
and PSCondNF is that two VCs are generated for each assert statement instead of one. Another
interesting lesson we can draw from this chart is that irrelevant code, which is present in CondNF
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Figure 6: Case studies used to validate multiple verification tools (e.g. [GCNR08, JMNS12])

and SCondNF due to the fact that the entire program is encoded (including code after the assert
statements), may heavily degrade the solving time, even if only one formula has to be solved.

4.2 Electing the Most Efficient VCs

The first question that arises when evaluating different algorithms with a common goal is: “which
one is the most efficient?”. One should address this question by means of an empirical study,
running the different algorithms with different benchmark programs. Ideally, one particular algo-
rithm would stand out with the best behavior for all benchmarks, but our study, described below,
shows that this is not the case.

Let us first consider a benchmark1 whose case studies have been previously used to test and
validate a wide variety of software verification tools (e.g. [GCNR08, JMNS12]). In this bench-
mark, assume statements are exclusively used as preconditions (placed at the beginning of the
program) and assert statements are exclusively used as postconditions (placed at the end of the
program). Therefore, it only makes sense to compare SP, CondNF and SCondNF: all others
(apart from SE) will generate equivalent VCs. All case studies have loops, which allows us to
adjust the complexity of the input program.

Different test target programs were selected to illustrate how the most efficient VCs can change
from one target benchmark program to another. Results are shown in Figure 6: the x-axis shows
different programs and the number of times they were unwound; the y-axis shows the solving
time (in logarithmic scale) for the generated VCs. The most consistent pattern is that CondNF is
never the best option, but it is also seldom the worst. All the others vary from case to case.

assume ( x==0 && y>=0);
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Figure 7: Two variants of tracer prog d.c and solving time as loop unwinding bound is increased

Let us now focus on a particular benchmark target program, to show how subtle modifications
in the code or specification can change drastically the efficiency of a particular VCGen. Figure 7
shows two similar variants (1) and (2) of a particular case study, and the required time to solve
the generated VCs, as the loop unwinding bound is increased. While SCondNF is the most

1 Available from http://map.uniroma2.it/smc/simp/
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efficient VCGen for (1) and SP is the less efficient, for (2) SP is the most efficient and SCondNF
is the less efficient. Note also that the solving time is longer in (2). The main difference between
both variants is that (1) iterates exactly 100 times, while (2) iterates between 0 and 100 times
depending on the value of the variable x. In (1), 100 assignments are always reached, but in
(2) the number of assignments that are reached depends on the value of a variable whose value
is greater than or equal to zero. In both cases, only dead code results from unwinding the loop
more than 100 times. We imagine that the inefficiency of PCondNF in (2) is justified by the
amount of unguarded expressions. Surely the VCs generated from (1) also have unguarded
expressions, but they can be easily solved if the SMT solver applies some simplification strategy,
such as constant propagation. In this case, having a condition guarding assignment statements
only increases the size of the expressions that have to be simplified. In the chart from (2) note
also how the SCondNF solving time increases drastically when loops are unwound more than
100 times: it is precisely at this point that some dead code is added.

It can be argued that it is not useful to unwind the loop more than 100 times, and that this is
an artificial problem. Therefore we considered a variant where we replaced the value 100 in the
loop condition and assert statement, by an undetermined variable. Naturally the solving time for
both sets of VCs increased. However, PSCondNF is no longer the most efficient solver for (1).
Instead, the solving time is now very similar for the different sets of VCs. In the variant (2), SP
still produces the most efficient VCs and PSCondNF the most inefficient.

After looking at this case study one could intuitively think that SP is the most efficient VCGen,
since it performs better in the presence of indeterminately-valued variables, but we remark that
this is not always true. For instance, the first target program shown in Figure 6 has a structure
that depends on indeterminate variables, but SCondNF still generates the most efficient VCs.

4.3 Assert Statements as Lemmas

The previous examples are already complex enough, but they follow a specific pattern for using
assume and assert statements as preconditions and postconditions respectively, which does not
allow us to compare the algorithms of Section 3.5. An additional benchmark2 we consider in
our evaluation has been used to test Invgen [GR09], an invariant generator tool. It contains
iterative programs with relatively complex data flow, and some of the examples contain multiple
assert statements spread throughout the program. We present here a representative selection
of the results obtained with this benchmark. We do not consider the CondNF and SCondNF
algorithms, which in general perform worse than PCondNF and PSCondNF.

The chart in Figure 8 shows the required solving time for each set of VCs generated from
a particular program using different VCGens. Due to space constraints, instead of discussing
each case study separately let us simply categorize the differences in terms of the usage of assert
statements. The first three contain multiple assert statements throughout the program. The next
three contain assert statements inside the loop(s), resulting in multiple assert statements as the
loops are unwound. The last three contain assert statements at the end of the program only.

It can be observed from the chart that in many cases the time required for solving the generated
VCs decreases when assert statements are used as lemmas. In other cases, the lemmas do not

2 Available from http://www.tcs.tifr.res.in/∼agupta/invgen/
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improve the solving time, but they also do not degrade it considerably. The last two case studies
have a single assert statement at the end, therefore the VC that is produced is the same, whether
assert statements are used as lemmas or not.

5 Conclusion and Future Work

As far as we know, this is the first time that the VCGens are presented in a systematic way – they
are normally formalized using different languages and concepts, or they are not formalized at
all. We have used a simple imperative programming language to expose the algorithms in a very
concise and clear way, which allowed us to highlight the differences between them. On the other
hand, our implementation of the algorithms is based on the LLVM intermediate representation,
used by real-world applications. Its native SSA form allowed us to implement and compare all
the presented algorithms in a straightforward way.

We remark that a crude comparison of VCGen algorithms in isolation, as we have carried
out, may be unfair to some of them, since their performance may depend on the combination
with other techniques. For instance the SE VCGen is impractical due to its inefficiency, but
it can be seen as the basis of tools like TRACER [JMNS12], which employs an interpolation
technique, based on weakest preconditions and unsatisfiable cores, for detecting infeasible paths
and avoiding exponential path enumeration.

Although we have opted to use forward propagation for the sake of uniformity, the SP VC-
Gen produces VCs similar to those produced by the Boogie tool [BCD+06], which is based on
efficient weakest preconditions. CondNF VCs are described for instance in [CKL04, BCD+06,
AMP08], and the PSCondNF VCGen is our interpretation of the method used by the CBMC tool,
which includes partial contexts and the SSA-specific optimizations described in Section 3.4.

The empirical study reveals that it is not possible to select a single most efficient VCGen
– it varies from case to case. In general, we have seen that solving a large VC, generated by
CondNF and SCondNF, is slower than solving multiple smaller VCs generated by PCondNF and
PSCondNF respectively. However, in exceptional cases, solving a single VC is slightly faster
than solving multiple smaller ones. Moreover, it is sometimes useful to guard the assignments,
but not always: sometimes the guards create larger formulas, increasing the solving time.

What seems to contribute decisively to decrease the solving time, is to use proved assert state-
ments as lemmas. This never seems to increase the solving time considerably, and in some cases
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reduces it considerably. Therefore, adopting these variants is recommended in general.
We also used faulty programs for our evaluation, but the results mostly followed what has been

mentioned before. Of course, if an assert statement at the beginning of the program is violated,
the VCs that contain only partial contexts will rapidly fail – on the other hand, VCs with a global
context will be extremely inefficient. If there is a violated assert in the final part of the program,
VCs with partial contexts sometimes perform worse than VCs with global contexts.

Our evaluation results show that the choice of VCGen algorithm is not irrelevant, but no sin-
gle ‘best’ algorithm exists. This suggests that it is a good idea for verification tools to provide
a number of different VCGens, leaving to the end user the decision of which one to use (in the
same way that some tools allow for the use of various solvers). This way, a default VCGen may
be used, but if it does not scale as desired, an alternative VCGen can be chosen. We note how-
ever that switching VCGens may not always be possible or easily achievable, since the VCGen
algorithm may be deeply integrated into the tool in a way that makes it difficult to decouple.

As future work, it is important to pursue efforts to categorize the kinds of programs for which
each VCGen performs better. In particular, it would be interesting to have a wrapper algorithm or
heuristic to choose the best VCGen for each situation. We also believe that it would be interesting
to make a similar study using DSA instead of SSA – this is in fact a limitation of our framework,
because LLVM does not support DSA representation. Also, we do not consider in this paper
multiple backend solvers; it would be equally interesting to observe the efficiency of different
VCs in different solvers. Finally, considering the simplification of VCs before they are sent to the
backend solver – applying constant propagation or rewriting of expressions (as done by CBMC)
– can produce new insight for a future evaluation.
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