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Distributed Verification of Rare Properties using Importance
Splitting Observers

Cyrille Jegourel, Axel Legay, Sean Sedwards and Louis-Marie Traonouez

INRIA Rennes – Bretagne Atlantique

Abstract: Rare properties remain a challenge for statistical model checking (SMC)
due to the quadratic scaling of variance with rarity. We address this with a variance
reduction framework based on lightweight importance splitting observers. These
expose the model-property automaton to allow the construction of score functions
for high performance algorithms. The confidence intervals defined for importance
splitting make it appealing for SMC, but optimising its performance in the stan-
dard way makes distribution inefficient. We show how it is possible to achieve
equivalently good results in less time by distributing simpler algorithms. We first
explore the challenges posed by importance splitting and present an algorithm opti-
mised for distribution. We then define a specific bounded time logic that is compiled
into memory-efficient observers to monitor executions. Finally, we demonstrate our
framework on a number of challenging case studies.

Keywords: Rare events, statistical model checking, importance splitting, scalable
verification, lightweight observers.

1 Introduction

Failure in critical systems is required to be very infrequent. Numerical model checking can
quantify the probability of such failure with certainty, but is limited in its application to real
systems because of the ‘state explosion problem’ [CES09]. This is addressed by statistical model
checking (SMC) [YKNP06], which includes a number of approximative techniques based on
Monte Carlo sampling [HH64]. Using SMC, only a subset of system states are generated on
the fly during stochastic simulation, while results converge in a predictable way. Performance is
typically independent of the size of the state space [Nie92] and simulations may be efficiently
divided on parallel computation architectures. SMC has therefore been successfully applied to
real systems in a critical context, such as to the cabin communication system of an aeroplane
[BBB+10]. Rare properties (those with probability close to zero) nevertheless pose a problem
because the standard and relative estimation errors scale quadratically with rarity [HH64, RT09].
For example, 4000 simulations would be sufficient to estimate a probability of 0.1± 10% with
95% confidence, whereas 4× 1013 simulations would be necessary to estimate a probability of
10−6±10% with the same confidence. Desirable failure rates in critical systems may be orders
of magnitude lower, so we seek to enhance SMC with variance reduction techniques, such as
importance sampling and importance splitting [KH51, HH64, RT09], without sacrificing the
easy distribution that SMC affords.

Importance sampling weights the executable model of a system so that the rare property oc-
curs more frequently in simulations. The proportion of simulations that satisfy the property using

1 / 15 Volume 72 (2015)



Distributed Verification of Rare Properties using Importance Splitting Observers

the weighted model overestimates the true probability, but the estimate may be exactly compen-
sated by the weights. It is generally not feasible to implement a perfectly weighted executable
model for importance sampling because (i) the perfect model may not actually exist as a re-
parametrisation of the original model and (ii) a perfect re-parametrisation typically requires an
iteration over all the transitions, defeating the benefits of sampling. Practical approaches tend to
use a low dimensional vector of parameters to weight the model [JLS12b, JLS12a]. Given such
a parametrisation, importance sampling can be implemented with minimal memory and may be
distributed efficiently on parallel computational architectures. The principal limitation of impor-
tance sampling is that without a guarantee that the simulation model is perfect, it is difficult to
formally bound the error of estimates. In contrast, useful confidence intervals have been defined
for importance splitting [CG07, CDFG12].

Importance splitting divides a rare property into a set of less rare sub-properties that corre-
spond to an increasing sequence of disjoint levels: the initial state corresponds to the lowest
level, while states that satisfy the rare property corresponds to the final level. Importance split-
ting algorithms use a series of easy simulation experiments to estimate the conditional prob-
abilities of going from one level to the next. Since relatively few simulations fail to satisfy
the sub-properties, the overall simulation budget may be reduced. Each experiment comprises
simulations initialised with the terminal states of previous simulations that reached the current
level. The overall probability is the product of the estimates, with the best performance (lowest
variance) achieved with many levels of equal conditional probability.

Importance splitting poses several challenges for optimisation and distribution. In the con-
text of SMC, importance splitting algorithms repeatedly initialise simulations with states of the
model-property product automaton. For arbitrary properties this may have size proportional to
the length of a simulation trace. At the same time, increasing the number of levels to maximise
performance reduces the number of simulation steps in each simulation experiment. The cost
of sending the model-property state across slow communication channels may be significantly
greater than the cost of short simulations. In addition, to specify levels with equal conditional
probabilities it is necessary to define a ‘score function’ that maps the states of the product au-
tomaton to a value. This cannot easily be automated, so a syntactic description of the property
automaton must be accessible for the user to construct a score function manually.

To address the above challenges we present an importance splitting framework for SMC,
specifically considering the problems of distribution. We first discuss the problems of distribut-
ing importance splitting algorithms and present a fixed level algorithm optimised for distribution.
We then define an expressive bounded time temporal logic and describe the system of efficient
lightweight observers that implement it. These make the product automaton (i) accessible to the
user, (ii) efficient to construct, (iii) efficient to distribute and (iv) efficient to execute. Finally, we
demonstrate the performance and flexibility of our framework on a number of case studies that
are intractable to numerical methods.

We believe the present work is the first to describe a practical importance splitting framework
for SMC and is therefore the first to consider the problems of distributing importance splitting
for SMC.
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Related Work

There have been many ad hoc implementations of importance splitting based on the original ideas
of [Kah50, KH51]. The algorithm of [VV91] is a relatively recent example that is often cited.
The work of [CG07, CDFG12] is novel because the authors define efficient adaptive importance
splitting algorithms that also include confidence intervals. To our knowledge, [JLS13] is the first
work to explicitly link importance splitting to arbitrary logical properties.

SMC tools construct an automaton (a monitor) to accept traces that satisfy a temporal logic
formula, typically based on a time bounded variant of temporal logic. The proportion of inde-
pendent simulations of a stochastic model that satisfy the property is then used to estimate the
probability of the property or to test hypotheses about the probability. There have been sev-
eral works that construct runtime verification monitors from temporal logic (e.g., [Gei01, GH01,
HR02, FS04, BLS06]). Such monitors typically comprise tableau-based automata [GPVW95]
whose states represent the combinations of subformulas of the overall property. While some
have considered timed properties (e.g., [BLS06]), the focus is predominantly unbounded LTL
properties interpreted on finite paths [EFH+03]. In contrast, SMC typically checks formulas
with explicit time bounds (see, e.g., (1)), which are inherently defined on finite traces. To avoid
the combinatorial explosion of subformulas caused by including time in this way, the monitors
used by [JLS12b, BCLS13] and other high performance tools are compact “programs” that gen-
erate the states of an automaton on the fly and do not store them. Such programs incorporate
notions of optimality that may be subtly different from those that apply in other contexts. Since
states of the automaton are generated on the fly, it is not necessary for the automaton to have the
minimum number of states. The actual requirements are that the automaton reaches a conclusion
with the minimum number of input states and that its programmatic representation is as compact
as possible. We adapt this “lightweight” approach to allow importance splitting for SMC to be
efficiently distributed on high performance parallel computational architectures.

2 Technical Background

Our SMC tools (PLASMA [JLS12b], PLASMA-LAB [BCLS13]) implement a bounded linear tem-
poral logic having the following syntactic form:

ϕ= Xkϕ | Fkϕ |Gkϕ | ϕUkϕ | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ϕ⇒ ϕ | α (1)

This syntax allows arbitrary combinations and nesting of temporal and atomic properties (i.e.,
those which may be evaluated in a single state and denoted by α). The time bound k may denote
discrete steps or continuous time, but in this work we consider only discrete time semantics.

Given a finite trace ω, comprising sequence of states ω0ω1ω2 · · · , ω(i) denotes the suffix
ωiωi+1ωi+2 · · · . The semantics of the satisfaction relation |= is constructed inductively as fol-
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lows:

ω(i) |= true

ω(i) |=α ⇐⇒ α is true in state ωi

ω(i) |=¬φ ⇐⇒ ω(i) |= φ ̸∈ |=

ω(i) |=φ1∨φ2 ⇐⇒ ω(i) |= φ1 or ω(i) |= φ2

ω(i) |=Xkφ ⇐⇒ ω(k+i) |= φ

ω(i) |=φ1Ukφ2 ⇐⇒ ∃ j ∈ {i, . . . , i+ k} : ω( j) |= φ2

∧ ( j = i∨∀l ∈ {i, . . . , j−1} : ω(l) |= φ1) (2)

Other elements of the relation are constructed using the equivalences false ≡ ¬true, φ1 ∧φ2 ≡
¬(¬φ1 ∨¬φ2), Fkφ ≡ trueUkφ, Gkφ ≡ ¬(trueUk¬φ). Hence, given a property φ with syntax
according to (1), ω |= φ is evaluated by ω(0) |= φ.

Importance Splitting and Score Functions

The neutron shield model of [Kah50, KH51] is illustrative of how importance splitting works.
The distance travelled by a neutron in a shield defines a monotonic sequence of levels 0 = s0 <
s1 < s2 < · · · < sm = shield thickness, such that reaching a given level implies having reached
all the lower levels. While the overall probability γ of passing through the shield is small, the
probability of passing from one level to another can be made arbitrarily close to 1 by reducing
the distance between levels. Denoting the abstract level of a neutron as s, the probability of a
neutron reaching level si can be expressed as P(s≥ si) = P(s≥ si | s≥ si−1)P(s≥ si−1). Defining
γ = P(s≥ sm) and P(s≥ s0) = 1,

γ =
m

∏
i=1

P(s≥ si | s≥ si−1). (3)

Each term of (3) is necessarily greater than or equal to γ, making their estimation easier. By
writing γi = P(s≥ si | s≥ si−1) and denoting the estimates of γ and γi as respectively γ̂ and γ̂i,
[JLS13] defines the unbiased confidence interval

CI =
[
γ̂/

(
1+

zασ√
n

)
, γ̂/

(
1− zασ√

n

)]
with σ2 ≥

m

∑
i=1

1−γi

γi
. (4)

Confidence is specified via zα, the 1−α/2 quantile of the standard normal distribution, while n is
the per-level simulation budget. We infer from (4) that for a given γ the confidence is maximised
by making both the number of levels m and the simulation budget large, with all γi equal.

The concept of levels can be generalised to arbitrary systems and properties in the context
of SMC, treating s and si in (3) as values of a score function over the model-property product
automaton. Intuitively, a score function discriminates good paths from bad, assigning higher
scores to paths that more nearly satisfy the overall property. Since the choice of levels is crucial
to the effectiveness of importance splitting, various ways to construct score functions from a
temporal logic property are proposed in [JLS13]. Formally, given a set of finite trace prefixes
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ω ∈ Ω, an ideal score function S : Ω → R has the characteristics S(ω) > S(ω′) ⇐⇒ P(|= φ |
ω)> P(|= φ | ω′), where P(|= φ | ω) is the probability of eventually satisfying φ given prefix ω.
Intuitively, ω has a higher score than ω′ iff there is more chance of satisfying φ by continuing ω
than by continuing ω′. The minimum requirement of a score function is S(ω)≥ sφ ⇐⇒ ω |= φ,
where sφ is an arbitrary value denoting that φ is satisfied. Any trace that satisfies φ must have a
score of at least sφ and any trace that does not satisfy φ must have a score less than sφ. In what
follows we assume that (3) refers to scores.

3 Distributing Importance Splitting

Simple Monte Carlo SMC may be efficiently distributed because once initialised, simulations
are executed independently and the result is communicated at the end with just a single bit of
information (i.e., whether the property was satisfied or not). By contrast, the simulations of
importance splitting are dependent because scores generated during the course of each simulation
must be processed centrally. The amount of central processing can be minimised by reducing the
number of levels, but this generally reduces the variance reduction performance.

Alternatively, entire instances of the importance splitting algorithm may be distributed and
their estimates averaged, with each instance using a proportionally reduced simulation budget.
We use this approach to generate some of the results in Section 6, but note that if the budget
is reduced too far, the algorithm will fail to pass from one level to the next (because no trace
achieves a high enough score) and no valid estimate will be produced.

Distribution of importance splitting is thus possible, but its efficiency is dependent on the par-
ticular problem. In this work we therefore provide the framework to explore different approaches.
In Section 3.1 we first describe the concept of an adaptive importance splitting algorithm and then
explain why this otherwise optimised technique is unsuitable for distribution. In Section 3.2 we
motivate the use of a fixed level algorithm for “lightweight” distribution and provide a suitable
algorithm. The results we present in Section 6 demonstrate that this simpler approach can be
highly effective.

3.1 The Adaptive Algorithm

The basic notion of importance splitting described in Section 2 can be directly implemented in a
so-called fixed level algorithm, i.e., an algorithm in which the levels are pre-defined by the user.
With no a priori information, such levels will typically be chosen to subdivide the maximum
score equally. In general, however, this will not equally divide the conditional probabilities
of the levels, as required by (4) to minimise variance. In the worst case, one or more of the
conditional probabilities will be too low for the algorithm to pass between levels. Finding good
or even reasonable levels by trial and error may be computationally expensive and has prompted
the development of adaptive algorithms that discover optimal levels on the fly [CG07, JLS13,
JLS14]. Instead of pre-defining levels, the user specifies the proportion of simulations to retain
after each iteration. This proportion generally defines all but the final conditional probability in
(3).

The adaptive importance splitting algorithm first performs a number of simulations until the
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overall property is decided, storing the resulting traces of the model-property automaton. Each
trace induces a sequence of scores and a corresponding maximum score. The algorithm finds a
level that is less than or equal to the maximum score of the desired proportion of simulations to
retain. The simulations whose maximum score is below this current level are discarded. New
simulations to replace the discarded ones are initialised with states corresponding to the current
level, chosen at random from the retained simulations. The new simulations are continued until
the overall property is decided and the procedure is repeated until a sufficient proportion of
simulations satisfy the overall property.

The principal advantage of the adaptive algorithm is that by simply rejecting the minimum
number of simulations at each level it is possible to maximise confidence for a given score
function. The principal disadvantage is that it stores simulation traces, severely limiting the size
of model and simulation budget. The use of lightweight computational threads is effectively
prohibited. Moreover, minimising the number of rejected simulations reduces the number of
simulations performed between levels, thus reducing the possibility to perform computations in
parallel. Minimising the rejected simulations also maximises the number of levels, which in turn
minimises the number of simulation steps between each level. This further limits the feasibility of
dividing the algorithm, since sending a model-property state over a slow communication channel
may be orders of magnitude more costly than performing a short simulation locally.

3.2 A Fixed Level Algorithm for Distribution

In contrast to the adaptive algorithm, the fixed level importance splitting algorithm does not need
to store traces, making it lightweight and suitable for distribution. Scores are calculated on the
fly and only the states that achieve the desired level are retained for further consideration. While
the choice of levels remains a problem, an effective strategy is to first use the adaptive algorithm
with a relatively high rejection rate to find good fixed levels. An estimate with high confidence
can then be generated efficiently by distributing the fixed level algorithm.

Algorithm 1 is our fixed level importance splitting algorithm optimised for distribution. We
use the terms server and client to refer to the root and leaf nodes of a network of computational
devices or to mean independent computational threads on the same machine. In essence, the
server manages the job and the clients perform the simulations.

The server initially sends compact representations of the model and property to each client.
Thereafter, only the state of the product automaton is communicated. In general, each client
returns terminal states of simulations that reached the current level and the server distributes these
as initial states for the next round of simulations. Algorithm 1 optimises this. The server requests
and distributes only the number of states necessary to restart the simulations that failed to reach
the current level, while maintaining the randomness of the selection. Despite this optimisation,
however, the performance of this and other importance splitting algorithms will be confounded
by the combination of large state size and properties having short time bounds. Under such
circumstances it may be preferable to distribute entire instances of the algorithm, as described
above.

The memory requirements of Algorithm 1 are minimal. Each client need only store the state of
n simulations. As such, it is conceivable to distribute simulations on lightweight computational
threads, such as those provided by GPGPU (general purpose computing on graphics processing
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units).

Algorithm 1: Distributed Fixed Level Importance Splitting
input: s1 < s2 < · · ·< sm is a sequence of scores, with sm = sφ the score necessary to satisfy

property φ
1 γ̂← 1 is the initial estimate of γ = P(ω |= φ)
2 server sends compact description of model and observer to k clients
3 each client initialises n simulations
4 for s← s1, . . . ,sm do
5 each client continues its n simulations from their current state

simulations halt as soon as their scores reach s
6 ∀ clients, client i sends server the number of traces ni that reached s
7 server calculates γ̂← γ̂n′/kn, where n′ = ∑ni

8 for j← 1, . . . ,kn−n′ do
9 server chooses client i at random, with probability ni/n′

10 client i sends server a state chosen uniformly at random from those that reached s
11 server sends state to client corresponding to failed simulation j, as initial state of

new simulation to replace simulation j

output: γ̂

4 Linear Temporal Logic for Importance Splitting

High performance SMC tools, such as [JLS12b, BCLS13], avoid the complexity of standard
model checking by compiling the property to a program of size proportional to the formula and
memory proportional to the maximum sum of nested time bounds. This program implicitly
encodes the model checking automaton, but is exponentially smaller. For example, the property
Xkφ can be implemented as a loop that generates k simulation steps before returning the truth
of φ in the last state; the property ϑUkφ can be implemented as a loop that generates up to
k simulation steps while ϑ is true and φ is not true, returning the value of φ in the last state
otherwise. If ϑ and φ are atomic, the programs require just O(logk) bits of memory to hold a
loop counter.

In contrast, the nested property Fk1(ϑ∨Gk2φ) has an O(k2) memory requirement. If ϑ is not
true on step i< k1 it may be necessary to simulate up to step i+k2 to decide subformula Gk2φ. If
ϑ∨Gk2φ turns out to be false on step i, it will then be necessary to consider the truth of ϑ on step
i+1, noting that the last simulated step could be i+ k2. To evaluate this formula it is effectively
necessary to remember the truth of ϑ on O(k2) simulation steps. Similar requirements can arise
when the until operator (U) is a subformula of a temporal operator. In all such cases the sequence
of stored truth values become part of the state of the property automaton.

SMC using importance splitting requires that simulations are repeatedly and frequently ini-
tialised with the state of the model-property product automaton. If the size of this state is propor-
tional to the time bounds of temporal operators, initialisation may have comparable complexity
to simulation. This becomes especially problematic if the state is to be transmitted across rel-
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atively slow communication channels for the purposes of distribution. We therefore define a
subset of (1), the size of whose automata is not dependent on the bounds of temporal operators:

ϕ=Xkϕ | ψUkψ | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ϕ⇒ ϕ | ψ
ψ =Xkψ | Fkψ |Gkψ | α

(5)

The semantics of (5) is the same as (1), but (5) restricts how temporal operators may be
combined. In particular, U may not be the subformula of a temporal operator other than X
and temporal operators that are subformulas of other temporal operators may not be combined
with Boolean connectives. Temporal operators containing other temporal operators as subformu-
las may, however, be combined. This logic expresses many useful properties, including nested
bounded temporal properties that are not implemented in the numerical model checker PRISM1.

5 Lightweight Observers for Importance Splitting

To facilitate the construction of score functions we implement the logic given by (5) as a set of
nested observers. Each observer corresponds to either a temporal operator, a Boolean operator
acting on temporal operators, or as a predicate describing an atomic property. In our implemen-
tation observers are written in a syntax based on the commonly used reactive modules language
[AH99], using the notion of ‘guarded commands’ [Dij75] with sequential semantics. The ob-
servers are easily implemented in other modelling languages.

An observer comprises a set of guarded commands, any number of which may be enabled and
executed on a given simulation step. Updates are performed in syntactic order after all guards
have been evaluated, hence the update of one command does not affect the guards of commands
in the same observer. In general, the output of one observer is the input to another and observers
are therefore executed in reverse order of their nesting.

Observers evaluate states as they are generated by the simulation. Since it may not be possible
to decide a property before seeing a certain number of states, observers implement a three valued
logic. In Figs. 1, 2 and 3 we use the symbols ?, ⊤ and ⊥ to denote the three values undecided,
true and false, respectively. The state of an observer changes only when at least one of its inputs
is decided. An observer may reach a deadlock state (no commands enabled) once its output is
decided and cannot be changed by further input. A simulation terminates when the output of the
root observer is decided, i.e., the property is decided. Simulations may also be paused by the
importance splitting algorithm if the score reaches a desired level.

Observers implementing the same temporal operator behave differently according to their level
of nesting within a formula. We therefore distinguish outer and inner temporal observers. The
temporal operators closest to the root of any branch of the syntax tree induced by a formula are
implemented by outer observers. Their output proceeds from undecided to either true or false
and then does not change. Inner observers encode temporal operators that are the subformulas
of other temporal operators. Their output proceeds from undecided to a possibly alternating
sequence of true, false and undecided values because their enclosing operator(s) cause them to
evaluate a moving window of states in the execution trace. The inner and outer variants of X, F

1 www.prismmodelchecker.org
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...?. ⊤.

⊥

.

1

. 2.

3

1. ¬d∧ (¬d′∨¬d′′)∧¬(¬o′∧d′∨¬o′′∧d′′)
2. ¬d∧d′∧o′∧d′′∧o′′ : d← true,o← true
3. ¬d∧ (¬o′∧d′∨¬o′′∧d′′) : d← true,o← false

(a) o← o′∧o′′

...?. ⊤.

⊥

.

1

. 2.

3

1. ¬d∧ (¬d′∧¬(d′′∧o′′)∨d′∧o′∧¬d′′)
2. ¬d∧ (¬o′∧d′∨o′′∧d′′) : d← true,o← true
3. ¬d∧d′∧o′∧d′′∧¬o′′ : d← true,o← false

(b) o← o′⇒ o′′

Figure 1: Connective observers. Initially d = false.

and G are closely related—outer observers are essentially simplified inner observers. When U is
a subformula of X, however, the X is implemented as a delay within the U observer.

In what follows we describe the important aspects of the various observers that implement
(5). The accompanying figures include diagrammatic representations of how the observers work
and sets of commands written in the form predicate : update. Each observer has Boolean output
variables o and d to indicate respectively the result and whether the property has been decided
(observers for atomic formulas omit d). Observers for temporal operators take discrete time
bound k as a parameter and use a counter variable w (U uses counter variables w′ and w′′). Inner
temporal operators make use of an additional counter, t (U uses t ′ and t ′′). The inputs of observers
are Boolean variables o′ and o′′, with corresponding decidedness d′ and d′′.

Connective Observers

These observers implement Boolean connectives at syntactic level ϕ in (5) and take advantage
of the equivalences false∧? = false, true∨? = true, false⇒ ? = false and ?⇒ true = true, for
any truth value of ?. Figure 1a describes the observer for conjunction and Fig. 1b describes the
observer for implication. The observer for disjunction may be derived from that of conjunction
by negating all instances of o′ and o′′, and by exchanging o← true and o← false. Negation
is implemented by inverting the truth assignment of the observer to which it applies, i.e., by
exchanging o← true and o← false. The connectives may be combined with themselves and
with outer temporal operators. Boolean connectives that apply only to atomic properties (i.e.,
syntactic level α) are implemented directly in formulas within observers for atomic properties.

Inner Temporal Observers

These observers act on a moving window of states created by an enclosing temporal operator.
The output may pass from one decided value to the other and also become undecided.
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...?. ⊤.

⊥

.

1

. 2.

2

.
2

.
3

.

2

.

3

.

2

.

2

1. ¬d∧d′∧w< k : w← w+1
2. d′∧w = k : d← true,o← o′

3. d∧¬d′ : d← false

(a) o← Xko′

...?. ⊤.

⊥

.

1

. 2,5.

3

.
2

.
4,6

.

3

.

6

.

3

.

2

1. ¬d∧d′∧¬o′∧w< k : w← w+1
2. d′∧o′ : o← true,d← true, t← w
3. d′∧¬o′∧ t = 0∧w = k : d← true,o← false
4. d∧d′∧¬o′∧ t = 0∧w< k : d← false
5. d∧d′∧¬o′∧ t > 0 : t← t−1
6. d∧¬d′ : d← false

(b) o← Fko′

Figure 2: Observers for inner temporal operators. Initially w = t = 0,d = false.

Figure 2a describes the observer for Xk. Command 1 counts decided input states until bound
k is reached. Thereafter command 2 sets the output decided and equal to the value of the input.

Figure 2b describes the observer for Fk. While decided inputs are not true, command 1 incre-
ments w from 0 to k. If at any time the input is true, command 2 sets the output to true and the
“true-counter” t is set to w. Command 5 decrements t on subsequent false inputs. The output
remains true while t > 0. If w reaches k while t = 0, command 3 sets the output to false.

The observer for Gk may be derived from that of Fk by negating all instances of o′ and ¬o′,
and by exchanging o← true and o← false.

Outer Temporal observers

The outer observers for Xk and Fk are not illustrated but may be derived from their respective
inner observers given in Fig. 2. For Xk, command 3 is removed and the guard of command 2 is
strengthened with ¬d. For Fk, commands 4, 5 and 6, together with all references to counter t,
are removed, while the guards of commands 2 and 3 are strengthened by ¬d. The outer observer
for Gk can be derived from that of Fk in the same way as described for inner temporal observers.

Figure 3 describes the observer for properties of the form XkX(ϑUkφ), which can be simplified
to implement properties of the form ϑUkφ. Since ϑ and φ may be temporal formulas that are
satisfied on different simulation steps in arbitrary order, the observer employs variables w′ and
w′′ to respectively count the sequences of ¬φ and ϑ (commands 3 and 5). Variable t ′ then records
the position of the first φ (command 4), while t ′′ records the position of the last ϑ (command 5).
Using t ′ and t ′′, commands 7 and 8 are able to determine if the property is satisfied or falsified,
respectively. The XkX part of the formula is implemented by initialising variables w′ and w′′

to −kX, forcing the observer to ignore the first kX decided values of ϑ and φ. In the case of
properties of the form ϑUkφ, w′ and w′′ are initialised to 0 and the automaton may be simplified
by removing commands 1 and 2 and all instances of expressions w′ ≥ 0 and w′′ ≥ 0.

Proc. AVoCS 2015 10 / 15



ECEASST

...?. ⊤.

⊥

.

1,2,3,4,5,6

. 7.

8

1. d′∧w′ < 0 : w′← w′+1
2. d′′∧w′′ < 0 : w′′← w′′+1
3. ¬d∧d′∧¬o′∧w′ ≥ 0∧w′ ≤ k : w′← w′+1
4. ¬d∧d′∧o′∧w′ ≥ 0∧w′ ≤ k : t ′← w′,w′← k+1
5. ¬d∧d′′∧o′′∧w′′ ≥ 0∧w′′ < k : w′′← w′′+1, t ′′← w′′

6. ¬d∧d′′∧¬o′′∧w′′ ≥ 0∧w′′ < k : w′′← k
7. ¬d∧ t ′ ≥ 0∧ t ′′ ≥ t ′−1 : d← true,o← true
8. ¬d∧ (t ′ < 0∧w′ = k+1∨w′′ = k∧ (t ′′ < t ′−1

∨t ′ < 0∧ t ′′ ≤ w′−1)) : d← true,o← false

Figure 3: Observer for o←XkX(o′′Uko′). Initially t ′′ = 0, t ′ =−1,d = dX = false and w′ = w′′ =
−kX (see text).

6 Case Studies

We have implemented our importance splitting framework in PLASMA-LAB [BCLS13] and
demonstrate its use on three case studies whose state space is intractable to numerical model
checking. The following results do not seek to promote a particular methodology (adaptive or
fixed level algorithm, distributed or single machine), but serve to illustrate the flexibility of our
platform. The software, models and observers can be downloaded from our website2. The leader
election and dining philosophers models are also illustrated on the PRISM case studies website3.

For each model we performed a number of experiments to compare the performance of the
fixed and adaptive importance splitting algorithms with and without distribution, using different
simulation budgets and levels. Our results are illustrated in the form of empirical cumulative
probability distributions of 100 estimates, noting that a perfect (zero variance) estimator distri-
bution would be represented by a single step. The results are also summarised in Table 1. The
probabilities we estimate are all close to 10−6 and are marked on the figures with a vertical line.
Since we are not able to use numerical techniques to calculate the true probabilities, we use the
average of 200 low variance estimates as our best overall estimate.

As a reference, we applied the adaptive algorithm to each model using a single computational
thread. We chose parameters to maximise the number of levels and thus minimise the variance for
a given score function and budget. The resulting distributions, sampled at every tenth percentile,
are plotted with circular markers in the figures. Over these points we superimpose the results of
applying a single instance of the fixed level algorithm with just a few levels. We also superimpose
the average estimates of five parallel threads running the fixed level algorithm, using the same
levels.

The figures confirm our expectation that the fixed level algorithm with few levels is outper-
formed by the adaptive algorithm. The figures also demonstrate that the average of parallel
instances of the fixed level algorithm are very close to the performance of the adaptive algo-
rithm. The timings given in Table 1 show that the distributed approach achieves these results
in less time. For comparison we also include the estimated time of using a simple Monte Carlo

2 projects.inria.fr/plasma-lab/importance-splitting
3 www.prismmodelchecker.org/casestudies

11 / 15 Volume 72 (2015)



Distributed Verification of Rare Properties using Importance Splitting Observers

Estimate × 10
7

C
u
m

u
la

ti
ve

p
ro

b
a
b
ili

ty

1 3 10

0
0
.2

0
.4

0
.6

0
.8

1

adaptive

parallel fixed

single fixed

Figure 4: Leader election.
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Figure 5: Dining philosophers.

(MC) estimator to achieve the same standard deviation. Importance splitting gives more than
three orders of magnitude improvement in all cases. All results were generated using an Intel
Core i7-3740 CPU with 4 cores running at 2.7 GHz.

In the remainder of this section we briefly describe our models and their associated properties
and score functions.

Leader Election

Our leader election case study is based on the PRISM model of the synchronous leader election
protocol of [IR90]. With N = 20 processes and K = 6 probabilistic choices the model has ap-
proximately 1.2×1018 states. We consider the probability of the property G420¬elected, where
elected denotes the state where a leader has been elected. Our chosen score function uses the
time bound of the G operator to give nominal scores between 0 and 420. The model constrains
these to only 20 actual levels (some scores are equivalent with respect to the model and prop-
erty), but with evenly distributed probability. For the fixed level algorithm we use scores of
70,140,210,280,350 and 420.

Dining Philosophers

Our dining philosophers case study extends the PRISM model of the fair probabilistic protocol
of [LR81]. With 150 philosophers our model contains approximately 2.3× 10144 states. We
consider the probability of the property F30Phil eats, where Phil is the name of an arbitrary
philosopher. The adaptive algorithm uses the heuristic score function described in [JLS14],
which includes the five logical levels used by the fixed level algorithm. Between these levels the
heuristic favours short paths, based on the assumption that as time runs out the property is less
likely to be satisfied.

Dependent Counters

Our dependent counters case study comprises ten counters, initially set to zero, that with some
probability dependent on the values of the other counters are either incremented or reset to zero.
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Figure 6: Dependent counters.

Adaptive Single Parallel

Le
ad

er

Std. dev. 4.8×10−8 1.3×10−7 5.2×10−8

Levels 20 6 6

Budget 1000 1000 5×1000

Time (MC) 7.3s (30h) 2.5s (4.4h) 5.8s (5.0h)

P
hi

lo
so

ph
er

s Std. dev. 4.2×10−7 7.7×10−7 2.8×10−7

Levels 109 5 5

Budget 1000 1000 5×1000

Time (MC) 5.4s (2.3h) 1.7s (41m) 3.7s (1.4h)

C
ou

nt
er

s

Std. dev. 2.1×10−7 5.0×10−7 2.3×10−7

Levels 3942 4 4

Budget 500 500 5×500

Time (MC) 15s (7.5h) 2.8s (1.2h) 4.8s (1.9h)

Table 1: Summary of results.

This can be viewed as modelling an abstract computational process, a set of reservoirs of finite
capacity, or as the failure and repair of ten different types of components in a system, etc. With
a maximum count of 10, the model has approximately 2.6×1010 states.

We consider the probability of the property X1(¬init U1000complete), where init and complete
denote the initial state and the state where all counters have reached their maximum value. Our
score function ranges over values between 0 and 99, but the probabilities are not evenly dis-
tributed. With a budget of 500, uniformly distributed fixed scores fail to produce traces that
satisfy the property until the difference between the last two levels is about 5. Note that our bud-
get is limited to only 500 simulations due to the length of the traces that must be stored by the
adaptive algorithm. We maintain this budget for the fixed level algorithm to simplify comparison.
After a small amount of trial and error, we adopted fixed scores of 80,90,95 and 99.

7 Challenges and Prospects

Our results demonstrate the effectiveness and flexibility of our framework with discrete time
properties applied to standard case studies. Future challenges include industrial scale examples
and the implementation of continuous time properties. We also intend to provide proofs of the
correctness of our observers and of our logic’s memory requirements.

Although the manual construction of score functions adds to the overall cost of using impor-
tance splitting, we believe that distribution relaxes the need for these to be highly optimised. We
nevertheless expect that it will be possible to construct good score functions automatically using
statistical learning techniques.
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