Electronic Communications of the EASST

Volume 74 (2017)

7th International Symposium
on Leveraging Applications of Formal Methods, Verification
and Validation

Doctoral Symposium, 2016

Handling Domain Knowledge in Design and Analysis of Design Models
Kahina Hacid and Yamine Ait-Ameur

21 pages

Guest Editors: Anna-Lena Lamprecht

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Handling Domain Knowledge in Design and Analysis of Design
Models

Kahina Hacid' and Yamine Ait-Ameur

1 2

Université de Toulouse ; INP ; IRIT
Institut de Recherche en Informatique de Toulouse - France

Abstract: The development of complex systems involves several domain experts
and several design models corresponding to different analyses (views) of the same
system. No explicit information regarding the characteristics of the performed sys-
tem analyses is given. We propose a stepwise approach to keep trace of the process
that allows a system designer to build a point of view first, by explicitly defining the
features of an analysis (view) and second, by explicitly defining the required con-
cepts and properties borrowed from a design model. The objective is to trigger a
given model analysis. Strengthening the design models with domain knowledge is
highly recommended before performing such analysis. We propose a model anno-
tation methodology for this purpose. These approaches are deployed using Model
Driven Engineering (MDE) techniques and illustrated on an didactic case study.

Keywords: multi-view modeling, domain knowledge, ontologies, design model,
model analysis

1 Introduction

Usually, during the development of complex systems several models corresponding to different
views of the same system are built. In most of the developments, there is no explicit information
regarding the characteristics of the performed system analyses.

Thus, our work is motivated by the following observations. First, the system developer usually
uses part of the system model for a specific activity (an analysis to perform on the model). Indeed,
some concepts are not useful for a given analysis. For example, real-time analysis does not
require all the functional concepts of the analyzed system. There is no explicit definition of the
concepts of a given model required by a given model analysis. Second, when performing model
analysis, the system developer does not explicitly describe the analysis that he/she used. In order
to take design decision, another system developer needs the whole information and hypotheses
related to the realized system model analyses (in fact, the result of an analysis may interfere
with the inputs and results of another analysis. Thus information regarding the used method,
tool, properties for an analysis may be needed to best evaluate its corresponding output result.).
The system developer needs to know for example: what are the performed model analyses (tool,
method, inputs, outputs, etc.)? What are the hypotheses made by the other analyses? And what
are the parts of the system that have been analyzed?

Our proposal consists first, in explicitly defining the features of an analysis and second, in
explicitly defining the required concepts and properties borrowed from a design model to trigger

1/21 Volume 74 (2017)

mailto:kahina.hacid@enseeiht.fr
mailto:yamine@enseeiht.fr

Handling Domain Knowledge... Eﬁ

a given model analysis. All these definitions are described in a model we will denote as point of
view. Proceeding this way, our approach keeps trace of the process that allows a system designer
to build its model analysis.

The achievement of the objectives of our proposal requires to make explicit all the knowledge
and information (like the required properties, the configuration details to perform an analysis,
the used method analysis, the analysis results, etc.) manipulated by the system developer while
performing the analyses. This knowledge is formalized within domain ontologies. Thus, we
propose a model annotation methodology in order to make explicit references to this domain
knowledge carried out by domain ontologies. The model annotation methodology is also used
as a preliminary step in order to strengthen and enrich system design models.

This paper is structured as follows. Section 2 presents a didactic case study illustrating our
approach. Section 3 gives a definition of domain ontologies and design models. Our global ap-
proach and the developed methodology for strengthening models through an annotation-based
method are described in section 4. Then, our methodology to handle multi-analysis of systems
is presented in section 5. Section 6 details the implementation of our approach on the basis of
Model Driven Engineering (MDE) techniques. The application of the proposed global approach
on the case study is shown in section 7. Finally, section 8 overviews different approaches pro-
moting multi-view modeling of systems. A conclusion ends this paper and identifies some future
research directions.

2 A case study

In order to illustrate our proposal, we have borrowed the case study used in [HA]. It is a didac-
tic case study describing a simple information system corresponding to a given specification. It
deals with the management of students within the European higher education system. This sys-
tem offers two kind of curricula: the Licence (or bachelor), Master, Doctorate curricula (LMD
for short) and the Engineer curricula. In the LMD curricula, each of the three proposed diplomas
corresponds to a specific level of education : Bachelor/Licence (high school degree with 180
credits), Master (Bachelor with 120 credits) and PhD (Master with 180 credits). In the Engi-
neering curricula, an engineering degree is delivered after at least five years of studies within
specialized high engineering institutes.

In the studied information system, students register to prepare their next expected diploma.
This registration action takes into account the last hold academic degree (or last diploma) as a
pre-requisite to register for the next diploma. A set of defined constraints on this information
system does not allow a student to register for a diploma if he/she does not have the necessary
background qualifications. For example, Phd degree registration is authorized only if the last held
degree corresponds to a Master degree. The studied information system prescribes the necessary
conditions (constraints) for registering students for preparing diplomas.

Furthermore, the chosen case study is also concerned with the management of students diplo-
mas. It offers, among other services, a printing service for the diplomas of graduated students.
Some required information, provided by the studied information system, is exploited to activate
this service.

ISoLA DS 2016 2/21

Eg ECEASST

3 Background

3.1 Ontologies

Gruber defines an ontology as an explicit specification of a conceptualization |]. We con-
sider a domain ontology as a formal and consensual dictionary of categories and properties of
entities of a domain and the relationships that hold among them []. By entity we mean
being, i.e, any concept that can be said to be in the domain. The term dictionary emphasizes that
any entity of the ontology and any kind of domain relationship described in the domain ontology
may be referenced by a symbol directly (usually referenced to as URI), for any purpose and from
any context, independently of other entities or relationships. This identification symbol may be
either a language independent identifier, or a language-specific set of words. But, whatever this
symbol is, and unlike linguistic dictionaries, this symbol denotes directly a domain entity or re-
lationship, the description of which is formally stated providing for (automatic) reasoning and
consistency checking. Finally, the ontology conceptualization is agreed upon by a community
larger than the members involved in one particular application development. For instance, ISO
13584-compliant (PLIB) [,] product ontologies follow a formal standardization
process and are published as ISO or IEC international standards.

3.2 Design models

Design models target the definition of models from which systems are realized. They are de-
scribed within design languages. They represent abstractions of the system to be designed and/or
analyzed. When models are defined and according to the modeling language, it becomes possi-
ble to perform a set of analyses like verification, validation, simulation, etc. The choice of the
modeling language has an impact on the kind of analysis that can be performed on the models
defined within this language.

During design processes, several models of the same system may be produced within differ-
ent modeling languages. Indeed, some modeling languages focus on some specific aspects on
which analyses become possible. This situation leads to heterogeneous models and heteroge-
neous modeling corresponding to specific views of the system under design.

4 An overview of our global approach: Domain knowledge han-
dling in design and multi-analysis of models

Our global approach is composed of two main parts. The first one, represented on the left hand
side of Figure | (grey box), addresses strengthening of design models. The design models are
annotated by references to domain ontologies that describe the knowledge associated to the con-
cepts occurring in the system model. A model annotation methodology is developed for this
purpose and its details are given in section 5. The second part concerns the analysis of mod-
els through the explicit definition of points of view and views (corresponding to some system
analyses or functional computation of the properties of the system under design), it is depicted
in the right hand side of Figure |. The model analysis methodology makes extensive use of the
model annotation one. Indeed, a model annotation step is recommended in order to strengthen

3/21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ

the quality of the system design model (by adding new domain properties and constraints). Thus,
the model analysis methodology will be triggered on the new enriched design model (output of
the model annotation step) and the quality of the obtained views will be increased. The model
analysis approach is addressed in section 6.

Once the integration of the two defined parts is made, the obtained view models are automat-
ically instantiated, the corresponding analysis are triggered on the view instances (instances of
the obtained view) and the results (output of external analysis tool) are collected.

Our global approach uses Model Driven Engineering (MDE) techniques and all the imple-
mented models conform to the Ecore meta-model.

-, = 7 R B
i | 4 e N
Q’:‘%’, Results Integration \
. . B Jey N
Domain Appotation Design -—. N —
Ontology Model /-‘7{
—) -)¢ [=—]
/9 Instanciati Input ¢ Output
1 \s‘ﬂo‘;ﬁ Built External Result
| o View Tool for Built View
T /
\ Point Of View \I\l?._s_anc? vl
AN 7

~ -

Figure 1: General framework for design and analysis of design models.

S Annotating design models with references to ontologies

In this section, we describe the work we have done in order to strengthen system design models
[, HA]. It is represented on the left hand side of Figure | (grey box).

Usually, design models do not handle, in an explicit manner, the knowledge of the application
domain or context where models are designed. Therefore, some useful properties available in the
domain knowledge are not considered by the design models. Moreover, these properties may be
violated by the design model if they were handled. An error or an inconsistency in the model is
produced in this case.

Hence, linking knowledge domains expressed by ontologies with the design models strength-
ens the designed models and offers the support of more verifications, since the properties ex-
pressed in the ontologies will become part of the designed models. Model annotation is the
mechanism we set up to link ontologies with design models. It consists in defining specific
relationships between ontology concepts and model entities.

5.1 A methodology to handle design model enrichment

In our previous work, we have developed a generic methodology to handle model annotation
through references to domain ontologies. The developed approach is made of four steps, depicted
on Figure

ISoLA DS 2016 4/21

Eg ECEASST

H Domain Knowledge ﬂ Model Specification
Formalization and Design

. 7

- Model
Domain Oﬂm'OQY
\ Anﬁtauon
"use”\”'---‘_,D/-\{j,.,,—' use”

Annotated Model

l Property
Verification

Enriched Design
Model

Design Model

Figure 2: A Generic approach for Model annotation.

1. Domain Knowledge Formalization. This step consists in formalizing the knowledge of a
specific domain within domain ontologies. These ontologies fulfil all the requirements
recalled in subsection

2. Model specification and design. Design models formalizing and handling a given set of re-
quirements are defined at this step. They are formalized within a specific modeling lan-
guage and support different analyses offered by the chosen modeling language.

3. Model Annotation. This step defines annotations through explicit references to ontologies.
In other words, models make explicit references to ontologies concepts. Different kinds
of annotations have been identified. The explicit definition and details on the types of
annotation are given in [HA,].

4. Properties Verification. This step requires (re-)checking of the properties of the design mod-
els after annotation. Indeed, some already checked properties may no longer be valid
and/or new properties mined from the ontologies through annotation may appear explic-
itly (i.e. the ontological entities - properties, concepts or constraints - involved in the
annotation process are integrated in the new enriched design model at the end of step 3
and become available in it).

Ontology modeling

The deployment of the model annotation methodology requires in its first step the definition
of an ontology formalizing the specific domain knowledge. Concepts and properties are mod-
eled as classes and attributes of the ontology and the ontological constraints are added as OCL

5/21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ
[Equivalence [1] left [EClass
[1] right

Figure 3: The Equivalence Relationship.

.y, — Eq A y— s .
Vxyz | X eyEe A/ y=z EQ_transitivity: Equivalence.alllInstances()-> forAll (eql, eqg2|
;sq egl.right = eg2.left implies Equivalence.allInstances()->
x—z € Eq exists(eq3leg2.right = eqg3.right and eql.left = eqg3.left));

Figure 4: Equivalence relationship: Transitivity property expressed OCL.

constraints. The whole ontological relationships like Equivalence, restriction, etc. are also ex-
pressed. As illustration, figure 3 gives the definition of the equivalence relationship as a class at
the meta-modeling level.

The properties related to symmetry, reflexivity and transitivity of the equivalence relationship
are formalized as OCL constraints. For example, Figure 4 gives an overview of the formalization
of transitivity property.

Core classes for model annotation

The relevant information and entities required to set up the methodology depicted in Figure 2 are
summarized in a simplified class diagram on Figure

In step 3 of the model annotation approach (Figure 2) relations defining the annotation model
are established between the design model entities and the ontology concepts. These annotation
relationships link between design model entities (classes, properties, datatypes, associations, etc.
) and ontology concepts (classes, properties, associations, etc.).

Figure 5 depicts an extract of the annotation meta-model where the annotation relationships
are formalized. The annotation class ClassAnnotation is defined to link (annotate) a design model
class (ex. ModelClass) with an explicit reference to an ontology concept (ex. OntologyClass).
Other types of annotation classes, like InstanceAnnotation and PropertyAnnotation, etc. are also
defined. They are used to annotate other entities of the design model (instances, properties, etc.).

[Modelannatation

__________] S

H InstanceAnnaotatio [Propertysnn otatic?’

—_—m——
=] H ClassAnnotati |
= OntologyClass [1] annotatingClass B ClassAnnotation 1 edClas Q ModelClass

Figure 5: Core classes for model annotation.

ISoLA DS 2016 6/21

Eg ECEASST

Some remarks

The languages used to model ontologies, design models and annotation relationships may differ.
Semantic alignment between these modeling languages may be required. This topic is out of the
scope of this paper, we consider that these languages have the same ground semantics. A single
and shared modeling language for the description of both ontologies, design models and anno-
tations is used in this work. Furthermore, the engineering application we studied uses modeling
languages with classical semantics using closed world assumption (CWA) [1.

The annotation step (step 3) described above requires the definition of annotation mechanisms.
Different kinds of annotation mechanisms can be set up (inheritance, partial inheritance and al-
gebraic relationships) [HA,]. The details and choice of the right mechanism are also out
of the scope of this paper.

6 Handling multi-analyses of systems: our proposal

We have developed a stepwise methodology to handle multi-analyses of systems and/or system
model processing. The definition of this methodology comes from the observation of several
experiments conducted by system developers (in order to formalize well established development
practices and processes). It is based on making explicit the knowledge related to the know-how
associated to the performed analysis.

Figure 6 below depicts the defined methodology. This triptych describes what a system or
model analysis is. We have identified three steps detailed in the following.

Model of point of view System design model
(Which analysis ?) (Annotated design model)
) View Design model
Ontologies (built for a specific analysis) |(enriched by annotation)

(of analyses)

&

Importation of descriptions ==~ ===-~ ‘I:M]\:“ ~~~Importation of concepts (classes +

‘concepts + required properties) - " ;
. £ . properties+ contraints) required for
of the selected analysis (IES:?';:S ;E:UTSE;I& the analysis of the design mode!

analysis)

Figure 6: A generic approach for multi-view modeling.

1. Model of point of view. This step is related to the definition of a catalogue of system model
analyses. It defines the notion of point of view which corresponds to the kind of analysis
to be performed independently of any specific system or model. By the term catalogue we
mean an ontology describing all the relevant characteristics related to an analysis. This
ontology shall mention all the required properties, the constraints, the algorithm and/or

7/ 21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ

method used for a given analysis. It shall also organize these analyses with respect to the
kind or type of analysis.

2. System design model. This step consists of the definition of the model of the system to be
analyzed. The choice of the right abstraction level is a key point. Indeed, if the chosen
abstraction level leads to models that do not contain or represent the resources required
by the analysis then the chosen analysis cannot be performed. Our methodology is able to
check this feasibility condition.

3. View. The integration of both the point of view (analysis description) obtained at Step 1
and the system model obtained at Step 2 is performed at the final Step 3. Here, the view
corresponding to the definition of the analysis (point of view of Step 1) on the system
model (obtained at Step 2) is built. Checking the availability of all the information required
by the analysis is done at this level i.e. checking the feasibility of the analysis.

At the end of this process we obtain a specific view model corresponding to the defined anal-
ysis description. Instances of the view model are generated and the external tool in charge of the
specific analysis (and described within the point of view) is triggered on this set of instances.

Finally, notice that although the above defined methodology relies on the definition of an
integration point of view (step 1) and system design model (step 2), these two models are defined
independently in an asynchronous manner. Second, note that the presented multi-view analyses
methodology uses a single and shared modeling language for the description of the three involved
models (point of view, design model and view model).

6.1 The core model elements

The relevant information and concepts required to set up the methodology depicted in Figure
are summarized in a simplified class diagram on Figure 7. The following relevant properties are
required in order to obtain the integrated view corresponding to a system model analysis.

1. Model of point of view. The PointOfViewClass corresponds to the description of an analysis
defined at step 1 of Figure 6. The following properties are defined.

e The viewProperties property is associated to the view. it characterize the descriptive
properties of an analysis.

e The requiredProperties property defines the set of properties of the system model
needed in order to trigger the described analysis. Mappings may be required to map
the properties defined in the point of view with those defined in the system model.

e The computedProperties property describes the output of the analysis corresponding
to the currently described point of view or analysis.

e The usedMethod property defines the specific technique, method or program that
supports the defined analysis.

e The constraints property defines the constraints imposed by the method to be ex-
ecuted. It concerns constraints related to space or processor or any other required
hypotheses.

ISoLA DS 2016 8/21

Eg ECEASST

H FointofviewClass

= viewProperkies : EEList
requiredProperties : EEList

computedProperties : EEList ‘

usedMethod : EString

config_infa : EString

camments : ESEring

constraints : EEList

H DesignModelClass |

= applicableProperties : EEList
= conskraints : EString

ooooDoan

[1..1] viewOF

[1..*] relatedView

H viewModelClass

= importedProprtiesFromModel : EEList
= importedView : EString

= constraints : EEList

= analysisResult : EString

= _Cnfig_info : EString

= yersion : EString

= comments : ESkring

Figure 7: Core classes for multi-view modeling

2. System design model. It corresponds to the information model to describe the models to be
analyzed (step 2 of Figure 6). It is formalized within a modeling language that supports
different analyses. We may find at least what follows.

o The applicableProperties property corresponds to the properties associated to classes
of the model to be analyzed.

o The constraints property corresponds to the constraints that are defined on the model
to be analyzed. These constraints characterize the correct set of instances.

3. View. Finally, at step 3 of the approach (Figure 0), the integrated view or analysis is built by
composing the resources issued from both concepts of step 1 and step 2.

e The importedPropertiesFromModel property corresponds to the set of properties im-
ported from the model to be analyzed. It defines the properties needed from the
model to build the view and perform the analysis.

e The importedView property refers to the analysis to be performed on the considered
model.

e The constraints property defines the new constraints that apply on the integrated
view.

e The analysisResult property defines the property containing the results of the analy-
sis.

The previous resources represent the concepts of a meta-model describing the integration of
a point of view and a design model in order to obtain a specific view. Note that the list of
the given properties is not exhaustive, other properties to describe configuration information,
analysis expert comments, etc. can be added.

9/21 Volume 74 (2017)

Handling Domain Knowledge... E}

This meta-model also defines the constraints that guarantee the correct integration. The correct
correspondence between applicableProperties of the design model and the requiredProperties of
the point of view can be checked in order to guarantee the correct construction of the view. Thus,
a construction is considered correct only if all the required properties (requiredProperties) can
be retrieved within the defined design model properties (applicableProperties). These proper-
ties correspondences are made possible through the explicit references to ontologies. In fact, if

two properties refer to the same uri of an ontological property, then they are considered to be
semantically equivalent (identical).

7 Developed prototype

Oemf

QECLIPSE MODELING FRAMEWORK

Ecore metamodel

conforms jd’
/

m S

\c\o nforms to

extends
(—

Point Of View Design model

| View metamodel

' /N

|

|
uses ! ‘ /

I'conformsto

|

|

|

I

View model

Figure 8: Implementation of the solution with Eclipse EMF.

The developed approach makes an extensive use of model driven engineering techniques. Our
prototype has been developed using the Eclipse modeling Framework (EMF) [emf]. It uses
model graphical syntaxes and transformation techniques to support and ease model manipulation.

Eclipse Modeling Framework (EMF) offers strong and large capabilities for modeling and for
model manipulation. Indeed, the EMF modeling platform provides editors and code generation

ISoLA DS 2016 10/ 21

@ ECEASST

infrastructures. Models are built in a modular manner with referencing capabilities between
models. This modularity allows a developer to use EMF with other Eclipse projects.

Among the used projects in our developments, we mention the Sirius[sir] project related to
the development of graphical tool/editors. Sirius is an Eclipse project which allows the creation
of model-based workbench by leveraging the Eclipse Modeling technologies, including EMF
and GMF([sir]. Sirius has been used in this work in order to support the whole graphical tool
development we have set up as prototype.

Model to model transformation is set up in our prototype. This is a many to one transformation
which takes a point of view and a design model as input and returns a specific view model
(corresponding to the integration of the two input models) as output.

Figure & describes the overall architecture of our implementation. The view meta-model is
defined and the editors for the construction of a specific analysis view are generated. The view
meta-model is implemented as an extension of the Ecore meta-model. The design model and
the point of view are described within Ecore and conform to the Ecore meta-model. The trans-
formations required for the construction of a specific view and its instances are implemented in
Java.

Details about the implementation of the model annotation methodology can be found in [,

]

8 Application on the student information system case study

The deployment of our approach, presented in section 4, on the student information system Case
study (presented in section 2) is described in this section.

- N

/ [| \
(B] m- J %, o —
—— Qf '&" Results [ntegration
-—i Model -‘i T T
Diplomas Apnpotation Students e
Ontology Model /&:}
— Ly —
Instanciati Input “=#¢ OQutput
1 ‘9\? 525 Dlplomas External Printed
o4 Printing Printing Tool Diplomas
B View t /
Diplomas Factory POV Ins_ wner
N __/

Figure 9: General workflow of the student information system.

Figure 9 depicts the overall schema of the analysis we achieved on the student information
system model. First, an annotation step is performed in order to enrich, strengthen and ensure
the well definition (through the verification step - subsection 5.1) of the student information
system model. Then the diploma factory analysis is performed. The goal of the diploma factory
analysis is to build a set of valid diploma factory instances (carrying all the necessary information
required to trigger the external printing tool and to print student diplomas). These diploma
factory instances are directly built (extracted) from the student information system instances.

11/21 Volume 74 (2017)

Handling Domain Knowledge... E}

E DiplomaOntology

[0..*] diplomas

[Diploma

= uri : EString
= degree: Eint
= title : EString

T

EH LMDDiploma H Cclassicalbiploma

= nbCredits : EInt

I —Ir | I

| H PhD | H Master | H Bacheler | H Engineer

I—T | [1..1] required Diploma T ?

[1..1] required Diploma

[1..1] right

[1..1] left

Figure 10: The Diplomas ontology.

At the end of the procedure we obtain a set of required instances (instances of the obtained
diploma factory view) to trigger the external printing tool in charge of printing the students
diplomas (or any other function/tool that uses properties of a given point of view and of the
system under design)

8.1 Strengthening student information system model

The application of the model annotation methodology on the student information system case
study has been already presented in our previous work [HA]. Next, we show the end-to-end
application of our global approach.

8.1.1 Step 1. Domain knowledge formalization

The defined ontology for diplomas is depicted in Figure 10 in a simple class diagram. diplomas
ontology contains a set of inter-related classes and relevant properties as follows.

- A subsumption relationship (represented by the is_a relationship - or inheritance relation-
ship - on Figure 10) is used to define hierarchies between categories of diplomas. LMDDiploma
and ClassicalDiploma describe respectively the Bachelor, Master and PhD diplomas and other
diplomas (e.g. Engineer).

- Descriptive properties, like title, degree, uri of the Diploma class describe the name, the level
and the uri of a given diploma, nbCredit defines the number of credits required for each diploma.
- A domain property states that Master is equivalent to Engineer. In the diplomas ontology, this

ISoLA DS 2016 12/ 21

Eg ECEASST

property is represented by an equivalent class (EQo) linking Master and Engineer classes of the
same ontology.

- A constraint, defined as thesisRequirement, carried by the requiredDiploma relationship is
added to assert that any master (or any equivalent diploma) is required to prepare a PhD.

Note that the presented diplomas ontology is only one of the possible ontologies for describing
the diplomas domain knowledge. A final domain ontology needs to be consensually defined.

8.1.2 Step 2. Model specification and design

The system’s design model is defined according to a given specification. Figure |1 shows one
possible UML class diagram representing the metamodel of the information system related to
the management of students and their diplomas. It is composed of institutes and diplomas. An
institute (a university or an engineering school) is composed of its students. In this model, a
student is represented by Student class with the name, dateOfBirth, iDStudent (for student num-
ber), address, securityNumber (for social security number) and dateOfRegistration properties.
Each student is related to his/her institute and his/her Diplomas. Moreover, each Student holds
an ObtainedDiploma representing the last obtained diploma (obtainedDiploma relationship) and
a NextDiploma referring to the next in preparation diploma (nextDiploma relationship). An in-
stitute is represented by the Institute Class with properties name, adress, phoneNumber and
openingDate. The ObtainedDiploma is characterised by the dateOfObtention (for date when the
diploma was obtained by a student) and the obtainedCredits (for the number of credits a student
obtained for his last diploma) properties. nextDiploma is characterised by the requiredCredits
and requiredDiploma (for the number of credits and the grade of diploma required in order to
register for a specific next diploma) properties.

B StudentlnformationMndel‘

,l, [1..*] inskitutes

[0.*] diplomas

" Dploma B Institute ‘
= _SPECia“t_Y: EString [0.*] diplomas = name : EString
= ib: EStr!ng = address : EString
T = phoneMumber: EString
| | = openingDate : EDate
‘ B NextDiploma ‘ ‘ B obtainedDiploma ‘ P[1__1] institute
‘ = requiredCredits : Elnt = pbtainedCredits : EInt [0..*] students
= requiredDiploma : EString = dateQfObtention : EDate B student

= mention : ESkring

[1..1] owner

= name : EString

= dateQFfBirth : EDate
[0..1] obtaineddiploma = iDStudent : Elnt

= address : EString

= securityMumber - EString
= dateQfinscription : EDate

[@..1] nextdiploma

Figure 11: Overview of the student information system model.

13/ 21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ

Student.nextDiploma.iD ="p”
=
Student.obtainedDiploma.iD = "m”

phdInscritpion: self.NextDiploma.iD = ’'p’ implies

’

self.obtainedDiploma.iD = ’m’

Figure 12: Formalization of phdiInscritpion constraint.

E Master [classannotation [obtainedDiploma

[1..1] annotatedClass

J[Lﬂ annotatingClass

Figure 13: Annotation of Student model.

Moreover, a constraint named phdinscription on the student nextDiploma is defined. It asserts
that a student registering for a PhD diploma needs to hold a master diploma to be allowed to
register for a PhD. It represents a model invariant and it is defined by the OCL constraint of
Figure

8.1.3 Step 3. Model annotation

In step 3, the annotation model is defined. Figure 13 shows how the annotation relationships
between the design model entities and the ontology concepts are set up. The ObtainedDiploma
class of the students information system design model instantiates ModelClass (Figure 3) and
the Master class of the diplomas ontology instantiates OntologylClass (Figure 3). The Obtained-
Diploma class is annotated by making explicit references to the Master class using a ClassAn-
notation class. Similarly, NextDiploma is annotated by PhD of the diplomas ontology. The
non-structural equivalence property and the thesisRequirement constraint can now be accessed
and exploited. Thus, the equivalence between Master and Engineer classes is expressed and
made explicit within the design model.

8.1.4 Step 4. Properties verification

The obtained annotated design model is analyzed at step 4. The annotation process (step 3) leads
to the enrichment of the original design model with domain knowledge (properties, constraints,
etc.). All the ontological properties involved during the annotation process (the ones selected or
linked to the model entities) are now available in the enriched model. The new enriched student
information system model is validated by (re-)checking all the available constraints on the model.

The verification process ends with integrating the diplomas equivalence domain property and
the thesisRequirement constraint into the enriched design model since all the properties they are
related to are available. At this level, it becomes possible to conclude that a student can apply
for preparing a Phd thesis if he holds an engineer diploma. The phdlInscritpion constraint is
modified to integrate the result of annotation. Figure 14 depicts the new enriched constraint.
This property became explicit after handling domain knowledge (by annotation) expressed in the
ontology. At the end, the obtained model together with its instances are now ready to be analysed.
Figure shows an instance of the enriched student information system model. Instances of
Student, School, ObtainedDiploma and NextDiploma classes with all their associated attributes

ISoLA DS 2016 14 /21

ECEASST

phdInscritpion: self.nextDiploma.iD "p’ implies
let c: ecore::EClass ClassAnnotation.allInstances () —>
select (inst|inst.annotatedClass
self.obtainedDiploma)-> at (0) .annotatingClass
Equivalence.allInstances () -> exists (eq]

eqg.left.uri "Master_uri’ and eqg.right

Student.nextDiploma.iD="P”
=
annotation(Student.obtainedDiploma)
€ eq(Master)

in

c);

Figure 14: The OCL constraint phdInscritpion after annotation.

4! studentsinformationModelinstance.xmi &2
~ @ platform:/resource/StudentinformationSystemAnalyses/model/StudentsinformationModelinstance.xmi
~ <4 Students Information Model
~ 4 Institute Enseeiht
Student Toto
4 Obtained Diploma Engineer
4 NextDiploma PhD
I Properties 52 |If] Problems & Console = References
Property Value

Adress SBoulevard Lazare Carnot Toulouse 31000 France

Date OFf Birth
Date OF Inscriptio
Diplomas

1D Student
Institute

Name

Next Diploma
Obtained Diploma
Security Number

=1991-01-31

=2013-09-13T00:00:00.000+0200

=Next Diploma PhD, Obtained Diploma Engineer
=127545678

I=Institute Enseeiht

=Toto

I=Next Diploma PhD

I=QObtained Diploma Engineer
'=165467890987654

Figure 15: Student information system model instance.

are defined. Next subsections show how the diplomas factory analysis is performed on these
model and its instances.

8.2 The diploma factory model analysis

The details of the construction and application of the diploma factory analysis are given in the
following subsections.

8.2.1 Step 1. Model of point of view: The diploma factory analysis

The deployment of our model analysis methodology requires, in its first step, the description of a
point of view. To make this description explicit, we have used a simple class diagram to express
the different properties required to perform the analysis.

The defined point of view for the diploma factory analysis is depicted in Figure The
external printing function to be triggered and its required input parameters are described. The
printingMethod property characterises the external printing function to be used and the printing-
Tool property makes references to the external tool (encoding the printing function) that will be
called for printing students diplomas.

Point of view’s (PoV) requiredproperties and viewproperties make references to the needed
input parameters of the diploma printing function. name of a student, dateOfObtention of a
diploma, iDStudent (for student number), etc. are described as required properties. Thus, they
shall be imported directly from the design model. The paperSize and the logo of the university

15/ 21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ

are defined as view properties and are directly imported from the corresponding ontologies. The
Result class defining the url property is used to store the output results of the printing function.

Notice that the semantics of these properties (required properties and view ones) are defined in
the corresponding domain ontologies (diplomas ontology, students ontology, printing ontology,
etc.), they are not given here due to space limitation. Moreover, not all the design model proper-
ties are required for the construction of a diploma factory view, thus only the required properties,
specified within the point of view model, are imported for each specific analysis.

| E PrintingPoV E"ﬂ requiredpraperties E RequiredProperties

-

mention : EString
dateQFfBirth : EDate
dateQfObtention : EDate
diplomaSpeciality : EString
iDStudent : EInt
studentMame : EString
schoolMame : EString
iDDiploma : EString
dateOFfInscription : EDate

| = printingMethaod : EString
= printingTool : EString

[0..*] viewproperties

0..1] result

E ViewProperties
= paperSize : EString

= url: EString

= logo : EString
= authar : E5tring

ooDoDoDoDOoDOoDO0OaO

Figure 16: The diplomas factory point of view.

8.2.2 Step 2. System design model

The design model some system analyses or functional computation of the properties of the sys-
tem under design is defined at this level. It corresponds, in this case study, to the new strength-
ened student information system model and its instances obtained at the end of the model anno-
tation step (subsection).

8.2.3 Step 3. Diplomas factory view

A specific diplomas factory view can be built by integrating the resources issued from both
the student information system model and the diplomas factory point of view. Thus, both the
required properties and the view properties are imported in the diplomas factory view. Figure
depicts the diplomas factory view.

| H student || H obtainedDiploma || H FrintingPov | H Institute
= name : EString = iD : EString = printingMethod : EString = name : EString
= dateQFfBirth : EDate = speciality : EString = printingTool : EString —
= iDStudent : EInt = dateQFObtention : EDate || = author: EString H Result
= dateOfinscription : EDate || = mention : EString = logo : EString = url: EString

Figure 17: Diplomas factory view.

ISoLA DS 2016 16/ 21

@ ECEASST

& DiplomaFactoryviewlnstancez.xmi &3
~ i platform:/resource/StudentinformationSystemAnalyses/model/DiplomaFactoryViewlInstance2.xmi
~ 4 Students Information Model
~ 4 Institute Enseeiht
cuden OCo

< Obtained Diploma Engineer

% Result

< View Properties A4

O Properties &2 |If] Problems B Console = References

Property Value
Dakte OF Birth H
Date OF Inscription
Diplomas Obtained Diploma Engineer

ID Student 127545678

Name Toto

Obtained Diploma giiobtained Diploma Engineer

Figure 18: Diplomas factory view instance.

- The Student, ObtainedDiploma, Institute, PrintingPoV and Result classes containing the dif-

ferent properties referenced by the point of view of the diplomas factory analysis (Figure

) are imported (note that by selecting a point of view in the view editor, all the referenced
properties, with their classes, are automatically imported in the view).

- The instances corresponding to these classes and properties are generated by a model to model
transformation.

- An instance of the Result class is generated for each instance of the Diplomas factory view,
it contains the url (address) of the output of the external tool to trigger. In this case the
location of each printed diploma can be accessed.

Figure 18 depicts such a diplomas factory view instance. It is built (extracted) from the enriched
student information system model instance shown in Figure 15. Only the relevant information
for diplomas factory view are defined.

- The instances of the required properties defined within Student, ObtainedDiploma and Insti-
tute classes are imported.

- The instance of NextDiploma class is not imported in the view instance since it is not relevant
for this view (not described within the diplomas factory point of view).

- The usedMethod, usedTool properties are instantiated to describe the suited analysis to trigger
on the view instances.

- The view properties like paperSize are instantiated. The additional user choices are made
explicit.

At the end, the external printing tool is triggered on the set of diplomas factory instances.
Students diplomas are printed and their corresponding storing ur! are given as output results of
the printing tool.

Remark. Note that any function that considers a system and a view can be triggered. The
student information system case study shows a functional case, but other functions describing

17 /21 Volume 74 (2017)

Handling Domain Knowledge... Eﬁ

logical properties can envelope any system analysis. This is our intent when using a function that
borrows information both from the point of view and from the design model. In the particular
case of our paper, the proposed design model in the case study formalizes the student information
system knowledge and the printing process is not directly attached to this knowledge. However,
some of the knowledge formalized in the student information system model is required in order
to trigger the printing. Thus, the printing process is defined as a specific view of the system and
does not unnecessarily overload the system design model

9 Related work

Many researchers studied the issue of multi-view modeling. Sirius [sir] is part of EMF. It pro-
poses a multi-view approach which allows users to manipulate sub-parts of a model and focus on
specific view of a design model. [] presents the RAM approach, an aspect-oriented mod-
eling approach that provides scalable multi-view modeling and however faces the global view
consistency challenge. It focuses on the composition of UML class diagrams, UML state and
sequence diagrams. [] deals with the integration of viewpoints (points of view) in the
development of mechatronic products. The vocabulary, assumption and constraints of a specific
domain are defined in Viewpoint contracts and dependency models (shared models) are used to
capture the existing relations between the different views of a system.

[] propose a framework for multi-view modeling to support Embedded systems Engi-
neering. A common shared model, that consists of a combination of relevant knowledge from the
domain-specific views, is defined in SysML. The domain-specific views are directly generated
from this common model which makes extensive use of SysML profiles and model transforma-

tions. [] discuss the requirements for multi-view modeling and several approaches and
tools are compared with regards to the defined requirements.
[] present an approach based software development with multiple viewpoints. View-

point templates are used to encapsulate the style (representation) and the workplan (specification
method) corresponding to the different domain views of a system. A viewpoint framework, cor-
responding to the developed approach, and a logic-based approach to consistency handling are
proposed later in []. To the best of our knowledge, it is the only approach that focusses
on the importance of the explicit definition of a point of view.

Compared to our approach, none of the work cited above, highlight the necessity of defining
descriptive models and none of them makes use of explicit analysis models (points of view). Our
approach improves these approaches. First, it defines explicit models that describes the whole
features of an analysis. Second, it separates the descriptive domain information (ontologies) and
the prescriptive system information (system’s design model), it proposes a fully developed anno-
tation methodology in order to strengthen system’s design models by making explicit references
to the domain knowledge. Both modularity and annotations insures that all the models we have
defined (ontology, design model, point of view) can evolve asynchronously without impacting
on the setted interactions with the other models.

ISoLA DS 2016 18/ 21

Eg ECEASST

10 Conclusion and perspectives

The work presented in this paper shows the major interests of model strengthening and mutli-
view model analyses.

The first part of our work demonstrated that the use of domain ontologies to describe the
shared knowledge of a domain and the capability to link the design system models to these on-
tologies through annotations allows system designers to handle properties, axioms, hypotheses
and theorems directly mined from the application domain and thus, allows the system designers
to design higher quality models. Indeed, the quality of design models is increased by the an-
notation operation. As a consequence, properties and constraints available in the ontology are
imported in the annotated model. Checking whether these properties and constraints are fulfilled
may reveal some inconsistencies in the design models that shall be fixed by the system developer.

The second contribution of our work concerns the capability to handle model analyses. This
idea is not new. But, the novelty of our approach consists in two main aspects. The first one
consists in making explicit model analyses through the definition of a descriptive model (point
of view) that describes the whole features of an analysis. Ontologies of model analysis are used
for this purpose. The second aspect concerns the explicit definition of the required concepts
and properties borrowed from a design model to trigger a given model analysis. Indeed, as for
annotation, when performing a model analysis, our approach keeps trace of the process that
allowed a system designer to build its model analysis.

We have shown the deployment of our global approach in the case of model driven engineering
techniques. We have shown on a case study, the feasibility of our approach from model strength-
ening - using model annotation methodology - to multi-view model analysis methodology. A
deployment on formal methods based on proof and refinement using the Event-B method is also
made [HA]. The formal deployment of multi-view model analysis methodology is however still
under progress.

The work presented in this paper has been developed as part of the AME Corac-Panda project
[ame] and has been applied to several case studies issued from embedded systems engineering
domain. Experiments with MDE based techniques have been conducted on avionic systems
[, I

Several other research directions to pursue our work can be envisaged. We are interested in
offering the capability to integrate and ideally compose several model analyses. For the mo-
ment, the developed approach allows a designer to perform a single analysis at a time. Allowing
such integration will offer different analysis patterns. Finally, we only considered, in this pa-
per, the case where the different involved models (ontologies, design models, analysis models)
are described in the same modeling language, the case of semantic mismatch, where ontologies,
design models and points of view are not described in the same modeling language, should be
considered.

Bibliography

[AHI15] Y. Ait Ameur, K. Hacid. Report AME Corac-Panda project. Technical report, Institut
de Recherche en Informatique de Toulouse, Toulouse university, 2015.

19/ 21 Volume 74 (2017)

Handling Domain Knowledge... E}

[AH17]

[AM16]

[ame]

[emf]
[FGH94]

[FKGO91]

[Gru93]

[HA]

[HA16]

[ISO98]

[ISO04]

[JPAO6]

[KAKO9]

Y. Ait Ameur, K. Hacid. Report AME Corac-Panda project. Technical report, Institut
de Recherche en Informatique de Toulouse, Toulouse university, 2017.

Y. Ait Ameur, D. Méry. Making explicit domain knowledge in formal system devel-
opment. Science of Computer Programming 121, 2016.

AME-CORAC: Avionique Modulaire Etendue COnseil pour la Recherche Aronau-
tique Civile.

Eclipse Modeling Framework.

A. C. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, B. Nuseibeh. Inconsistency han-
dling in multiperspective specifications. IEEE Transactions on Software Engineering
20(8):569-578, 1994.

A. Finkelstein, J. Kramer, M. Goedicke. Viewpoint oriented software development.
University of London, Imperial College of Science and Technology, Department of
Computing, 1991.

T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowl.
Acquis. 5(2), June 1993.

K. Hacid, Y. Ait Ameur. Strengthening MDE and Formal Design Models by Refer-
ences to Domain Ontologies. A Model Annotation Based Approach. In Leveraging
Applications of Formal Methods, Verification and Validation: Foundational Tech-
niques - 7th International Symposium, ISoLA 2016, Proceedings, Part I.

K. Hacid, Y. Ait Ameur. Annotation of Engineering Models by References to Do-
main Ontologies. In Model and Data Engineering - 6th International Conference,
MEDI 2016, Almerta, Spain, September 21-23, 2016, Proceedings. Pp. 234-244.
2016.

ISO. Industrial automation systems and integration - Parts library - Part 42: Descrip-
tion methodology: Methodology for structuring parts families. Iso ISO13584-42,
International Organization for Standardization, Geneva, Switzerland, 1998.

ISO. Industrial automation systems and integration - Parts library - Part 25: Logi-
cal resource: Logical model of supplier library with aggregate values and explicit
content. Iso ISO13584-25, International Organization for Standardization, Geneva,
Switzerland, 2004.

S. Jean, G. Pierra, Y. Ait Ameur. Domain Ontologies: A Database-Oriented Anal-
ysis. In Filipe et al. (eds.), WEBIST (Selected Papers). Lecture Notes in Business
Information Processing 1. Springer, 2006.

J. Kienzle, W. Al Abed, J. Klein. Aspect-oriented Multi-view Modeling. In Proceed-
ings of the 8th ACM International Conference on Aspect-oriented Software Devel-
opment. AOSD 09, pp. 87-98. ACM, New York, NY, USA, 2009.

ISoLA DS 2016 20/ 21

http://aerorecherchecorac.com/
https ://www.eclipse.org/modeling/emf/

E

[sir]

[SKSP10]

[TQB*14]

[Ver94]

21/21

ECEASST

Sirius.

A. A. Shah, A. A. Kerzhner, D. Schaefer, C. J. J. Paredis. Multi-view Modeling to
Support Embedded Systems Engineering in SysML. Pp. 580-601. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

M. Toérngren, A. Qamar, M. Biehl, F. Loiret, J. El-Khoury. Integrating viewpoints in
the development of mechatronic products. Mechatronics 24(7):745-762, 2014.

M. Verlage. Multi-view modeling of software processes. Software Process Technol-
0gy, pp- 123-126, 1994.

Volume 74 (2017)

http ://www.eclipse.org/sirius/

	Introduction
	A case study
	Background
	Ontologies
	Design models

	An overview of our global approach: Domain knowledge handling in design and multi-analysis of models
	Annotating design models with references to ontologies
	A methodology to handle design model enrichment

	Handling multi-analyses of systems: our proposal
	The core model elements

	Developed prototype
	Application on the student information system case study
	Strengthening student information system model
	Step 1. Domain knowledge formalization
	Step 2. Model specification and design
	Step 3. Model annotation
	Step 4. Properties verification

	The diploma factory model analysis
	Step 1. Model of point of view: The diploma factory analysis
	Step 2. System design model
	Step 3. Diplomas factory view

	Related work
	Conclusion and perspectives

