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Abstract: SPPF (shared packed parse forest) is the best known graph representa-
tion of a parse forest (family of related parse trees) used in parsing with ambigu-
ous/conjunctive grammars. Systematic general purpose transformations of SPPFs
have never been investigated and are considered to be an open problem in software
language engineering. In this paper, we motivate the necessity of having a transfor-
mation operator suite for SPPFs and extend the state of the art grammar transforma-
tion operator suite to metamodel/model (grammar/graph) cotransformations.
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1 Motivation

Classically, parsing consumes a string of characters or tokens, recognises its grammatical struc-
ture and produces a corresponding parse tree [ASU85]. A more modern perspective is that
parsing recognises structure and expresses it explicitly [ZB14]. In many situations, trees appear
to be unsatisfactory target data structures: they can express hierarchy easily, but any other struc-
tural commitments require special tricks and encodings, which are much less preferable than
switching to graphs or pseudographs [SL13]. The most common scenarios include expressing
uncertainty (e.g., in generalised parsing), maintaining several structural views (e.g., in the style
of Boolean grammars) or manipulating recursive structures (e.g., with structured graphs).

Generalised parsing algorithms (GLR [Tom85], SGLR [Vis97], GLL [SJ10a], RIGLR [SJ05],
etc.) differ from their classic counterparts in dealing with ambiguity [BSVV02, BV11]: instead
of trying to avoid, ignore or report ambiguous cases, they are expressed explicitly in so called
parse forests. Formally, a parse forest is a set of equally grammatically correct parse trees. Some
of them may be semantically different, which makes such ambiguity significant and usually
undesirable. In practice, such sets usually need to be filtered or ranked in order to make full
use of the available tree-based approaches to program analysis and transformation. In Boolean
grammars [Okh04] and conjunctive grammars [Okh01], we can use conjunctive clauses in a
grammar to explicitly specify several syntactically different yet equally grammatical views of the
same input fragment — they can be semantically equivalent [SC15] or one branch strictly more
expressive than the other [Zay13]. Parsing techniques can utilise such specifications to create
special kinds of nodes in a parse tree whose descendant subtrees share leaves [Okh13, Ste15].
Shared recursive structures are also facilitated by parametric higher-order abstract syntax [PE88,
DPS97, Chl08]. It is an advanced method with high expressiveness, but it often requires similarly
advanced techniques like multilevel metareasoning [MA03] and demands the use of automated
theorem provers [DFH95, RHB01]. For now we will focus on the first two cases, since both
kinds of structures defined by those two related approaches conceptually are parse forests.
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This paper is an endeavour to advance the theory and practice of transformation of parse
forests — specifically, coupled transformations (in short, cotransformations) of grammars as
structural definitions of ambiguous languages and graphs representing sets of trees conforming
to them. This domain of software language engineering is underdeveloped, which was pointed
out as one of the major open problems in modern software language engineering by James Cordy
and explained in his recent keynote at the OOPSLE workshop [BZ15, §3.1]. In the next section,
we will provide some minimal background knowledge needed to appreciate the rest of the paper.
Then, in Section 3 we will define the problem we can solve and its implications. Section 4 is the
main section which introduces the operator suite for grammar-based gardening and proposes a
classification of its operators. Section 5 contains links to related and future work, and Section 6
concludes the paper.

2 Background

There have been various attempts in the past to represent parse forests. The earliest ones required
a grammar to be in a Chomsky Normal Form [Cho59] — theoretically a reasonable assumption
since any context-free grammar can be normalised to CNF, but ultimately we need a parse forest
for the original grammar, not for the normalised one, which would require bidirectional grammar
transformations [Zay12] to be coupled with tree and forest transformations. Such a setup is far
from trivial and thus not practically feasible.

The next attempt in representing parse forests revolved around tree merging [Ear68]: such a
parse forest representation would result in a tree-like DAG with all the edges of all the trees in
the forest. This is obviously an overapproximation of the forest (see Figure 1), which requires
additional information in order to be unfolded into a set of trees — in other words, in order for
any sensible manipulation to happen. Obviously, having a data structure that requires so much
nontrivial postprocessing overhead, is highly undesirable.

The best representation of a conceptual parse forest (a set of trees with equal lists of leaves) so
far is a so-called shared packed parse forest [Tom85, §2.4], SPPF from now on: its components
are merged from the top until the divergent nodes, and due to maximal sharing the leaves and
perhaps even entire subtrees grouping leaves together, are also merged. An example of such a
graph is given on Figure 2. Formally, an SPPF is an acyclic ordered directed graph where each
edge is a tuple from a vertex to a linearly ordered list of successors and each vertex may have
more than one successor list. If V is a set of vertices, then edges are:

E = {〈vi,(vi1,vi2, ...,viki)〉 | vi ∈V,vi j ∈V} ⊆V ×V ∗

SPPF-like structures are used nowadays both in software language toolkits that allow explicit
ambiguities, such as Rascal [KSV09], and those that allow explicit conjunctive clauses, such as
TXL [Ste15]. For a detailed view on the implementation details we refer the readers to a paper
on ATerms [BJKO00]. The theory of transformations of SPPFs is underdeveloped — they work
exactly like transformations on trees if no shared nodes are present around the transformation
point, and are unreliable and unpredictable otherwise. We would like to improve the situation by
providing a toolkit for forest migration — i.e., transformations of SPPFs inferred from grammar
evolution steps.
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Figure 1: Demonstration that the Earley representation overapproximates parse forests: (a) a
simple ambiguous grammar example; (b) a term with ambiguous parse; (c)&(d) correct parses;
(e) the graph representation of the forest suggested by Earley [Ear68]; (f)&(g) incorrect parse
trees that are well-formed according to the grammar (a) and covered by the parse tree represen-
tation (e), but not corresponding to the actual term (b).

3 Transformation

For many years trees have been the dominant data structure for representing hierarchical data
in software language processing. They are remarkably easy to define, formalise, implement,
validate, visualise and transform. There are many ways to circumvent data representation as
graphs by considering a tree together with a complementary component such as a relation be-
tween its vertices that would have turned a tree into a cyclic graph, as well as many optimisations
of graph algorithms that work on skeleton trees of a graph. Take, for instance, traversing a tree
— it can be done hierarchically from the root towards the leaves or incrementally from the
leaves towards the root, each case guaranteed termination even if the traversal is not supposed
to stop when a match is made. This naturally provides us with four traversal strategies found
in metaprogramming: bottom-up-continue, bottom-up-break, top-down-continue and top-down-
break [VBT98, BHKO02, KSV09]. More sophisticated and flexible traversal strategies exist but
are less in demand — for powerful strategic programming frameworks and paradigms we refer
the readers to Stratego [Vis01], Strafunski [LV03], SYB [LJ04], Cω [BMS05], Nuthatch [BL13],
structure-shy programs [CV11], generic FP [JJ97, Hin00], etc. A detailed and only slightly out-
dated overview of visiting functions, strategic programming and typed/untyped rewriting can be
found in the work of van den Brand et al [BKV03] and the bibliography thereof. This section is
focused on finding existing techniques that can be or are in fact SPPF transformations.
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}
Figure 2: One the left, an SPPF graph resulted from parsing the input “2+2+2+2” with the
grammar from Figure 1 (a). On the right, there are five parse trees in a forest, which are packed
in a triple ambiguity, two of subgraphs of which have double ambiguities. All of them share
leaves and subtrees whenever possible. Below the pictures we show its formal representation as
an ordered directed graph.

3.1 Disambiguation

One of the relatively well-researched kind of SPPF transformations is disambiguation — it is
commonly practised with ambiguous generalised parsing because static detection of ambiguity
is undecidable for context-free grammars [Can62]. However, most of the time the intention of
an average grammarware engineer is to produce one parse tree, so this line of research is mostly
about leveraging additional sources of information to obtain a parse tree from a parse forest.
There are three main classes of disambiguation techniques:

• Ordered choice, dynamic lookahead and other conventions aimed to prevent ambiguities
altogether or avoid them. These are fairly static, relatively well-understood and widely
used in TXL [DCMS02], ANTLR [PF11] and PEG [For04].

• Follow/precede restrictions, production rule priorities, associativity rules and other annota-
tions for local sorting (preference, avoidance, priorities) that help to prune the parse forest
during its creation. Since these are algorithmic approaches in a sense that they modify the
generation process of an SPPF and thus are not proper mappings from SPPFs to SPPFs,
we will not consider them in the rest of the paper and refer to other sources primarily
dedicated to them [BSVV02, BV11].

• Disambiguation filters that are run after the parsing process has yielded a fully formed
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SPPF: their main objective is to reduce the number of ambiguities and ultimately to shave
all of them off, leaving one parse tree. An example of this would be how processing
production rules marked for rejection is done for SGLR [BSVV02] and GLL [BV11] —
even though recursive descent parsers can handle an equivalent construct (and-not clause)
during parsing without any trouble [SC15].

Formally speaking, the first class never produces parse forests; the second class works with
disambiguators (higher order functions that take a parser and return a parser that produces less
ambiguous SPPFs) [BSVV02]; the third class uses filters (functions that take an SPPF and pro-
duce a less ambiguous SPPF) [KV94]. In some sources approaches with disambiguators are
called “semantics-directed parsing” and approaches with filters are called “semantics-driven dis-
ambiguation” [BKMV03], since both indeed rely on semantic information to aid in the syntactic
analysis. Disambiguation filters are still but a narrow case of SPPF transformation, but they have
apparent practical application and are therefore well-researched.

3.2 Grammar programming

Grammar programming is like normal programming, but with grammars: there is a concrete
problem at hand which can be solved with a grammar, which is then being adjusted until an
acceptable solution emerges. A representative pattern here is working with a high level software
artefact describing a language (we assume it to be a grammar for the sake of simplicity, but in a
broad sense it can be a schema, a metamodel, an ontology, etc), from which a tool solving the
problem at hand is inferred automatically.

There are at least three common approaches to grammar programming: manual, semi-auto-
mated and operator-based. Manual grammar programming involves textual/visual editing of
the grammar file by a grammarware engineer. It is the easiest method in practice and is used
quite often, especially for minor tweaks during grammar debugging. However, it leads to hidden
inconsistencies within grammars (which require advanced methods like grammar convergence
to uncover [LZ11]), between changed grammars and cached trees (which demand reparsing) and
between grammars and program transformations (which requires more manual labour). Semi-
automated grammar programming adds a level of automation to that and thus is typically used
in scenarios when a baseline grammar needs to be adjusted in different ways to several tasks
(parsing language dialects, performing transformations, collecting metrics, etc). Usually the
grammarware toolkit provides means to extend the grammar or rewrite parts of it — examples
include TXL [DCMS02], GDK [KLV02] and GRK [Lä05]. Arguably the latter two of these
examples also venture into the next category since they contain other grammar manipulation
instruments like folding/unfolding. If we extend this arsenal with even more means like merging
nonterminals, removing grammar fragments, injecting/projecting symbols from production rules,
chaining/unchaining productions, adding/removing disjunctive clauses, permuting the order and
narrowing/widening repetitions, we end up having an operator suite for grammar programming.
The advantage of having such a suite lies in the simple fact that each of the operators can be
studied and implemented in isolation, and the actual process of grammar programming will
involve calling these operators with proper arguments in the desired order. Examples of operator
suites include FST [LW01], XBGF [LZ11], ΞBGF [Zay12] and SLEIR [Zay14b].
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3.3 Cotransformation

We speak of cotransformations when two or more kinds of mutually dependent software artefacts
are transformed together to preserve consistency among them: usually one changes, and others
co-evolve with it [Läm04]. Naturally, the first cotransformation scenario we should think of,
involves an SPPF and a grammar that defines its structure. This change can be initiated from
either side, let us consider both.

Assuming that we have a sequence of grammar transformation steps, we may want to execute
them on the language instances (programs) as well, to make them compatible with the updated
grammar. Such a need arises in the case of grammar convergence [LZ09], when a relationship
between two grammars is reverse engineered by programming the steps necessary to turn one
into the other, and a co-transformation can help to migrate instances obtained with one grammar
to fit with the other. For example, we could have a grammar for the concrete syntax and a schema
for serialisation of the same data — a transformation sequence that strips the concrete grammar
from elements not found in the schema (typically terminals guiding the parsing process such as
semicolons and brackets), could also be coupled with a transformation sequence that removes the
corresponding parts from the graphs defined by them (e.g., a parse tree and an XML document).

Consider another scenario where we have the change on language instances and want to lift
it to the level of language definitions. An example could be found in program transformation,
a common software engineering practice of metaprogramming. If we want a refactoring like
extracting a method, renaming a variable or removing a go-to statement, it is easy and practical
to express it in terms of matching/rewriting paradigm: in Spoofax [KV10], Rascal [KSV09],
TXL [DCMS02], ATL [JAB+06], XSLT [Kay07], etc. However, a correct refactoring should
preserve the meaning of the program, and the first step towards that is syntactic correctness of this
program. For non-refactoring transformations found in aspect-oriented development, automated
bug fixing and other areas, we still want to ascertain the extent to which the language is extended,
reduced or revised. In the case of strongly typed metaprogramming languages, they will not
allow you to create any ill-formed output, but the development process can lead you to first
specify a breaking transform and then cotransform the grammar so that it “fits” — which is what
cotransformations are good for.

3.4 Explicit versus implicit

This was already mentioned before, but becomes a crucial point from now on: parse forests
can arise from two different sources — conjunctive clauses in the grammar used for parsing
and generalised parsing with ambiguous grammars. The latter case can be considered implicit
conjunction, since it is present on the level of language instances but not on the grammar level. In
that case, instead of a more cumbersome construction specifying a precise parse, we use a simpler
grammatical definition which yields a forest. If a grammar is both conjunctive and ambiguous,
this can lead to its both implicit and explicit conjunctive clauses to be found in SPPFs — with
no observable difference on an instance level.

Similarly, some of the transformations will “collapse” conjunctions, making one branch of a
clause equal to another. Formally, for an SPPF node to have several branches means existence of
several edges in the form 〈vi,(vi1, ...,viki)〉, 〈vi,(v′i1, ...,v

′
ik′i)〉, etc. When a transformation results
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Language preserved
Language 
extended

Language 
reduced

Language 
revised
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preserved

bypass eliminate introduce import vertical 
horizontal designate unlabel anonymize 

deanonymize renameL renames detour

addV addH 
define

SPPFs 
preserved 
or fail

removeV
removeH
undefine

SPPFs 
refactored

unfold fold inline extract abridge unchain chain 
massage distribute factor deyaccify yaccify

equate rassoc lassoc renameN clone concatT splitT

appear widen 
upgrade unite 

removeC
disappear

abstractize project 
concretize permute 

renameT splitN

SPPFs 
refactored
or fail

addC narrow 
downgrade

redefine
replace
reroot

fail inject

Table 1: The XBGF operator suite designed for convergence experiments [LZ09, LZ11] and
updated here to the latest version of the GrammarLab. Columns of the table refer to the effects
of the operators on the string language generated by a grammar; rows classify coupled effects on
the SPPFs.

in all vi j becoming equal to the corresponding v′i j, such edges merge in the set. If such conjunc-
tions represent ambiguities, this is disambiguation; if they represent parse views, it merges the
views and makes them undistinguishable.

4 Grammar-based gardening

XBGF (standing for “transformations of BNF-like grammar formalism”) was an operator suite
for grammar programming originally developed for grammar recovery and convergence exper-
iments [LZ09, LZ11] and used for various grammar maintenance tasks afterwards — e.g., for
improving the quality and maturity of grammars in the Grammar Zoo [Zay15a, Zay15b]. It has
operators like eliminate(n) that checks whether the given nonterminal n is referenced anywhere
in the grammar, and if not, removes its definition harmlessly; or operators like removeN(x,y)
that ensures that the nonterminal x is found in the grammar while y is not, and subsequently
renames x to y; or even operators like redefine(pk, p′k) which removes all production rules pk
defining one nonterminal from the grammar and replaces them with rules p′k defining the same
nonterminal differently. These operators are relatively well-studied so that we can always make
a claim about the effect that a transformation chain has on the language generated/accepted by
the grammar. Originally [LZ11] XBGF operators were classified according to their preservation,
increase, decrease or revision of the language within two semantics: the string semantics and the
term semantics. The contribution of this section is their classification according to the coupled
effect of the operators on the SPPFs — see Table 1 for the overview.
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4.1 SPPFs preserved

The best kind of cotransformation is the trivial one where the initial transformation triggers no
change in the linked artefacts.

4.1.1 Language-preserving operators

Many operators that preserve the (string) language associated with the grammar, also preserve
the shared packed parse forests of the instances of this language. Consider, for instance, the
eliminate(n) operator we have just introduced in the previous paragraph: essentially, it removes
an unused construct. Since such a construct is unused in other production rules, it can never be
reached from the root symbol, so it can also never occur in the graphs representing grammatically
correct programs. Hence, any SPPF which was correct for grammar before the transformation, is
still correct for the grammar with the unused part eliminated. Similarly, introducing a language
construct that was not previously there and is not (yet) linked to the root, has no impact on the
forests. The same argumentation holds for decorating operators that add/remove labels to/from
rules of the grammar or their subexpressions, or rename them.

The last two operators seen in this cell on Table 1 are vertical(n) and horizontal(n) — they
facilitate switching between a horizontal style of grammatical definitions (i.e., “A ::= B |
C;”) and a vertical one (i.e., “A ::= B; A ::= C;”) — some grammatical frameworks
distinguish between them, but never on an instance level, since a realisation of a disjunction
commits to one particular branch. Hence, these operators also have no impact on SPPFs.

4.1.2 Language-extending operators

In the same way rearranging alternatives in production rules discussed in the previous section,
has no impact on SPPFs, strict language extension operators like addV(p) and addH(p) have
no impact on the forests. Since disjunctive clauses are not explicitly visible in SPPFs, any tree or
forest derived with the original grammar, also conforms to the transformed one — the coupled
instance transformation is trivial.

There is even one operator which is very invasive on a grammar level while being entirely
harmless on the instance level — define(p) is a variant of introduce(p) that adds a definition of
a nonterminal that is used in some parts in the grammar reachable from the top symbol. Having
such nonterminals (called “bottom nonterminals”) in a grammar is not a healthy practice and is in
general considered a sign of bad quality since it signals incompleteness [LV01, SV00, Zay15a].
However, if we assume for the sake of simplicity that the default semantics for an undefined
nonterminal is immediate failure (or parsing, generation, recognition or whatever the goal we
need the grammar for), we may view define(p) as a language-extending (not a language-revising)
operator. Thus, if we do somehow obtain a well-formed SPPF for such a grammar, it means it
was constructed while avoiding the bottom nonterminal in question — hence, introducing it is
no different than adding any other unreachable part we have seen so far and as such has no effect
on the SPPFs.
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4.2 SPPFs preserved, if possible

There are several cases when we do not know in advance whether the cotransformation of SPPFs
will be possible: when it is, it is trivial.

4.2.1 Language-reducing operators

The operators removeV(p) and removeH(p) are the counterparts of addV and addH operators
we have considered above, which remove alternatives instead of adding them. The effect of such
a transformation on a given SPPF is easy to determine: if the alternative which is being removed,
is exercised anywhere in the graph, the (co)transformation fails; if it is not, then no update of the
forest is required.

Note that since all branches of the conjunctive clause are present in a given SPPF, their removal
requires a (possibly failing) refactoring: hence, removeC(p) is considered later in Subsubsec-
tion 4.3.2.

The undefine(n) operator takes a valid nonterminal (defined and used within the grammar)
and turns it into a bottom nonterminal (used yet not defined). It is a language reducing operator
since its effect is a strict decrease in the number of possible correct programs: any parse graph
containing a note related to the nonterminal n, becomes invalid. Hence, the cotransformation for
it checks whether such a node is indeed found in the given SPPF: if yes, the transformation fails;
if not, it immediately succeeds without updating the SPPF.

4.3 SPPFs refactored

In the next subsections we consider cases of less trivial cotransformations, when language in-
stances have to change to preserve conformance.

4.3.1 Language-preserving operators

Many transformation operators that preserve the language associated with a grammar, still have
some impact on the parse graphs. When the impact is easy to calculate in advance and thus en-
code the cotransformations as SPPF refactorings that are parametrised in the same way the gram-
mar transformations are, we can run rewritings like extract(p) on both grammars and SPPFs.

Consider Figure 3(a). It shows a simple grammar of a language {anbncn | n > 0} with three
conjunctive views: the first one (a+ b+ c+) being the most intuitive and hence the most suit-
able for expressing patterns to be matched on programs; the remaining two being used to parse
the language (which is well-known to be context-sensitive, so we need the power of at least
two conjuncts to recognise it precisely). In a sense, the last two conjuncts represent a recog-
niser and the first one specifies a parser [SJ10b, SC15]. When a transformation command ex-
tract(AP::=a+;) is executed, the effect on the grammar is apparent: a new nonterminal is
introduced and two occurrences of its right hand side are replaced with it. The effect on an
SPPF is also quite easy to calculate: the node with a+ is replaced with a chain of two nodes
(AP and a+); the incoming edges of the old node are connected as the incoming edges to the
first one in the chain; the outgoing edges of the old node become the outgoing ones of the last
in the chain (shown on Figure 3(b), changes in bold green). A slightly more complicated case
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S  ::= a+ b+ c+ & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

(a)

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABP

a b c

AP AB b+ BC c+

S S S

AB?

ε

BC?

ε

a+

S  ::= AP b+ c+ & AB c+ & AP BC;
AB ::= a AB? b;
BC ::= b BC? c;
AP ::= a+;

S   ::= ABP c+ & AB c+ & a+ BC;
AB  ::= a AB? b;
BC  ::= b BC? c;
ABP ::= a+ b+;

(b) (c)

Figure 3: SPPF transformations coupled with extraction of a new nonterminal definition: (a) the
original grammar and an SPPF of the term “abc”; (b) after applying extract(AP::=a+;); (c)
after applying extract(ABP::=a+ b+;). The case of extracting one symbol is easier because
an SPPF already has nodes for such derivations and they only need to be chained; when more
than one symbol is present in the right hand side of a production rule being extracted, then a new
node is introduced for all matched patterns of use.

S   ::= ABC & AB c+ & a+ BC;
AB  ::= a AB? b;
BC  ::= b BC? c;
ABC ::= a+ b+ c+;

(a) (b)

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC

S   ::= a+ b+ c+ & AB c+ & a+ BC;
AB  ::= a AB? b;
BC  ::= b BC? c;

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

Figure 4: SPPF transformations coupled with inlining a nonterminal definition: (a) the original
grammar and an SPPF of the term “abc”; (b) after applying inline(ABC). The inlining is fairly
straightforward: the node in question is removed, and any previously incoming edge is replaced
with the list of previously outgoing edges.
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renameN(x,y);

p1 ... pn

x

s1 sk...

⇔

p1 ... pn

s1 sk...

inline-extract(x ::= s1 · · ·sk;);
unfold-fold(x ::= s1 · · ·sk;);

p1 ... pn

x

s1 sk...

⇔

p1 ... pn

s1 sk...

y

x

chain-unchain(y ::= x;);

yaccify-deyaccify(x ::= y;x ::= xy;);

...

p1 ... pk

x

y y

⇔

y+

y...

p1 ... pk

x

xy

xy

y

yaccify-deyaccify(x ::= y;x ::= yx;);

Figure 5: Graph transformations coupled to some of the language preserving grammar trans-
formation operators: the graph on the left always represents a pattern being detected, the graph
on the right defines the rewriting, dotted lines show correspondence between vertices that must
not be broken by the transformation, so all incoming and outgoing edges around corresponding
elements are to be preserved. renameN is very simple and intuitive: any node marked with x is
replaced with a node marked with y while the node context is preserved. inline-extract short-
cuts all incoming/outgoing edges to a node in question or introduces the node at their junction,
depending on which direction we execute the cotransformation. unfold-fold works identically
on the instance level, the differences are only observable on the grammar level. chain-unchain
cuts a node in two, one of which inherits the incoming and the other one the outgoing edges.
On the right, we show specifications for two ways of using yaccify-deyaccify to turn a flatter
iteration-based SPPF into its deeper recursive counterpart, with left recursion variant on top and
right recursion variant on the bottom. Other operators of this category from Table 1 are specified
in a similar fashion.
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is shown on Figure 3(c), where a new vertex needs to be created when we extract(ABP::=a+
b+;) because a symbol sequence a+b+ did not correspond to any vertex in the old graph. For
all vertices that had outgoing edges to both a+ and b+, they got replaced by one edge to the new
node. Figure 4 shows the opposite scenario of inlining a nonterminal in a grammar, coupled with
“inlining” corresponding vertices in a graph by drawing edges through it.

By reusing our previous results on bidirectionalisation of grammar transformation opera-
tors [Zay12], we can significantly decrease the space needed for defining coupled instance trans-
formations. In short, we know that if enough information is provided (e.g., the entire production
rule being unfolded, not just a nonterminal name of its left hand side), then pairs of inverse op-
erators can be treated as one bidirectional entity that allows forward and reverse applications.
Indeed, as we have seen from Figure 3 and Figure 4, the output of one transformation has strong
resemblance to the pattern responsible for applicability of the inverse transformation. An ap-
propriately abstracted graph transformations of inline-extract and some other operators from
Table 1 are shown on Figure 5.

Conceptually the impact of applying these operators is hardly surprising: chain replaces a
node with a chain of two nodes; fold does the same folding we have seen above with extract,
but without introducing a new nonterminal and possibly in a limited scope; rassoc and lassoc
replace an iterative production rule with a recursive right/left associative one and thus stretche
a node with multiple children into an unbalanced binary subtree; concatT and splitT merge or
unmerge leaves, etc.

4.3.2 Language-extending operators

Above we have considered grammar transformation operators that add disjunctive clauses to the
grammar, obviously extending the associated language. In the case of extended context-free
grammars (regular right hand side grammars) that allow metasyntactic sugar like optionals (x?
effectively meaning x|ε) and regular closures (x+ for transitive and x∗ for reflexive transitive),
the widen(e,e′) operator is used to transform x? to x∗ or x to x+, together with the appear(p)
operator that transforms ε to x? (effectively injecting an optional symbol). The coupled graph
transformations for these cases usually boil down to inserting new vertices in the right places in
order to keep the structural commitments up to date with the changed grammar.

An even less trivial case of language extension is called “upgrading” and involves replacing
a nonterminal by an expression that can be reduced to it. For instance, in A ::= B C; D
::= B|E; we can upgrade B in A (underlined) to D. Such a transformation increases the string
language associated with a grammar, as well as rearranges the relations between nonterminals.
The coupled transformation for SPPF is still simple and inserts an extra vertex for D between A
and B (E is still not present in the SPPF).

The removeC(p) operator that eliminates a conjunct, formally also increases the underlying
language since any extra conjunct is possibly an extra condition to be met, and dropping it makes
the combination weaker. Technically the coupled SPPF transform that removes a conjunct is a
disambiguation filter, but it is not useful to count it as such since the ambiguity being removed
is explicit (recall Subsection 3.4). The graph transformations shown on Figure 6 define these
coupled rewritings more formally. There are some interesting corner cases like partial coinciding
of yi and z j which are outside the scope of this paper but should be researched in the future.
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⇔x

y1 yk... z1 zn...

x

y1 yk... z1 zn...s?

ε

appear-disappear(x ::= y1 · · ·yk s? z1 · · ·zn);

x+ ⇔ x*

unite(x, y); widen(x+, x∗);

⇔

y1 yk... z1 zn...

x

y1 yk...

x x

removeC(x ::= z1 · · ·zn);

Figure 6: Graph transformations coupled to language-extending/-reducing grammar transforma-
tion operators, in the same format as used on the previous figure. appear-disappear matches
the entire production rule in question but includes correspondences for each vertex so none of
them can be damaged; the only modification is the addition of a new vertex with an empty value
inside. unite adds all production rules of one nonterminal to another nonterminal, so all we need
to do on the instance level is replace old nonterminal occurrences with the new one. widen is
also unidirectional but changes only the type of one node, so the graph transformation specifica-
tion looks very small. Finally, removeC removes a conjunctive clause from both the grammar
and the graph defined by it. The transformation coupled to upgrade is not shown because it is
identical to extract or fold which were already considered.

4.3.3 Language-reducing operators

The disappear(p) operator is used to transform x? or x∗ to ε . The coupled transformation on
SPPFs for it exists, but is subtly different from the ones being considered so far: it is inherently
irreversible since if the SPPF in question actually contains the x? with x as a child node, then that
x is removed and lost. This is contrasting to folding/unfolding vertices and rearranging the edges
around them.

4.3.4 Language-revising operators

The operators abstractize(p) and concretize(p) eliminate and introduce terminals from pro-
duction rules (a common practice when mapping abstract syntax to concrete syntax, hence the
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⇔x

y1 yk... z1 zn...

x

y1 yk... z1 zn...t

abstractize-concretize(x ::= y1 · · ·yk t z1 · · ·zn);
(only right to left:) project(x ::= y1 · · ·yk t z1 · · ·zn);

permute(x ::= y1 · · ·yk;, x ::= yn1 · · ·ynk ;);

Figure 7: Graph transformations coupled to language-revising grammar transformation opera-
tors, in the same format as used on the previous figures. The transformation on top uses the
same pattern that we used before for appear-disappear, which was justified back then by the
empty contents of the node and now by the node in question being terminal and hence having
no children. The permute operator shuffles children of one node but preserves them, which is
perfectly easy expressible by the correspondence relation of the graph transformation.

names). Since the terminals are present explicitly in the arguments, we can easily implement
our coupled SPPF transformations by inserting leaves and connecting them to the appropriate
places to the graph, or removing them. These transformations can have a big effect on the SPPF
and are therefore more similar to the cotransformation from the previous paragraph. The project
operator is a stronger version of abstractize or disappear that works on any symbol, but the
transformation coupled with it, is the same: locate all the parts being removed from the gram-
mar, remove them from the graph.

The rest of language revising operators are coupled with less invasive rearrangements of the
parse graph: reordering edges (permute), updating the contents of the leaves (renameT) and
splitting one nonterminal into several (splitN). We show two interesting graph transformations
on Figure 7; the remaining ones are focused on the application scope instead of actual graph
manipulation (splitN) or are identical to ones shown before (renameT is the same as renameN
in all aspects).

4.4 SPPFs refactored, when possible

Cotransformations from the previous section were necessary but could never fail: they were
applicable to all possible graphs. Let us now move on to cotransformations that could seem
successful on the grammar level but fail on the instance level (causing the combination to fail).
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4.4.1 Language-reducing operators

The narrow operator (the reverse of widen discussed above) and the downgrade operator (the
reverse of upgrade) become simple parse graph rearrangements, if the constructs in the SPPF
happen to correspond to the new grammar, and fail otherwise. For instance, if a “wider” option is
found in the SPPF, we have no automated way to update it. Formally the graph transformation of
narrow will look similar to the ones we have seen in widen, renameN, unite, etc, but to the best
of our knowledge there is no graph rewriting framework that allows expressing the “if this pattern
is matched, give up and report an error” which is the crucial other side of this cotransformation.
The same holds for upgrade which is partially applicable folding.

The addC operator, on the other hand, shows us yet another class of cotransformations:
namely, the one requiring reparsing. Indeed, if the first branch of the conjunctive clause of S
from Figure 3 were to be introduced as a transformation step, we would need to reconnect the
left subnode of S to the appropriate children, which formally corresponds to parsing. In the
current prototype implementation we reuse the existing parser — to the best of our knowledge,
other frameworks like TXL [DCMS02] do the same — instead of exploring possibly more effi-
cient alternatives. Pure graph transformations do not seem to be the right solution here, because
if we are confined by their use, parsers need to be propagated along some scenarios — which
could certainly lead to curious exercises in combining continuation passing with pair grammars,
but the idea looks over-engineered at first glance.

4.4.2 Language-revising operators

The most brutal among language revising operators: redefine that replaces an entire nonterminal
definition with a different one; replace doing the same for arbitrary subexpressions; reroot that
changes the starting symbol of the grammar, — all require reparsing as a part of their cotransfor-
mation steps.

4.5 Cotransformations destined to fail

Interestingly, there is one particular operator that is always doomed: inject(p) that works like
appear but can insert any symbol anywhere in the grammar. In order to construct a coupled
SPPF transformation for inject, we need to know how to connect the new node to its children,
but this information is ultimately lacking from the operator parameters. The only cases where it
could have worked, are already covered by other operators (e.g., injecting terminals is concretize,
injecting possibly empty symbols is appear).

5 Related and future work

The disambiguation of context-free grammars is a problem that was claimed to be solved as early
as 1995 [Che95] and is still actively researched in the 2010s [Sch10, BV11, VT13]. There is a lot
of work on disambiguation, parse forest pruning and shaving, and it remains to be seen whether
our approach can usefully complement similarly-minded techniques from that area such as van
den Brand et al.’s implementation of disambiguation filters with term rewriting [BKMV03]. With
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the technology from this paper we can perform “co-disambiguation” of grammars with forests.
The obvious advantage of such a setup is that the presence of ambiguity on the instance level is
trivially detectable while posing a long standing challenge on the grammar level.

Partial models [FSC12] allow for explicit modelling of uncertainty, of which ambiguity is
an example of. There are many techniques accumulated in this area, allowing for decision mak-
ing [AAFL96], clustering and classification [MPTV10], application of normal logic rules [LS02]
— all in the face of uncertainty. A deeper investigation is needed to make strong claims about
(in)compatibility of such approaches to transformation of ambiguous forests. Recent advance-
ments in delta-lenses make them an attractive mechanism for this endeavour [DEPC16]. Walking
this path will at least broaden the classic ambiguous grammar problem from purging uncertainty
to tolerating it.

Stevenson [Ste15] and Cordy [BZ15] argue for 5 ways to approach the problem of trans-
forming SPPFs: (1) abandon well-formedness, (2) use disjunction transformation semantics for
conjuncts, (3) transform all views at once, (4) always trigger full reparse, (5) seamlessly work on
canonic representation. Strictly speaking, there are also some methods to adjust the semantics
of the grammar/metamodel itself — redefine what constitutes grammaticality; examples can be
found in older literature, based on logical representation of ambiguous terms [Rae97], specificity
rules for productions [Ken90], etc.

As said before, we are not the only ones trying to use computation models based on graphs in-
stead of trees in software language engineering. It remains to be seen whether systematically us-
ing abstract syntax graphs [SL13] and general purpose graph transformation frameworks would
be much different. As stated in the introduction, we deliberately focused our attention on meth-
ods that do not use higher order abstract syntax [PE88, DPS97, Chl08]. Our approach is closer to
pair/triple grammars that are commonly used to define graph-to-graph rewritings [Pra71, Sch95].
We have noticed that in our case this way could have profited from an extension allowing to
match separately on the incoming edges and the outgoing ones instead of matching the entire ver-
tex, but we have not explored this option in full, since it seemed to fall in a somewhat unexplored
space between established forms of node rewriting [ER97] and (hyper)edge rewriting [DKH97].

The approach to couple instance transformations to grammar transformations and not vice
versa, that we decided to pursue, has its counterparts in other technological spaces such as model-
ware [GFD05] or XML [LL01] or databases [HHTH02], obviously with transformations of meta-
models or schemata as the starting point. Cotransformations in general have been re-explained
to some extent in this paper, but there exists a much more detailed introduction [Läm04].

Grammar mutations [Zay12, Zay14b] are systematic generalisations of grammar transforma-
tions used for this paper. There does not seem to be any fundamental problem in combining that
generalisation with our couplings, but the implementation of coupled mutations remains future
work.

The classification of coupled SPPF transformations from Table 1 corresponds to the two kinds
of negotiated evolution: “adaptation through tolerance” when SPPFs are preserved and “through
adjustment” when they are refactored [Zay14a].
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6 Conclusion

In this paper, we have considered cotransformations of grammars together with shared packed
parse forests defined by these grammars. That is, given a grammar G and a collection of graphs
{Fi} conforming to it, we can specify its evolution into an updated grammar G′ such that the
graphs are migrated to conform to G′:

G
evolves - G′

{Fi}

conforms

6

migrated
-

coupledwww�
wwww

{F ′j}

conforms

6

An implementation of a transformation operator suite was proposed. Each grammar change
was coupled to one of the following: (1) no change in the parse graphs; (2) rearranging the
graphs, implemented in triple graph-style rewritings; (3) introducing new elements to graphs
based on operator arguments; (4) reparsing; (5) imminent failure. This classification is comple-
mentary to the previously existing ones based on preserving, increasing, reducing or revising the
semantics chosen for the grammar.

The examples given in the paper mostly refer to concrete grammars in the context of pars-
ing, but the research was done with software language engineering principles, which means that
the contribution is applicable to co-evolution of grammars in a broad sense such as ontologies,
API, DSLs, graph schemata, libraries, etc. We have used Boolean grammars as the underly-
ing formalism due to their power to naturally represent non-context-free languages, ambiguous
generalised parses and parse views in a uniform way. This is the first project involving coupled
transformations of Boolean grammars.

The computation model proposed in this paper, can be used for formalisations and proofs
of certain properties of transformation chains; for grammar-based convergence; for manipulat-
ing parse views and in general for tasks involving synchronous consistent changes to Boolean
grammars and shared packed parse forests of grammatical instances. This is an area of rapidly
growing interest in the software language engineering community, and its limits, as well as the
extent of its usefulness, remain to be examined.
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