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Abstract: The integration of worst case execution time (WCET) analysis in model-
based designs allows timing problems to be discovered in the early phases of devel-
opment, when they are less expensive to correct than in later phases. In this paper,
we show how model-based WCET analysis can improve timing calculations com-
pared to program-based WCET analysis. The models are described by hierarchi-
cal state machines with concurrency, probabilistic transition, stochastic transitions,
costs/rewards attached to states and transitions, and invariants attached to states. In
these models, user-specified invariants serve to check the correctness of designs by
restricting allowed state configurations. Our contribution is to use invariants addi-
tionally to determine transition combinations (paths) that can be eliminated from
the WCET analysis, with the help of a decision procedure, thus making the analysis
more precise. The assembly code of transitions for a specific target is generated and
execution time for that code calculated. From the model, a probabilistic timed au-
tomaton (PTA) or Markov decision process (MDP) can be created. On that model,
execution times of transitions are calculated as costs.

Keywords: Hierarchical state-machines, Compiler, Worst-case analysis

1 Introduction

The full integration of embedded systems into larger products leads to an increased reliance on
their correct service: in embedded systems, not only safety and liveness, but also strict timing
constraints must be satisfied [LM11]. Properties of a program like loop bounds, exponential
path space, path feasibility, and properties of the hardware like memory access time, determine
program execution time. An established approach is to insert constraints as deadlines in basic
blocks of the source code and, after compiling, the assembly code is used in a low-level analysis
to determine execution time [LS14]. If the calculated times are less than or equal to the specified
deadlines, the timing constraints are satisfied.

Following the trend that part of modern software engineering is the integration of worst case
execution time (WCET) analysis [KP05], we consider model-based WCET calculation for early,
automatic analysis. The models are expressed as pCharts, a formalism for reactive systems
based on hierarchical state machines with invariants, probabilistic transitions, timed transitions,
stochastic timing, and costs/rewards [NS13, NS14]. The pCharts formalism underlies pState, a
tool for the specification, design, qualitative analysis, quantitative analysis, and implementation
of embedded systems [Nok15]. With pState users can specify what a system does; from the
specified structure the tool generates executable code which determines how the system works,
and finally by generating input code for a model checker it is possible to reason why the system
does what it does (or fails at what it is specified to do).
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We show that state invariants, intended to be written by developers to capture design decisions
for correctness (qualitative) analysis, can also be used to improve WCET analysis. The bound
for the execution time can be specified directly on a transition and is automatically checked for
feasibility. If the calculated WCET is greater than the bound, the design has to be alternated or
the design target updated by selecting a different processor, increasing the clock of the processor,
etc.1 Thus this allows a design process in which low-level timing considerations can impact
the design. The calculation of WCET takes the run-time overhead of scheduling and cancelling
timed transitions into account. The advantage of this holistic modelling approach is the simplicity
gained by having only a single model and relying on automated code generation, without the need
for model transformations.

Statecharts [Har87], hierarchical state machines with concurrency and broadcasting are a
graphical specification formalism for reactive systems, but they are also executable and compil-
able [Har07]. Similarly to iState [SZ01], pState implements an event-centric semantics in which
external events trigger immediate execution, unlike the state-centric semantics of UML and stat-
echarts, in which events are data (in queues). These two interpretations are called requirements-
oriented and implementation-oriented semantics in [EJW02]. For example, the TCM toolkit
for conceptual modelling also follows the requirements-oriented semantics [DW03]. The event-
centric semantics simplifies the correctness analysis, as every transition is an atomic step, even
in presence of broadcasting. The semantics is suitable for embedded systems where events are
processed quickly enough and queuing of events is not desirable or not possible, e.g. with micro-
controllers with limited memory.

Timing analysis is divided into (1) analyzing control-flow properties and (2) calculating exe-
cution time of instructions or basic blocks of instructions [LS14]. From a pCharts model, pState
generates code and automatically calculates the execution time of instructions. To this end, bod-
ies of transitions are normalized to nested if-then-else statements with multiple assignments, and
a satisfiability modulo theories (SMT) checker, Yices [Dut14], is used to analyze control-flow
properties, with the use of invariants. The number of execution cycles is then calculated for each
basic block. The calculation of the upper bound of the execution time of programs is not possi-
ble in general (the halting problem). Currently pState imposes syntactic restrictions (no general
while-loops and recursion) such that transitions always terminate and automatic calculation of
the upper bound is possible.

State invariants are conditions that are attached to states in a state hierarchy and specify what
has to hold in that state. With hierarchical and concurrent states, the accumulated invariant
of a state is obtained by “inheriting” the invariants of parent states [Sek08]. Every incoming
transition to a state must ensure that its accumulated invariant holds and every outgoing transition
can assume that the accumulated invariant holds. This gives a method for checking a chart
against an invariant annotation. State invariants can express safety of an embedded system or
consistency of a software system. Invariants used in this way are a kind of flow facts annotations,
additional information about control flow [KP05]: invariants are explicitly specified, rather than
automatically derived, but are checked separately with a decision procedure, hence can assumed
to be correct. Invariants were used before in finding unfeasible paths, e.g. see [HGB+08, EES01,
GJK09] for overviews. Our contribution here is that we do not rely on the user suggesting or

1 Examples of automatic calculation of WCET from pCharts models can be found at http://pstate.mcmaster.ca/
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Figure 1: Every 10ms, state Time broadcasts event tick and transitions on tick in PortA and PortB
are executed simultaneously

a tool automatically trying to derive invariants for the purpose of finding unfeasible paths, but
we use model-based invariants which users would have stated for checking the correctness of
models. If a stated invariant is not preserved by all affected transitions, it is ignored for unfeasible
path analysis. This extends to invariants in models with concurrency and broadcasting. The
specific benefit of this approach is that invariants can be used in early WCET calculation, without
need for data flow analysis. As a simple example, in Fig. 1 the invariant

in PortA.Off ∨ in PortB.Off

states that PortA is in Off , or PortB is in Off , or both are in Off . They can not be in Through
simultaneously, therefore the code will never execute tick transitions in both PortA and PortB at
the same run. This is not the strongest invariant; a stronger invariant would be

in PortA.Off ⊕ in PortB.Off

where ⊕ is exclusive OR. For the execution time calculation of the tick event, there is no dif-
ference if we use either one, as both invariants exclude the possibility that PortA and PortB are
in Through at the same time. The event tick is generated by a timer periodically, every 10ms.
The time for executing both transitions on tick should not contribute to the WCET of transition t.
Informally, in this case:

WCET(t) = max(WCET((10ms/tick)‖ (tick/readA)),WCET((10ms/tick)‖ (tick/readB)))

Without the invariant, WCET of the transition t would be calculated as:

WCET(t) = WCET((10ms/tick)‖ (tick/readA)‖ (tick/readB))
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Transition conditions under invariants are checked by the SMT solver Yices as the backend
tool. When broadcasting to concurrent states, all combinations of executable paths are created.
If some conditions are never satisfied, the associated paths are excluded.

We start with preliminaries and an overview of the translation scheme in Sec. 3.1 and 3.2. In
Sec. 3.3 we show how conditions can be automatically verified and unreachable paths removed
from the executable code. Besides simplifying the generated code, this makes the WCET calcu-
lation more accurate. We illustrate in Sec. 3.4 how user-specified state invariants improve WCET
calculation. Accurate WCET analysis can be done only at assembly/object code level; therefore
our nested hierarchical state models have to be translated into assembly code. A brief description
of this process is given in Sec. 4.

2 Related Work

We consider static,or verification-based WCET calculation. The upper bound of the task execu-
tion is estimated on the code itself taking the hardware architecture into account. Static analysis
guarantees that execution time will not exceed the upper bound, but sometimes this estimation
may be too pessimistic, which can be confirmed by measurement-based methods. Other tech-
niques for WCET calculations are simulations and path analysis for the calculation of execution
scenarios [KP05]. In general, methods of static program analysis include value analysis, control
flow analysis (CFA), processor behaviour analysis, and symbolic simulation. Some well-known
WCET tools for static program analysis are aiT, Bound-T, OTAWA, and SWEET [WEE+08].

A method for analyzing real-time behaviour of reactive synchronous system with special focus
on statecharts is described in [EA99]. In addition to WCET and schedulability analysis of state-
charts models, worst case response time (WCRT) of synchronous models is introduced. WCRT
includes possible interference by other programs. The method for calculation of WCET/WCRT
is implemented in STATEMATE [HN96].

A difference between UML State Machine Diagrams [Fow03] and pCharts is related to the
specification of internal state activities. UML allows two types of internal state activities, do-
activities, and regular activities specified by entry and exit keywords. Regular activities occur
“instantaneously” while do-activities can take finite time and can be interrupted. pCharts do not
allow the explicit specification of internal state activities, but the entry part of the activity can
be specified in the body of incoming transitions, and exit part can be specified in the body of
outgoing transitions. The execution of a transition in pCharts is instantaneous, like in UML,
meaning it cannot be interrupted by another event. In pCharts, if a transition is enabled through
broadcasting an event, also transitively, all transitions take place simultaneously, unlike in UML.

The UML Profile for Modelling QoS provides facilities for defining a wide variety of QoS
requirements and properties [KJ10], divided into categories: performance, dependability, secu-
rity, integrity, coherence, throughput, latency, efficiency, demand, reliability, and availability. In
pCharts, a transition deadline can be specified directly on the model: the specified deadline is
similar to the QoS latency property, since both refer to a time interval during which a response
to an event must be completed. Other properties like performance, dependability, throughput are
expressible in pCharts models as well using timed and stochastic transitions and costs/rewards
attached to states and transitions.
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The behavioural constructors used in the OMG system modelling language SysML consist of
activity diagrams, sequence diagrams, state machine diagrams, and use case diagrams [OMG15a].
State machine diagrams in SysML are based on the standard UML state machine concept, so do
not support state invariants.

The UML profile for real-time systems (UML-RT) extends the basic UML concepts to facili-
tate the design of complex real-time systems [KJ10]. UML-RT is an industrial standard and can
be used to design event-driven real-time systems. The standard is primarily focused on archi-
tecture specification of real-time systems, but the behaviour can be modelled by state machine
diagrams. UML-RT state machines do not support nested concurrent states and automatic WCET
calculation whereas pState does.

A process of model-based design which guarantees hard real-time requirements is described
in [CBC08]; that approach is based on Time Petri Nets rather than state machines. Model-based
tools can integrate other specialized tools. For instance, for determination of resource usage and
timing analysis, modelling tool Esterel SCADE Suite [Tec15] uses StackAnalyzer and aiT.

Timed-automata and corresponding model checkers like UPPAAL have been used for WCET
calculation [BC11]. METAMOC reduces computing of WCET to finding the longest path of the
CFG represented as timed-automaton [DOT+10]. Model checking has also been used for low
level analysis dealing with caches and pipelines [Met04]. User-specified invariants have not been
considered in any of these approaches.

Using model checking, but not dealing with caches and pipelines, pState first predicts the
timing of program instruction for the specified hardware, and then the time of the specified path
is calculated by a model checker. For basic blocks, the number of processor ticks is introduced
as the cost of a transition. The execution time is calculated as the cost on a specified path.

The MARTE UML profile [OMG15b] for modelling and analysis of real-time and embedded
systems is intended to replace the existing UML Profile for Schedulability, Performance and
Time (SPT) [KJ10]. Behaviour scenarios are annotated with expressions of describing some
non-functional properties (NFP), like NFP Duration = $wcet1. The annotated model indicates
to the analysis tools what property has to be computed. While WCET calculation is part of the
MARTE extension, we are not aware that any of the tools that implements MARTE profile also
take into account invariants when calculating the WCET.

The work of [RMPC13] recognizes that when generating programming language code from
models and analyzing the WCET of the code, high-level information present in models is not
available to the WCET analyzer. Using a synchronous data flow language for modeling, the
approach is to supply information about infeasible paths to the WCET analyzer by computing
invariants that exclude those paths; the invariants are checked with a dedicated model checker.
In pState, invariants are integral part of the design with pCharts, rather than being computed.

The application area for which pState was originally developed are embedded systems with
8 and 16 bit micro-controllers, e.g. as used in active RFID tags [Pau06]. Those applications
have a small number of states, so the problem of scalability of model checkers is not a primary
concern. Data processing elements like prefetching, delayed branching, and branch prediction,
which can complicate WCET on advanced microprocessors, are not present in those simple
micro-controllers. We assume that the execution time of the instruction is independent of the
instruction order. Code generation and WCET calculation is integrated in pState and sufficiently
fast to allow interactive WCET analysis.
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S T
E[x = 0]/x := x+1420µs

Figure 2: Transition on event E with guard, body, and deadline

3 Model-based WCET

3.1 Preliminaries

Every event is translated to an intermediate representation consisting of skip, assignments, if -
then -else statements, and parallel (independent) compositions (which arise from broadcasting).
Following rules are used to eliminate parallel composition. Let b be boolean expressions, Q, R,
S statements, x, y variables, e, f expressions. The transformation rules are:

x := e‖ y := f = x,y := e, f (1)

if b then Q = if b then Q else skip (2)

(if b then Q else R)‖S = if b then (Q‖S) else(R‖S) (3)

(Q‖R)‖S = Q‖R‖S (4)

Q‖ skip = Q (5)

These rules allow to transform a statement to nested if - then -else statements with the innermost
statements being multiple assignments. That form is used for WCET analysis, as below.

3.2 Transition with Specified Deadline

Figure 2 shows a transition from state S to state T on event E. Guard x = 0 represents the
condition which must be satisfied for the transition to be taken, body x := x+1 is the action which
is executed when the transition is taken, and 20µs is the specified deadline for that transition.
Guard, action, and deadline are optional in charts. The operation op(E) on event E returns a set
of prioritized guarded commands, with nondeterminism among transitions on the same event,
but outer transitions taking priority over inner transitions, according to the algorithm in [NS14].
The nondeterminism can be arbitrarily resolved, such that op(E) becomes a nested if - then -else
statement. Here op(E) is given by:

op(E) = if in(S)∧ (x = 0) then goto(T) ‖ x := x+1 else skip

To check if the WCET of the transition from S to T takes at most n cycles, we need to calculate
the execution time on E by translating op(E) into assembly code. If the target is the RISC
PIC16F6xx micro-controller, the code is in PIC assembly language, which we call picasm. The
instruction set has about 35 instructions divided into three groups, byte-oriented, bit-oriented and
control operations. Most of the instructions take one processor cycle, except jump and subroutine
call which take two cycles. The operation op(E) can be executed if the chart is in state S, written
as in(S) and guard x = 0 holds. The effect of the transition is execution of the then branch
x := x+ 1. The chart is going to state T , written as goto(T). With a simple translation scheme
employed, the WCET of op(E) can be calculated compositionally:
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Listing 1: Generated assembly code for op(E)
picasm(op(E)) =

movf r , W ; W := r
xorlw S ; W := W XOR S
btfss STATUS, 0x2 ; If Z = 1 skip
goto CONTINUE 0

GUARD 0
movf x, W ; W := x
xorlw 0 ; W := W XOR 0
btfss STATUS, 0x2 ; If Z = 1 skip
goto CONTINUE 0

ACTION 0
movlw 1 ; W := 1
addwf x, 1 ; x := W + x
movlw T ; W := T
movwf r ; r := W

CONTINUE 0

WCET (picasm(op(E))) = WCET(picasm(in(S))) + WCET(picasm(x = 0)) +
WCET(picasm(goto(T)‖ x := x+1))

The composition goto(T)‖x := x+1 is well-defined only if the variables assigned by goto(T) and
by x := x+1 are disjoint. Sequentialization of multiple assignments may need extra variables for
temporary storage. The time to copy values into these variables has to be taken into account. The
sequentialization of multiple assignments is done with minimum number of auxiliary variables.
Statement goto(T) is here defined as r := T , where r is the root state in which S and T are nested.
Therefore this parallel composition is well defined and there is no need for an extra variable for
sequentialization, so

(goto(T)‖ x := x+1) = (r := T ; x := x+1)

and WCET of this parallel composition is

WCET(picasm(goto(T)‖ x := x+1)) = WCET(picasm(r := T)) +
WCET(picasm(x := x+1))

The generated assembly code is shown in Listing 1. The number of cycles for in(S) is 3, etc.,
and the WCET of op(E) calculated by pState as

WCET(picasm(op(E))) = 3+3+2+2 = 10 cycles

One processor cycle for micro-controller RISC PIC16F6xx running at 4MHz is 1µs. In Figure 2,
we specify4= 20µs, which is greater than the WCET of 10µs, so we can say that the transition
on event E satisfies the specified requirement for this particular target. To simplify notation,
we leave out the translation to assembly if understood from the context: WCET(S) stands for
WCET(target asm(S)) for statement S.
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T1 T2
E/stat1 ‖ stat2

Figure 3: Transition with parallel composition in body

3.3 WCET of Parallel Composition

Figure 3 shows a transition from state T1 to T2 on event E. Suppose

stati ≡ if ci then Si, c1 ≡ x > 0, c2 ≡ x < 0

where Si are statements. Then:

op(E) = if in(T1) then goto(T2)‖ stat1 ‖ stat2 else skip

The parallel composition stat1 ‖ stat2 amounts to:

(if c1 then S1)‖ (if c2 then S2)
= by (2)

(if c1 then S1 else skip)‖ (if c2 then S2 else skip)
= by (3)

if c1 then(S1 ‖ if c2 then S2 else skip) else(skip ‖ if c2 then S2 else skip)
= by (5) and symmetry of ‖

if c1 then (S1 ‖ if c2 then S2 else skip) else(if c2 then S2 else skip)
= by (3) and symmetry of ‖

if c1 then(if c2 then S1 ‖ S2 else S1) else(if c2 then S2 else skip)
= definition of ci

if x > 0 then(if x < 0 then S1 ‖ S2 else S1) else(if x < 0 then S2 else skip)

Now, if the SMT solver verifies that x > 0∧x < 0 is unsatisfiable and Si do not assign to common
variables, above is equivalent to

if x > 0 then S1 else(if x < 0 then S2 else skip)

and the WCET of op(E) is calculated by pState as:

WCET(op(E)) = WCET(in(T1))+WCET(goto(T2))+WCET(x > 0)+
max(WCET(S1),WCET(x < 0)+WCET(S2))

That is, infeasible paths are excluded. The calculation is conservative: if the SMT solver fails to
establish that the conjunction of guards is unsatisfiable, the WCET of the code with all paths is
taken.
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S T

k : t1 l : t2

E[g]/a4d

Figure 4: Transition on E disabling and enabling timed transitions

3.4 WCET Taking State Invariants into Account

State invariants are used to improve WCET calculation by providing additional information,
which makes the analysis feasible and tight. Figure 1 presents the process of reading redun-
dant digital ports. If we assume that our target is PIC16F636, we define the action readA as
reading port A into predefined variable ra by ra := PORTA, where PORTA is port A of the
micro-controller. Similarly, we define reading from port B.

If the signal is lost on port A, the event toggle is generated and the system starts reading data
from port B. From the generated code, the WCET of transition in state Timer is automatically
calculated as 10ms + 160 cycles. However, when PortB is in Through, PortA must be in Off and
vice versa. So, it is not possible to read both ports A and B at the same tick, but this is so far
not taken into account when the WCET is calculated. By adding the invariant in PortA.Off ∨
in PortB.Off we specify that PortA and PortB can not be in the Through states at the same time.
pState verifies this automatically and excludes one of the transition on tick when calculating the
WCET. The calculated WCET is now 10ms + 148 cycles. The complete generated assembly
code as used for WCET calculation is at http://pstate.mcmaster.ca/ .

3.5 WCET Taking into Account Timed Transitions

We consider two timed transitions k and l as in Fig. 4. Transition k takes place exactly t1 time
units after the state S is entered, if event E does not occur in the meantime. Similarly, transition
l happens t2 timed units after state T is entered. The operation on event E for the transition in
Fig. 4 includes cancelling timed transition k and scheduling timed transition l is

op(E) = if in(S)∧g then(goto(T) ‖ a) ; cancel k ; schedule l else skip

For the WCET of E we need to add the time of scheduling transition l and the time to cancel tran-
sition k. Again, the transition is considered to be correct if the WCET is less or equal to specified
deadline d, i.e. WCET(op(E)) ≤ d. A scheduler for timed transitions is created separately and
is called from the generated code for scheduling and cancelling transitions. Scheduling of timed
transitions involves adding new events into a data structure of scheduled events, sorted by time
and priority. Procedure cancel contains a loop to search for the scheduled timed transition which
has to be removed. When the first due-to event is removed, other events are shifted down. In
the current implementation of the scheduler, the time to schedule an event if the data structure is
empty is 52 processor cycles. The time to go trough the loop and sort events is 141 cycles per
event. The WCET of scheduling is less then or equal to the number of scheduled transitions mul-
tiplied by 141 plus 52 cycles. One run through the loop of a canceled timed transition takes 35
cycles, while the time to shift the scheduled event takes 75 cycles. In a similar way, we have that

9 / 15 Volume 72 (2015)

http://pstate.mcmaster.ca/


Model-based WCET Analysis with Invariants

S T
t : 100ms

Figure 5: Timed transition t scheduled 100ms after S is entered

the WCET of cancelling a transition is less then or equal to the number of scheduled transitions
multiplied by 35 plus 75 cycles.

WCET(cancelling of timed transition) = 35×# of scheduled transition+75

For the transition on event E from Fig. 4, pState calculates

WCET(op(E))≤ 10 +52+35×1+75 = 172 cycles

Note: The number processor cycles are related to the current implementation. Any modification
of the algorithm may have an impact on those numbers.

3.6 WCET of Timed Transition

Consider timed transition t in Fig. 5. The operation top on timed transition t is given by

top(t) = if in(S) then goto(T) else skip

The transition takes place 100ms after state S is entered. To calculate the WCET we need to add
the time required by the scheduler to start this transition.

WCET(top(t)) = WCET(goto(T))+WCET(scheduler cycle)

The scheduler uses TIMER0 of the target processor to generate an interrupt every 1ms. In the
interrupt service routine, the due-time for each scheduled event is decreased. This is done in a
loop and the execution time depends of the number of scheduled events. Also, in each scheduler
cycle, possible events need to be polled.

WCET(scheduler cycle) = WCET(decrease due time)+WCET(event polling)

Based on the current implementation, the time to decrease the event due-time is 98 cycles if there
is only one task scheduled. Polling events has two parts, polling of timed transitions and polling
of input events on the micro-controller’s ports:

WCET(event polling) = WCET(polling timed transitions)+WCET(polling input events)

The WCET for polling timed transitions is 22 cycles, while the WCET of polling input events is
only 5 cycles plus the time to execute the input event.

WCET(event execution)≤ 22+∑{5+ input event I execution | input event I}

For timed transition t, taking into account calculations from Sec. 3.2, and assuming that (1) there
is only one event to execute, and (2) there are no input events, pState calculates the WCET as:

Proc. AVoCS 2015 10 / 15
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WCET(picasm(op(t))) = 100ms+3 cycles [in(S)] + 2 cycles [goto(T)] +
98 cycles [tick] + 22 cycles [event execution]

= 100ms+125 cycles

If the target micro-controller runs on 4MHz, the execution time of one cycle is 1/(4MHz/4)
which is 1µs. In this case, WCET(op(t)) = 100.125ms. If the specified deadline is4≥ 125 µs,
the transition execution time is satisfiable. But, if we need 4≥ 100µs, we will find out during
the specification phase that the requirement can not be implemented. In that case, a possible
solution is to select a higher frequency of micro-controller clock. Instead of 4MHz, we can use
8MHz crystal clock, which will fix the problem. By this approach in the early phase of design
during specification we can identify some hardware limitations and make appropriate design
decisions.

The operation top(t) of the timed transition in Fig. 5 includes code that checks the source
state, S, before it takes the transition to another state. As the transition is only scheduled when
the chart is in S, that check is not needed, but is still included to protect against faults like
incorrectly scheduled events.

Long-running real-time systems are known to be prone to cumulative clock drifts. This can
occur if the scheduling of new timed transitions is delayed by to the time it takes to schedule
the new transition. Cumulative drift is avoided here by having TIMER0 generate periodically an
interrupt every 1ms and requiring that all transitions are completed within 1ms. That is, every
transition, regular and timed, has an implicit deadline of that corresponds to the timer resolution.

4 Assembly Code Generation

Assembly code is created by translating the intermediate code representation. The translation
of if - then -else statements is straightforward. The translation of parallel statements needs extra
processing since these have to be converted into sequential compositions as shown in Secs. 3.2
and 3.3. The multiple assignment v1,v2 := e1,e2 is translated to v1 := e1; v2 := e2; if v1 does not
occur in e2. In general, for the sequentialization of the multiple assignment

v1, . . . ,vn := e1, . . . ,en

we may need to create one or more extra variables. The problem of sequentializing multiple
assignments can be expressed as follows: for given vi (i ∈ 1..n) and expressions ei which are
only dependent on these variables, we define the dependency relation to be a directed graph
G = (N,E), where N = {ni | i ∈ 1..n}, and

E = {(ni,nj) | i ∈ 1..n∧ j ∈ 1..n∧ ei is dependent on ej}

When G is acyclic, the sequentialization is trivial. When there are one or more cycles in G, extra
variables are necessary to eliminate the cycles. Introducing an extra variable for vi will remove
ni and all connected edges from G. A cycle in G is broken when any ni in the cycle is removed.
One node can be in more than one cycles; if we call the number of each ni the cycle degree
ci, then removing ni would break these ci cycles in G. Therefore, sequentialization of multiple
assignment can be reduced to the process of removing cycles form the feedback vertex set graph.
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That is proven to be an NP-complete problem [GJ90]. Because of this, our implementation of se-
quentialization provides an approximate solution. Based on experimentation, for most practical
cases where n≤ 5, the approximation provides an optimal solution.

Chart states are generated as enumeration names of states, and variables as integers. In charts,
integer variables are declared as subrange types with lower and upper bound, but the target
micro-controller allows only subranges that fit into one byte. In the generation of assembly code,
the technique of delayed code generation [Wir96] is used, which produces optimal addressing
modes and register usage for this simple architecture in a single pass. This makes code generation
sufficiently fast that WCET analysis can be done interactively.

Scheduler, initialization and I/O actions are not generated from the specification, they are
write-once code. In this way we have full control over the structure of the application, similar to
the approach described in [IAR99].

5 Summary, Conclusion, and Future Work

We implemented a framework for model-based WCET analysis of real-time systems. From a hi-
erarchical representation, executable code in a low level language is generated. On the generated
code, WCET of transitions can be calculated by counting the number of assembly instructions
execution cycles. The precise WCET determination on complex architecture is a challenging
problem, but determining the WCET on 8 and 16 bit micro-controllers is easier since features
like multi-stage pipelines and caches are not present. Invariants for improving the WCET are in-
dependent of the architecture of the target processor. The pState architecture allows in principle
external tools for WCET to be plugged in. Existing WCET analyzers like AbsInt [Inf15] could
calculate the WCET of executable code generated by pState, but the invariants need to be stated
in the AbsInt general annotation file; the annotation could in principle be generated by pState as
well.

In order to exclude infeasible paths, conditions specified by state invariants and conditions
created by sequentialization of parallel compositions are verified by the SMT solver Yices. In
our models we do not allow general while loops and recursion, so the calculation of WCET is
possible. Actions can contain external calls, e.g. to I/O libraries, that are out of control of pState:
for those timing constraints cannot be specified. Thus, if loops or recursion are necessary, these
can be implemented by an external call. We plan to work on allowing loops to be expressed
directly in pState.

Worst-case-response-time (WCRT) that includes the impact of other transitions is especially
important in concurrent systems. Invariants could be taken into account in a similar way as they
are taken for calculation of WCET. Latency is the time passed from the moment when the event
is registered to the moment when execution of the event starts. It depends on the implementation
of the scheduler and I/O synchronization. The automatic calculation of transition WCRT and the
estimation of the latency are the focus of future work.
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