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Abstract: This paper continues the work on .# , .4 -adhesive categories and shows
some important composition properties for these categories. We present a new
concept of attributed graphs and show that the corresponding category is .#, .4 -
adhesive. As a consequence, we inherit all nice properties for .# ,.4 -adhesive sys-
tems such as the Local Church-Rosser Theorem, the Parallelism Theorem, and the
Concurrency Theorem for this type of attributed graphs.
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1 Introduction

The double-pushout approach to graph transformation, which was invented in the early 1970’s,
is the best studied framework for graph transformation [Roz97, EEKR99, EKMR99, EEPT06,
EEGH15]. As applications of graph transformation come with a large variety of graphs and
graph-like structures, the double-pushout approach has been generalized to the abstract settings
of high-level replacement systems, adhesive, .# -adhesive, .# ,.4 -adhesive, and # -adhesive
categories. This paper continues the work of Habel and Plump [HP12] on .#, .4 -adhesive
categories.

In the literature, there are several variants of attribution concepts, e.g. typed attributed graphs
in the sense of Ehrig et al. [EEPT06], attributed graphs in the sense of Poskitt and Plump [PP12],
attributed graphs as a graph with a marked sub-graph in the sense of Kastenberg and Rensink
[KR12], separation of the graph structure and their attribution and data in the sense of Golas
[Gol12], and attributed structures in the sense of Duval et al. [DEPR14]. The use of attributed
graphs allows a more compact representation of a system. While graph transformation systems
are Turing complete, representing numerical values as part of the graph can lead to very large
representations of parts of a system that may be comparatively unimportant. Instead attributes
allow us to concentrate on graphically representing those parts of a system we are primarily
interested in.

Our main aim is to consider composition of categories to make it easier to define new models
for transformation systems. To this end we prove closure results of .#, .4 -adhesive categories
against product, functor, slice and coslice, comma, string and multiset category. We apply our

* This work is supported by the German Research Foundation through the Research Training Group (DFG GRK
1765) SCARE (www.scare.uni-oldenburg.de).
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results to the construction of a category AttGraphs of attributed graphs from the well-known cat-
egory Graphs of unlabelled graphs and a category Att of attribute collections. By closure results
for .4 , ./ -adhesive categories, we obtain that the category AttGraphs is .#,. 4 -adhesive. By
the results in [HP12], the Local Church-Rosser Theorem, the Parallelism Theorem and the Con-
currency Theorem hold for the new type of attributed graphs provided that the HLR " -properties
[HP12] are satisfied.

The paper is structured as follows. In Section 2, we recall the definition of .#, .4 -adhesive
categories. In Section 3, we prove some basic composition results and show that the string and
multiset categories are .# ,./4 -adhesive provided that an underlying category is. In Section 4,
we introduce the category AttGraphs of attributed graphs and show that it is .#, .4 -adhesive.
In Section 5 we present some related work and, in Section 6 some concluding remarks.

This paper is an extended version of the paper [PH15]. It contains all proofs and additional
examples.

2 . #,.V-adhesive Categories

In this section, we recall the definition of .#,.4 -adhesive categories, introduced in [HP12],
generalizing the one of .# -adhesive categories [EGH10]. We assume that the reader is familiar
with the basic concepts of category theory; standard references are [EEPT06, Awo10].

Definition 1 (.# .4 -adhesive Categories) A category C is .#,./ -adhesive, where .Z is a
class of monomorphisms and .4 a class of morphisms, if the following properties are satisfied:

1. ./ and .4 contain all isomorphisms and are closed under composition and decomposition.
Moreover, .4 is closed under . -decomposition, that is, f;¢ € A4, g € .# implies f €
N

2. Chas . ,./ -pushouts and .Z -pullbacks. Also, .# and .4 are stable under pushouts and
pullbacks.

3. M, N -pushouts are .# ./ -van Kampen squares.

In the following we might sometimes use ’.#,.4 -adhesive’ without specifying .# and .4
explicitly, especially in the sense of "preserving .#, ./ -adhesiveness’.

Remark 1 C has .# ,./ -pushouts, if there is a pushout whenever one of the given morphisms is
in .# and the other morphism is in .4". C has ./ -pullbacks, if there exists a pullback whenever
at least one of the given morphisms is in 4. A class 2 € {.# ,./} is stable under .4, .V -
pushouts if, given the .# , ./ -pushout (1) in Figure 1, m € Z implies n € 2" and stable under
A -pullbacks if, given the .# -pullback (1) in Figure I, n € 2" impliesm € Z . An .#, NV -
pushout is an .# ,./"-van Kampen square if for the commutative cube (2) in Figure 1 with the
pushout (1) as bottom square, b,c,d,m € .#, f € ./, and the back faces being pullbacks, we
have that the top square is a pushout if and only if the front faces are pullbacks.

In [HP12], it is shown that all .# -adhesive categories are .# , .4 -adhesive.
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Figure 1: .# , ./ -pushout and .# , ./ -van Kampen square

Lemma 1 (.#-adhesive = .# ,./ -adhesive [HP12]) Let C be any category and N be the
class of all morphisms in C. Then C is # , N -adhesive if and only if C is . -adhesive.

In the following, we give some examples of categories that are .# , .4 -adhesive.

Lemma 2 (Basic .#,./ -adhesive Categories [EEPT06]) The following categories are M -
adhesive and, by Lemma 1, M , N -adhesive where N is the class of all morphisms in C: The
category Sets of sets and functions, where . is the class of all injective functions. The category
Graphs of graphs and graph morphisms, where 4 is the class of all injective graph morphisms.
The category LGraphs of labelled graphs and graph morphisms, where . is the class of all
injective graph morphisms. The discrete category' over some set L, referred to as Disc(L), is
A -adhesive: Disc(L) only has identity morphisms, for which proving the required properties
becomes trivial.

The category PLGraphs of partially labelled graphs and graph morphisms is # , AV -adhesive,
but not M -adhesive [HP12]: .# and N are the classes of all injective and all (injective)
undefinedness-preserving® graph morphisms, respectively.

3 Composition of .7 ,. ¥ -Adhesive Categories

There are various ways to construct new categories from given ones. Beside the standard con-
structions (product, slice and coslice, functor and comma category as defined in [EEPT06]) we
consider the constructions of a string category and a multiset category. For each of these con-
structions, we prove a composition result, saying more or less, whenever we start with .#;, .4;-
adhesive categories, then the new constructed category is .# ,.4# -adhesive for some .Z, ./ .

We briefly recall the definition of the comma category, we refer to [EEPT06] for the definiton
of product, slice and coslice and functor category.

Definition 2 (Comma Category[EEPT06]) Given two functors F;: C; — Cand F>: C, — C
and an index set ., the comma category ComCat(F;,F>,.#) is defined as follows: The objects
are all triples (Cy,C,,0p) with C; an object in C;, C; an object in C;, and a family of morphisms

! The discrete category over some collection S has S as objects and only identity morphisms.
2 A morphism f: G — H preserves undefinedness, if it maps unlabelled items in G to unlabelled items in H.
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op = [op,]ic.s where op;: Fi(C}) — F>(C>) is a morphism in C. The morphisms from (Cj,C»,0p)
to (C},Ch,op’) are all pairs (g,h) where g: C; — C} and h: C, — C} are morphisms in C; and
C, respectively, such that the following diagram commutes for all i € .#:

Al ¥R )

OpiJ( = J{Opi

P (ng?h{z (G3)

The composition of morphisms in ComCat(F;,F>,.#) is defined componentwise, and the iden-
tities are pairs of identities in the component categories C; and C,.

First, we consider the standard constructions: product, slice and coslice, functor, and comma
category ([EEPT06] A2 and A6).

Theorem 1 (Standard Constructions) .#,.4 -adhesive categories can be constructed as fol-
lows:

1. If Gy is M;, Ni-adhesive (i = 1,2), then the product category Cy x Cy is M , N - adhesive
where M = M X Mo and N = N X N5.

2. If Cis A, N -adhesive and X is an object of C, then the slice category C\X and the
coslice category X\C over X are M, N'-adhesive where the morphism classes M, N’
are restricted to the slice and coslice category, i.e., for 2 € {HM, N}, X' = Z NC\X
and ' = Z NX\C, respectively.

3. If Cis A ,.N -adhesive, then for every category X, the functor category [X, C| is My, N
adhesive with functor transformations My and Ng.”

4. Let C; be M;, Ni-adhesive and F;: C; — C be functors (i = 1,2), where F| preserves

M, N1-pushouts and F, preserves .#>-pullbacks. Then the comma category ComCat(Fy,F,,.7)

is M, N “-adhesive where M = (M X M>) "Mor, N = (M x A3) NMor, and Mor
is the set of all morphisms of the comma category.

Remark 2 Statement 4 in Theorem 1 above also holds for the case of a comma category
ComCat(F|,F,,.7), with | .| = 1 and both functors F,F, pointing into Sets, where the mor-
phism op is always bijective. We will use F| |vij F> as a shorthand for these categories.

Proof. The proof is a slight generalization of the corresponding one for .# -adhesive categories
(see Theorem 4.15 in [EEPT06]).

1. The product category C; x C, is .# ,./ -adhesive, because .# and ./ inherit the required
composition and decomposition properties from .#) and .#, and .#] and .45 respectively.
Pushouts along (.#,.4")-pairs of morphisms can be constructed componentwise. So can

3 For a class 2, % denotes the class of natural transformations ¢: F — G, where all morphisms zx : F(X) — G(X)
are in 2.
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the van Kampen square, since pullbacks can also be constructed componentwise. The
stability of .# and ./ is inherited from pushouts and pullbacks in C;.

2. Morphisms, pullbacks and pushouts can similarly be constructed componentwise for both
slice categories C\X and coslice categories X\ C. This construction also ensures that .’
and ./ are stable under pushout and pullback.

3. The functor category [X, C], where .# and A% are functor transformations, is .#, A" -
adhesive, because the functor transformations .#4 (or .4f) are monomorphisms in [X, C]
and the required composition and decomposition properties are inherited from .# (or ./").
Pushouts and pullbacks and the .#,.4 -van Kampen square are constructed pointwise,
i.e. for each object X € [X,C]. The pointwise construction also ensures that .#f and A5
are stable under pushout and pullback.

4. The comma category ComCat(F,F,,.¥) is .4, ./ “-adhesive, because .Z and ./ in-
herit the required composition and decompostion properties from .#; and A;. .4, N °-
pushouts can be constructed componentwise, since F; preserves them. . “-pullbacks
can be constructed componentwise, since F, preserves them. Consequently .# ¢, 4"¢-van
Kampen squares can equally constructed componentwise. All of these constructions can
also be done if we restrict ourselves to objects with a bijective morphism op. The compo-
nentwise construction ensures that .#“ and .4"¢ are stable under pushout and pullback.

O]

Example 1 ([EEPT06]) The category Graphs of unlabelled graphs is isomorphic to the functor
category | E — V ,Sets]. For the type graph T G, the category Graphs; of graphs typed over
TG is isomorphic to the slice category Graphs\TG.

Given a category C, we construct a string category C* and prove that .#,. 4 -adhesive cate-
gories are closed under string construction.

Definition 3 (String Category) Given a category C, the string category C* is defined as follows:
The objects are strings aj ... a,, of objects of C, including the empty string A. The morphisms
between two strings a; . . . d,, and by ... b, with m < n are strings of morphisms such thata; ...a,,
is embedded in by ...by, i.e. fi: a; = biy1,...,fm: @n — biry in C. The empty string A is an
initial element for C*.

a ... ap
fll fml
by ... b; bi+1 me bi+m+1 ... by

Remark 3 Our definition for a string category is close to that of a free monoidal category, but
is not a free monoidal category because we allow morphisms that do not preserve length. Such
morphisms prevent us from defining a monoidal product on arrows. In the absence of these
morphisms we cannot formulate rules that add elements to a string or remove them.
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Lemma 3 For every morphism f: A — B, the commuting square consisting of [ and the iden-
tities id 4, idp is a pushout and a pullback.

Proof. Follows from standard category theory. O

Theorem 2 (C .# , .4 -adhesive = C* .#*, A4 *-adhesive) If C is A , N -adhesive, then the
string category C* over C is M *, N *-adhesive where .#* and N* contain those morphisms
which are strings of morphisms in A and N, respectively. N * is further restricted to mor-
phisms that preserve length, i.e. where domain and codomain are of equal length.

We will use this decomposition frequently in the following proofs.

Lemma 4 (Decomposition of String Morphisms) Any string morphism f: ay...a, — by ...by,
can be decomposed into f—: ay...ay, —> biy1...biry that preserves lengthand f: biy1...biym —
b1 ...b, an embedding that consists of identity morphisms in C such that f = f_; f1. Both mor-
phisms are in M* or N, if [ is in M* or N* respectively.

Proof. Straightforward. O

Proof of Theorem 2. By inspection of Definition 1.

1. Closure properties: .#* and ./ contain all isomorphisms, since an isomorphism in C*
must be a list of isomorphisms in C and .# and .4, respectively contain all isomorphisms in
C. Isomorphisms must further be lists of equal length and .Z* and .#"* contain all morphisms
with domain and codomain of equal length. Composition and decomposition properties can be
inherited from C, e.g. the composition of morphisms in .#* and .#"* implies the composition
of a list of morphisms in .# and .4, respectively, which is possible since C is .#,.4 -adhesive.
This also applies to the closure of .4/ under .#*-decomposition, since f;g € .4 implies a
domain and codomain of equal length, which in turn implies f € .4"*.

2a. Existence of .#Z*,_/"*-pushouts and ./ *-pullbacks: Given the morphisms f: a; ...a,;; —
by...byand g: ay...ay, — c1...cpy, Where f € #* and g € A we can construct .#Z*, N *-
pushouts as follows (see Figure 4b): We decompose f into f— and f as in Lemma 4. We can
construct (1) as a pushout componentwise from pushouts in the underlying category C. If we
have a string of length zero, the resulting pushout will be the identity square of A. The mor-
phisms f, i, in (2) consists entirely of identity morphisms in C, making each component of (2)
a pushout in C by Lemma 3. Then (2) is a pushout in C*. By composition of pushouts (1) + (2)
is a pushout.

Note that the remaining morphisms in by ...b, — d ...d, must be isomorphisms for (2) to be
a pushout, since the pushout object is only unique up to isomorphism we can assume, without
loss of generality, that the remaining morphisms are identities.

2b. C* has pullbacks along .7 *-morphisms: Given two morphisms f: aj...a,; —c1...c, €
M*and g: by ...b, — c1...c, the pullback object is constructed by identifying the largest sub-
string ¢; . .. ¢j1x where all elements c; have a coimage in both a; ...a,, and by ... b, and construct-
ing their pullbacks in C. If there is no such common substring, the empty string A is the pullback
object instead.

3. .#*, /*-pushouts are . *, ./ *-van Kampen squares:
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Figure 2: Van Kampen square for the string category (I)

The top face is a pushout =- the front faces are pullbacks:

1. We construct the cube in Figure 2 by decomposing the pushout at the top face as seen above
into a pushout with morphisms that preserve length and another where the horizontal morphisms
do not preserve length and decomposing all vertical morphisms in the commutative cube into
pairs according to Lemma 4.

2.The morphisms in the middle layer of the cube are determined by those in the bottom layer,
since the vertical morphisms in the lower half of the cube consist of identity morphisms only. As
a result the middle layer consists of pushouts as well.

3. The core cube in the upper back is a van Kampen square, with the pushout of A” — C” and
A" — B! as bottom face. This core cube can be constructed componentwise from cubes in C,
since all morphisms preserve length. If these strings are of length O this is an identity cube of
empty strings A.

4. Since the top face of the core cube is a pushout, (1) consists of pullbacks in C by the van
Kampen property and is therefore a pullback in C*.

5. (2) and (3) are pullbacks, since their vertical and horizontal morphisms respectively consist
of identity morphisms only and and the morphism shared with (1) preserve length. The pullback
objects are then limited to the length of D” and we can construct the pullbacks componentwise
from pullbacks in C according to Lemma 3.

6. The commuting square (4) consists entirely of morphisms composed of identity morphisms
in C. Then D” is the largest string for which each element has a pullback in C and therefore (4)
is a pullback.

7. We examine the commutative square (5) componentwise: Some of its components have
a coimage in the front right square of the core cube via the morphisms i;...is. Since these
morphisms consists of identity morphisms in C, these components are pullbacks. The remaining
components of (5) have horizontal morphisms that coincide with those morphisms that are part
of the top and bottom pushout that are identities, making these components pullbacks as well.
Thus, (5) is a pullback.

8. (6) is a pullback, by Lemma 3 since B” — B, D" — D consist of identity morphisms in C.
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Figure 3: Van Kampen square for the string category (II)

9. By composition of pullbacks (1) +(2) + (3) + (4) and (5) + (6) are pullbacks.

The front faces are pullbacks = the top face is a pushout:

1. We decompose the vertical morphisms and the bottom pushout as in the cube in Figure 3.
Additionally we construct the pushouts in the middle layer analogously.

2. The commutative cube in the upper back is a van Kampen square. We construct this cube
componentwise from cubes in C, since all morphisms preserve length.

3. Since the upper square at the right front face is a pullback and i}, i, 3,4 consist of idenities,
B_,B"” ,D"_,D! is a pullback.

4. Then (1) is a pushout by the van Kampen property of C, i.e. all component cubes have front
faces as pullbacks, therefore all components of the top face are pushouts.

5. (2) is a pushout by Lemma 3, since i1, i, consists of identities.

6. By composition of pushouts, (1)+ (2) is a pushout.

This concludes the proof. O

Example 2 The category Strings = Disc(L)* of strings, where Disc(L) is the discrete category
over some alphabet L, is .#*, /¥ *-adhesive.

Given a category C, we construct a multiset category C® and prove that .#, ./ -adhesive
categories are closed under multiset construction. In contrast to the above construction for a
string category, we can construct a multiset category by ignoring the order of elements. We use
{|...|} to denote a multiset, e.g {|a,a,b|} denotes the multiset with elements a,a and b.

Definition 4 (Multiset Category) Given a category C, the multiset category C® is defined as
follows: The objects are multisets {|A;...A,|} of objects of C, including the empty multiset 0.
The morphisms between two objects {|A;...A,|} and {|B;...B,|} (with m < n) are strings of
morphisms f;: A; — Bj, in C, where j; = ji implies i =k, i € {1,...,m}.

Remark 4 A category of multisets MUL has previously been discussed for example in [SI13].
In contrast to those definitions we define a multiset category C® over a different category C.

Selected Revised Papers from GCM 2015 8/ 21
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Figure 4: Pushouts in String and Multiset Categories

Theorem 3 (C .#,./ -adhesive = C% .#%, 4 ®-adhesive) If C is .4,V -adhesive, then
the multiset category C® over C is M ¥, N ®- adhesive where M ¥ and N contain those
morphisms which are strings of morphisms in M and N, respectively.

Lemma 4 applies to morphisms in .#Z® or 4.

Proof. By inspection of Definition 1.

1. Closure properties: .#% and .4/ contain all isomorphisms, since an isomorphism in
C* must be a list of isomorphisms in C and .# and ./, respectively contain all isomorphisms
in C. Composition and decomposition properties can be inherited from C, e.g. the composition
of morphisms in .Z% and .#"® implies the composition of a list of morphisms in .# and ./,
respectively, which is possible since C is .#, .4 -adhesive.

2a. Existence of .7 %, _+“-pushouts and .#“-pullbacks: Given the morphisms f: A — B
and g: A — C, where f € .#% and g € 4% and #4 = [, #B = m,#C = n *, we can construct
AP, N C-pushouts as follows (see Figure 4a): We decompose f: A — B as in Lemma 4, where
f= preserves cardinality and f; consists of identities in C. We decompose g analogously. We can
construct (1) as a pushout componentwise from pushouts in the underlying category C. If #4 =0
then A, B,C, D are the empty multiset . (2) (and analogously (2)) is a pushout by Lemma 3. (3)
consists entirely of identity morphisms in C and is therefore a pushout as well. By composition
of pushouts (1) + (2) + (2') + (3) is a pushout.

2b. C? has pullbacks along .7 “-morphisms: Given two morphisms f: A;...A,, = C;...C, €
A% and g: By...B, — C;...C, the pullback object is constructed by identifying the largest
subset C;...C;;, where all elements C; have a coimage in both A;...A,, and B ...B, and con-
structing their pullbacks in C. If there is no such common subset, the empty multiset @ is the
pullback object instead.

3. 4%, ¥ P-pushouts are .7 ¥ “-van Kampen squares:

The top face is a pushout = the front faces are pullbacks:

1. We decompose the top and bottom pushout as in Figure 5.

4 # denotes the cardinality of a multiset, i.e. for a multiset f: A — N, #4 = Y44 f(a).

9/21 Volume 73 (2016)
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Figure 5: Van Kampen square for the multiset category

2. We decompose all vertical morphisms in the cube into pairs where the first morphism
preserves cardinality and the second morphism is an inclusion consisting of identity morphisms
in C (see Lemma 4).

3. We construct the interior morphisms shown in the cube above analogoulsy to the construc-
tion in the proof for the string category, once along A — B and once along A — C.

4. The remaining pullbacks on the front sides can also be constructed analogously to the
construction in the previous proof, using Lemma 3.

The front faces are pullbacks = the top face is a pushout:

1. We decompose the bottom pushout as in the cube in Figure 5.

2. We decompose all vertical morphisms in the cube into pairs where the first morphism
preserves cardinality and the second morphism is an inclusion consisting of identity morphisms
in C (see Lemma 4).

3. We construct the interior morphisms shown in the cube above analogoulsy to the construc-
tion in the proof for the string category, once along A — B and once along A — C.

4. The remaining pushouts on the top side can also be constructed analogously to the con-
struction in the previous proof, using Lemma 3.

This concludes the proof. O

Example 3 The categories MultiSets = Disc(L)® of multisets is .#%, A % -adhesive for suit-
able A,V .

Finally, we will look at the possibilities that these compositions give us.

Example 4 (Library System) Assume we have a library system modeled as a transformation
system over labelled graphs, with books, authors, readers and a catalog as in [EK80]. We would
like to extend this system with queues, such that a reader can reserve a book if it is currently
unavailable. One straightforward way to implement this would be extending the rules to include
the creation and management of such queues as additional nodes and edges in the graph. This

Selected Revised Papers from GCM 2015 10/ 21
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may, however lead to a large part of the graph structure consisting of these queues, when they
are in fact a minor element of the overall model. We sketch a rule in this setting below, adding a
reader to the end of a queue that is associated with a catalog number.

Reserve(catnr, readernr):

catnr] [reademr] = ca mr] [reademr]

We could instead introduce queues as distinct components of the underlying model, using the
compositions detailed in this chapter: We define the category PLGraphs x Disc(R x C)*, where
R is a fixed set of reader numbers and C a set of catalog numbers and Disc(A) is the discrete
category over some set A. An object of this category is a labelled graph together with a string of
pairs of readers and catalog numbers. Instead of adding additional nodes like in the rule above,
we append a pair of catalog number and reader number to the queue (g). Note that we would a
notion of abstract rules here that allow us to refer to a queue of arbitrary length, such as e.g. the
rule schemata in GP [PP12].

Reserve(catnr, readernr):

(caiog) —(ea)  (radermr) = (o)~

(q) (q, (catnr,readernr))

If we want to separate queues for every title in the library we could instead have used a comma
category: We define the category PLGraphs |vi; Q, where Q: (Disc(R)*)® — Sets is some func-
tor that preserves pullbacks and PLGraphs is analogous to Graphs, mapping a graph to a union
of its nodes and edges. The definition contains a multiset ((Disc(R)*)?), since we may need
more than one instance of a certain queue as transformations might otherwise have unwanted
side effects. Now the rule can instead add the reader number directly to the queue associated
with the catalog number. Again, some notion of abstract rules would be required.

Reserve(catnr, readernr):

— catnr — catnr
- (catalog ) (2 o

In all of the above cases, the resulting category is .# ,.V -adhesive, since PLGraphs and dis-
crete categories are .# ,./V -adhesive and the constructions we used preserve .# , .V -adhesiveness.

4 Attributed Graphs

In this section we define attributed graphs, where attribute values can be changed analogously
to relabelling. The addition or removal of attributes to a node or edge should also be possible.
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Defining a category of attribute collections which collect all the attributes of a node or an edge
is our first step. These attribute collections consist of a set of names, each of which is associated
with a value. Attributed graphs are defined, where each node or edge is associated with such an
attribute collection.

We start by defining a category PL for representing the values. Since we can view labels as
isolated attribute values, we will consider the simpler case of labels in the following definition.
Let L be a label set including the symbol L indicating undefinedness. As morphisms we use all
identities as well as all morphisms from _L to a label in L.

Lemma 5 (PL is a Category) For each alphabet L, the class of all elements in LU{L1}’ as
objects and all morphisms of the form 1. — x and x — x (x € LU{_L}) forms the category PL
where the composition of x —y and y — 7 is x — z and the identity on x is x — X.

LA Q
a b . e Z
€
Proof. Follows directly from the definiton. O

It can be shown that the category PL is .#, .4 -adhesive.

Lemma 6 (PL is .#, .4 -adhesive) The category PL is A , N -adhesive where .# and N are
the classes of all morphisms and all identities, respectively.

Proof. By inspection of Definition 1:

1. Closure properties: .# and ./ contain all identity morphisms, which are the only isomor-
phisms in PL. They are also closed under composition and decompostion. Since f;g € A4 =
f.g €N, N is closed under .# -decomposition.

2. PL has .# ./ -pushouts: Since .4 contains only identity morphisms, there are only two
cases, with either 1. — [ or another identity morphism as the horizontal morphism:

m m

[ —1 11—
13 s fl@ s
li;l%l J_”jl‘>l

The diagrams (3) and (4) are pushouts: the morphisms g,n are the only possible morphisms to
obtain commutativity and the universal property holds. Since PL contains the initial element |,
PL has all . -pullbacks. .# is trivially stable under pushouts and pullbacks, since .# contains
all morphisms. .4 is stable under pushouts and pullbacks because in the two cases above, the
only possible morphisms f, g are identity morphisms and therefore in .4".

3. In PL, .#,./ -pushouts are .7,/ -van Kampen squares: Let (1) be a pushout, where
mée A and f € 4. We have to show that, given a commutative cube (2) with (1) as bottom

5 We assume that L is not an element of L.
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Figure 6: Possible commutative cubes in PL

face, b,c,d € ./ and pullbacks as back faces, the following holds:
the top face is a pushout < the front faces are pullbacks

We have already identified the possible pushouts (3) and (4) above. These pushouts lead to four
possible cases for back faces that are pullbacks (see Figure 6):
For the pushout (3): The possible spans to construct the back faces of the cube with are:

e [+ [ — [, which lead to the identity cube (a). Then all faces in the cube are pushouts as
well as pullbacks and, therefore, constitute an .#,.4 -van Kampen square.

e | + 1 — 1, which leads to the cube (c) with pullbacks as back faces. Then the top face
is the pushout (3) and the front faces are pullbacks.

o [+ 1 — 1, L <+ 1 — 1, for both of which at least one of the back faces will not be a
pullback

For the pushout (4): The possible spans to construct the back faces of the cube with are:

e | < | — [, which leads to the cube (b) with pullbacks as back faces. Then the top face
is the pushout (4) and the front faces are pullbacks.

e | + 1 — 1, which leads to the cube (d) with pullbacks as back faces. Then the top face
is the pushout (3) and the front faces are pullbacks.

In both cases it is possible to contruct different commutative cubes, but all of these do not have
pushouts as top faces nor pullbacks as front faces. O

Definition 5 (Graphs: Graphs — Sets) The functor Graphs: Graphs — Sets is defined to
map graphs to their underlying set of nodes and edges and is given as follows: For a graph G' =
(V',E',s',t"), let Graphs(G') = V' 4+ E’ and for a graph morphism fs : A — B, let Graphs(f¢')
be a functor, defined by Graphs(f)(x) = fy/(x) if x € V' and fg/(x) otherwise.

Lemma 7 The functor Graphs: Graphs — Sets preserves . , .V -pushouts, where M is the
class of injective graph morphisms, N is the class of all morphisms.

Proof. Given a pushout (P) in Graphs, we have to show that Graphs((P)) is a pushout in Sets,
i.e. for every pair of commuting morphisms g : Graphs(B) — X and g,: Graphs(C) — X there
is a unique morphism g: Graphs(D) — X.
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h
A L B Graphs(A) M Graphs(B)
fzh (P) hﬂ'l Graphs(f>) Graphs((P)) Gbr'a phs(m)
™ Graphs(m) ;81
C—D Gmphs(C) ———— % Graphs(D)
¢

gz

Letx € D, then either x € Borx € C. If x € B, then g; (x) € X, if otherwise x € C then g (x) € X.
gi(x) ifxeB

g2(x) otherwise

It remains to show that g is unique: The above construction follows directly from g;, g, and

Graphs(m, ), Graphs(m,). If we assume a different morphism g’: Graphs(D) — X it would have
to follow these same constraints, hence g’ = g. ]

We can thus define g(x) =

Definition 6 (PL: PL® — Sets) The functor PL: PL® — Sets is defined to map a multiset of
labels to a set with distinct elements and is given as follows: For a multiset of labels m’ : L' — N
let PL(m) = Upepm(l'), where for I' € L', m(l") = {i},...,1;} iff m(I") = k. For a morphism
f:my — my let PL(f) = PL(m;) — PL(my) be a morphism in Sets, such that PL(f)(l}) = I} iff
PL(ly) =1{,PL(ly) =I5 and f(I;) = I, with [},], € m;,m; respectively.

Example 5 Given a morphism f: {|a,a,b|} — {|a,a,b,b|} in Disc(L)®, PL(f) is the morphism
{a1,a2,b1} — {a1,a2,b1,by}. PL ’flattens’ a multiset into a set by making sure that there are
distinct elements in the set for all elements in a multiset.

Lemma 8 The functor PL: PL® — Sets preserves pullbacks.

Proof. Given a pullback (P) in PL?, we have to show that PL((P)) is a pullback in Sets, i.e. for
every pair of commuting morphisms g;: X — PL(B) and g»: X — PL(C) there is a unique
morphism g: X — PL(A).

——
A" g & proy PHm) WIAPL(B)
h hfl )o@y |
c—" 0 ;L(C) PLf2) PL(D)

Let x € A, then both x € B and x € C due to the morphisms 7;, ;. We can thus define g(x/ )=x
if g1(x') = PL(m (x)) with X’ € X.
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It remains to show that g is unique: The above construction follows directly from g;, g, and
PL(m;),PL(m,). If we assume a different morphism g’: X — PL(A) it would have to follow these
same constraints, hence g’ = g. O

Definition 7 (Att = idses vij PL) The category Att of artribute collections is the comma cat-
egory idsets Jvij PL where idses denotes the identity functor over Sets.

Lemma 9 (Att is .#Z¢, 4 “-adhesive) The category Att of attribute collections is M€, N -
adhesive where M, N ¢ are the classes of morphisms induced by the comma category con-
struction.

Proof. Att = idsets Jvij PL is .# ¢,/ “-adhesive, since Sets and PL are ./#,./# -adhesive and a
multiset and comma category construction preserve .# .4 -adhesiveness. O

To construct attributed graphs we define a functor from multisets of these attribute collections
to sets for later use in the definition of a comma category. We also prove that this functor pre-
serves pullbacks, since this is required for the comma category to preserve .# ,./ -adhesiveness.

Definition 8 (Art: Att” — Sets) The functor Att: Att” — Sets is defined to map attribute col-
lections to sets with distinct values and is given by the following: A triple (idsets(S), PL(m),0p)®
is mapped to the set S¥ + PL(m)® where & is flattened analogously to the way PL does (see Def-
inition 6). A morphism f: A — B in Att” is mapped to a morphism Atz(f): Att(A) — Att(B),
where elements in At7(A) are mapped to elements in Ar¢(B) based on the original mappings in
Att?.

Lemma 10 (Arz preserves pullbacks) The functor Att: Att® — Sets preserves pullbacks.

Proof. In the same way that the defintion of Atz is analogous to that of PL the preservation of
pullbacks can be proven in a similar way. O

Definition 9 (AttGraphs = Graphs |v;j Att) The category AttGraphs of attributed graphs is
the comma category Graphs |pij Att.

Now we are able to show that the category AttGraphs of attributed graphs is .#, .4 -adhesive.
The categories Graphs of graphs and Att of attribute collections are .#g, 4G and Ay, ;-
adhesive and the compositions of multiset category and comma category preserve .# , .4 -adhesiveness.

Theorem 4 (AttGraphsis .#Z ¢, 4 “-adhesive) The category AttGraphs of attributed graphs is
M, N C-adhesive where M€, N € are the classes of morphisms induced by the comma category
construction.

Proof. The proof is illustrated in Figure 7. By Lemmata 2 and 9, Graphs and Att are .#¢, 15
and .#,, ¥s-adhesive, respectively. .#Zg, -4 are monomorphisms in Graphs and .#4, .4, are
the classes of morphisms induced by the comma category construction of Att. By Theorem 3,
Att? is .#%, ¥ “-adhesive. By Theorem 1 and Lemmata 7 and 10, Graphs vij Att is M, N -
adhesive. By Definition 9, AttGraphs is .#Z“, .4 “-adhesive. O
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Graphs Lem?2 Att Lem 9
Thm 3
Att®
Thm 1
Graphs |y Att
= | Def 9
AttGraphs

Figure 7: Proof of “AttGraphs is .#Z¢, 4 “-adhesive”.

Example 6 Figure 8 shows an attributed graph in our setting. The functor Graphs maps the
unlabelled graph U given below to a set {vy,v,e;} of nodes and edges. The functor Att maps the
multiset {|ja =4,b=5,a =4[} to the set {a1,b;,a, }: whenever an element x occurs n times in the
multiset, the symbols x1,...,x, occur in the corresponding set. In our case, there is a bijective
morphism op: Sets — Sets. Now we get an attributed graph G = (U, lg) from the unlabelled
graph U and the multiset {la = 4,b = 5,a = 5|} by defining attg(x) = Att~ ' (op(Graphs(x))) for
each item x in U. The resulting attributed graph is given in the picture below. To represent an
attributed graph we write its attribute collections into their corresponding nodes or next to their
corresponding edges.

Graphs Sets L Sets Att?
O O Graphs op bijective Att
o el " *>{v17\)2,e1}—>{a1,b1,a2}%{‘a:4,b:5,a:4|}
AttGraphs

=42%b=5 -
el attg(x) = Att~! (op(Graphs(x)))

Figure 8: Example of an object of AttGraphs

Figure 9 shows a rule containing the same graph. Note that, unlike the labelling function
in partially labelled graphs, op does not change, instead the attribute collections themselves
are transformed. For this reason we may need multiple instances of these attribute collections,
hence the use of a multiset. The elements of the multiset Att” are in turn transformed in a way
analogous to these attributed graphs.
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AttGraphs Graphs Sets Sets Att?
_ PL
=420 =5 {a1,b1,a2} <~ {Ja=4,b=5,a=4]}

Vi vy op
T Graphs T T

_ op PL
E=92526=D OO0 — et ™ e br.an) ™ fla=t, b= L a=1)
Vi V2 Vi %)

! | J

_ PL
a=42-%b=6 {a1,b1,a0} <= {la=4,b=6,a=3]}

Vi V2

Figure 9: Example rule over AttGraphs

=L a=4 =3
e=9*56=0 —— L3 "E=9

V2
Vi

Figure 10: Matches need not specify all attributes

AttGraphs versus PLGraphs We based our approach on partially labelled graphs and we
have to consider whether we have actually gained anything with this new category. We could,
for example, define partially labelled graphs over an alphabet of sequences of (name,value)-
pairs which would also allow us to model graphs with attributes (this is close to the approach to
attribution in [PP12]). In contrast to labels in PL.Graphs, the attribute collections in AttGraphs
have an internal structure. This allows us to write rules which specify only those attributes that
we want to change, such as in Figure 10. Unlike in a sequence of attributes, named attributes can
be deleted without implicitly changing the meaning of other, following attributes.

On Attributed Graph Transformation So far we have only considered rules that use concrete
attribute values. In practice we would want to have more abstract rules with variables, such that
a rule may e.g. compute the sum of two attributes and write the result to a third attribute. To
allow computations in our rules we could adopt rule schemata as in e.g. [PP12]. A rule schema
may contain variables or terms in place of attribute values. These variables are instantiated
during matching and the terms evaluated, resulting in a concrete rule that we can handle with our
approach. Alternatively we would have to prove that relevant algebra form an .#, .4 -adhesive
category to be able to handle computations directly, such as in [Gol12] or [DEPR14].

5 Related Concepts

Throughout the literature, various versions of adhesive and quasiadhesive, weak adhesive HLR,
partial map adhesive, and . -adhesive categories exist. In [EGH10], all these categories are
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shown to be also .# -adhesive ones. The categories of labelled graphs, typed graphs, and typed
attributed graphs in [EEPTO06], are known to be . -adhesive categories if one chooses .# to
be the class of injective graph morphisms [EGH10]. Each such category induces a class of . -
adhesive systems for which several classical results of the double-pushout approach hold.

Unfortunately, the framework of ./ -adhesive systems does not cover graph transformation
with relabelling. In [HP12], the authors generalize .# -adhesive categories to .# ,.4# -adhesive
categories, where .4 is a class of morphisms containing the vertical morphisms in double-
pushouts, and show that the category of partially labelled graphs is .#,.4 -adhesive, where
A and ¥ are the classes of injective and injective, undefinedness-preserving graph morphisms,
respectively. Independently, Golas [Gol12] provided a general framework for attributed objects,
so-called % -adhesive systems which allows undefined attributes in the interface of a rule to
change attributes, which is similar to relabelling. By Lemma 1 and Theorem 5 in [PH15], the
hierarchy of adhesive categories in [EGH10] is extended in the following way:

dhesi dhesive HLR , .# -adhesive ,.# ,./ -adhesi # -adhesi
adnesive adnesive -aanesive ; -adnesive -adanesive

Composition of adhesive categories has previously been considered for ./ -adhesive cate-
gories: the standard constructions of product, slice and coslice, functor, and comma categories
are given in [EEPTO6].

Parisi-Presicce et al. [PEM87] impose a simple structure on the sets of labels to allow variables
both graphs and rules. As special case, they consider a preordering on the sets of labels to
allow partially labelled graphs, i.e., partial labelling functions, and to allow the label-preserving
matching morphisms. It is easy to see that this situation is a special case of [PEM87], 3.2 and 3.4
obtained by imposing a flat ordering on the labelling alphabet with a new “label” as top element.
As far as we see, this is the first time where a special class of matching morphisms is considered.

In the literature, there are several variants of attribution concepts, e.g.:

Ehrig et al. Ehrig et al. [EEPTO06] introduce typed attributed graphs, expanding the graph by
including an algebra for attribute values. To facilitate attribution, typed attributed graphs extend
graphs by attribution nodes and attribution edges. All possible data values of the algebra are
assumed to be part of the graph. Nodes and edges are attributed by adding an attribution edge
that leads to an attribution node. In contrast to typed attributed graphs our attributed graphs can
have at most one value for an attribute. We constructed untyped graphs and even the attributes
themselves have no types. Typed attributed graphs require that the graph is typed and thus do
not allow e.g. the addition of attributes to a node or edge.

Poskitt and Plump. Poskitt and Plump [PP12] use a different approach to attribution. Here la-
bels are replaced by sequences of attributes. Rules are complemented by rule schemata in which
terms over the attributes are specified. These variables are substituted with attribute values and
evaluated during rule application. Adding or removing attributes is possible, since the graphs are
not typed. It is, however, not possible to find a match without fully specifying other, potentially
uninteresting, attributes.

Golas. Attributed structures, as presented by Golas [Gol12], are likely the closest to our ap-
proach. Attributed structures can be defined over arbitrary . -adhesive categories but are strictly
limited to attribution. Only some of the results established for .#,. 4 -adhesive transformation
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Source Typing Addeemove Computation Results
Attributes LCR. Par. C

. , Par, Con,
[EEPT06] | mandatory - via algebra M Amalg
[PP12] none yes via rule schemata | .#Z, A4 LCR, Par, Con
[Gol12] mandatory - via algebra V4 LCR
[DEPR14] none yes via algebra sesqui-PO  LCR
this paper optional yes not considered | A4, N LCR, Par, Con

Table 1: Comparison of Attribution Concepts

systems have been proven for these attributed structures. Since attributes are added to elements
of the underlying structure based on a type, addition or removal of attributes is not possible.

Duval et al. Duval et al. [DEPR14] base their approach on sesqui-pushout rewriting to allow
for cloning and merging of nodes. The addition or removal of attributes is also possible.

In most of these approaches attributes are based on an algebra that allows performing some
computations on the attributes, in our setting this would require additional work to prove .#, .4 -
adhesiveness for a suitable category. Fortunately we only need to provide this proof for such
attributes once, enabling us to construct many different attributed structures without concerning
ourselves with e.g. the underlying graphs. Alternatively we could follow the approach of [PP12]
and introduce rule schemata to allow for computations over attributes.

The comparison is summarized in Table 1, based on the necessity of typing the graph, the
ability to add or remove attributes via rules, whether computations over attribute values are
supported and what properties have been shown for these approaches, where LCR is the Local-
Church-Rosser Theorem, Par is the Parallelism Theorem, Con is the Concurrency Theorem and
Amalg is the Amalgamation Theorem.

Further approaches are e.g. Lowe et al. [LKW93] which views graphs as a special case of
algebras. These algebras can then additionally specify types for attributes. Kastenberg and
Rensink. [KR12] take a similar approach to [EEPT06], but instead of only encoding the data
values, operations and constants are also included in the graph.

6 Conclusion

In this paper, we have continued the work on .#,.4 -adhesive categories and have presented
several examples (see Table 2).
The main contributions of the paper are the following:

(1) Closure results for .#,.4 -adhesive categories: product, slice/coslice, functor, comma,
string, and multiset categories.

(2) A new concept of attributed graphs with a proof of .#, .4 -adhesiveness.

(3) An application to transformation systems saying that for these attributed graphs the Local
Church-Rosser Theorem, the Parallelism Theorem and the Concurrency Theorem hold
provided that the HLR " -properties [HP12] are satisfied.
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Category Structures Adhesiveness Reference
Sets sets M -adhesive [EEPTO06]

PL sets of labels M, N -adhesive Lemma 6

Att attribute collections M, N -adhesive Lemma 9
Graphs unlabelled graphs M -adhesive [EEPTO06]
LGraphs labelled graphs A -adhesive [Ehr79]
PLGraphs partially labelled graphs .#,.4 -adhesive [HP12, PH15]
AttGraphs attributed graphs M , N -adhesive Theorem 4

Table 2: Examples of .# ,.# -adhesive categories

Further topics might be:

(1) Proof of the HLR " -properties for the category AttGraphs to obtain the Local Church-
Rosser Theorem, the Parallelism Theorem and the Concurrency Theorem for this type of
attributed graphs.

(2) Generalization of the approach to systems with so-called left-linear rules, i.e., rules where
only the left morphism of the rule is required to be in ./ as, e.g., in [BGS11].
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