Electronic Communications of the EASST

Volume 75 (2018)

43rd International Conference
on Current Trends
in Theory and Practice of Computer Science

Student Research Forum, 2017
(SOFSEM SRF 2017)

Model-to-Model Transformation in Meta-Modeled CINCO Domains

Dennis Kiihn
Email: dennis.kuehn@]lero.ie

12 pages

Guest Editors: Anila Mjeda

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Model-to-Model Transformation in Meta-Modeled CINCO Domains

Dennis Kiithn
Email: dennis.kuehn@lero.ie

Lero - The Irish Software Research Centre
University of Limerick, Ireland

Abstract: In this paper we present an approach that describes model-to-model
transformation from certain graph-based MDD (Model-Driven Development) do-
mains into a specific target domain. We present the target domain; DIME, a graph-
based MDD suite that is capable to deploy its models as a web application. We
then introduce a source domain in which users define image-driven stories as graph
models, called Webstory, and demonstrate the process for the exemplified model-to-
model transformation. The approach allows graph models that are created in their
own domain, possibly tailored to one specific purpose, to benefit from DIME’s ad-
vantages such as, most significantly, deploying a web application with the modeled
content.

Keywords: XMDD, Meta-Modeling, Model Transformation, CINCO, DIME, Web-
story

1 Introduction

Model-Driven Development (MDD) [BCW 12] has become an increasingly wide-spread form of
software development that, in contrast to “traditional” programming, requires no deep expertise
in programming languages. This makes MDD a valuable approach to bring domain experts
and technical experts to the same table during the analysis and development phase of software
engineering, bridging the semantic gap that divides the non-technical domain experts, specialized
in the target domain (e.g. a hospital, research lab or industry partner), and the implementing
technical experts who are unfamiliar with the domain. Harnessing the knowledge of the domain
experts and at the same time allowing them to be included as developers is the Extreme MDD
approach (XMDD) [KIMS09, MS12].

Since modeling tools are to be used by a broad audience with varying technical expertise, they
benefit from being as intuitively usable as possible. One way to achieve this is to use a domain-
specific editor with a feature set, model representation and views that are all tailored to the needs
of the domain for which the software is modeled just as, e.g., a web developer would use an IDE
that offers an integrated preview of the modeled website.

Developing a completely different IDE for every new domain at first appears challenging.
In practice, utilizing some of the features provided by meta-modeling frameworks such as the
Eclipse Modeling Framework (EMF) [SBPMO0S8] allow a good part of the tools to be generated,
for instance a file explorer, the menu bar and the general interface with modeling canvas and
toolbox. Still, many steps remain before generating the target domain-specific editor such as
developing the representation of target models and their persistence, devising and constructing

1/12 Volume 75 (2018)

Model-to-Model Transformation in Meta-Modeled CiNCcO Domains E}

the basic model elements or specifying the scope for the target editor. Specializing on a certain
type of editor (e.g. tools that only offer graph-based models) is a way to reduce the complexity
of this task in exchange for focusing on a somewhat limited subset of target domains.

CINco [NLKS17] is a meta-tooling suite developed by the Chair for Programming Systems
of TU Dortmund University. It allows to specify a meta-model and generate domain-specific
editors based on this description. These generated tools are referred to as “CINCO products”
and focus on models as graph-like structures. Throughout this paper, two CINCO products will
be used for the model transformation concept: Webstory and DIME (DyWA Integrated Modeling
Environment) [BFKT16].

This approach targets the MDD model transformation into DIME, a tool suite focused on de-
veloping and deploying web applications. We chose DIME as the target domain due to its wide
array of use cases and its rich feature set specialized in handling web applications without much
configuration. The Webstory domain on the other hand is a simplistic editor to design image-
driven stories and has the proper complexity to showcase the approach without being convoluted.
While Webstory itself is a CINCO product just as DIME is, this does not need to be the case. For
an automated transformation of models into a DIME representation, the source domain only
needs an API to allow access to its models and their content elements. For this paper, choosing
a CINCO product as the presented source domain eliminates the introduction to another API for
the source domain.

In this paper, we illustrate the architectural background of CINCO and CINCO products that
is relevant for model-to-model transformation into the DIME domain. We then demonstrate how
the transformation procedure can be implemented using the example of transforming a webstory
to a DIME application.

The overall goal of the approach is to take advantage of already implemented features and es-
tablished transformations (i.e. DIME to web application) and minimize overhead. As illustrated
in more detail in section 2.2, DIME is capable of easily deploying the modeled application as a
web application with an extensive tool stack, e.g. out-of-the-box data persistence. As depicted in
figure 4, other domains such as Webstory can use this already defined DIME to web application
generation by transforming their concrete domain models into DIME.

This way, instead of implementing a Webstory generator that converts and deploys Webstory
models to web applications, the much easier route of transforming Webstory model to DIME
application can be chosen, making the DIME generator an “Archimedean Point” [SN16] for
multiple other domains.

In the following, the respective domains are presented, while section 3 depicts the technical
aspects of the domains which are relevant to the transformation process and the implementation.

SOFSEM SRF 2017 2/12

@ ECEASST

® webstory % - g

7 Palette 14
[select
i Marquee
(= Variables ®
Condition
@ ModifyVaria...
@ variable
(= Main Elements =
P> Startmarker
Dscreen
& In-ScreenEle... ©
EllipsecClickA...
RectangleClic...
T TextArea

n —

/aybe there i a hidden key?

PR L

[Cinco Properties & = g

text: Maybe there s a hidden key?

color: BLACK M

fontSize: SMALL M

Figure 1: Exemplary webstory using the available basic features, modeled in the Webstory editor

2 The domains and CINCO

2.1 Webstory Editor

The Webstory editor! is an example of a tool that is specifically tailored to one domain in order to
allow the participation of a broad audience. It is a CINCO product that was created by the CINCO
community to be used as a simple example product in workshops on meta-modeling, as well as
educational introduction to MDD in general. As such, the Webstory editor only has a limited
set of features but in turn was designed to be easily extendable by customizing the meta-model
definitions and still contains elements of data flow as well as process flow.

Figure 1 shows a screenshot of the Webstory editor’s model canvas containing a modeled
webstory, toolbar on the right and CINCO Properties view on the bottom. A webstory model
defines a chain of different scenes, similar to a storyboard consisting of multiple storyboard
elements. A valid webstory model can be generated to Javascript from within the Webstory
editor and then played locally in the browser, allowing the user to navigate through the different
scenes. In the Webstory editor, scenes are called screens and each screen defines an image that
is the background of the correlating scene. Screens can also contain additional elements such as
text and interactable areas which, when clicked on in the browser, navigate to a next screen.

1 Webstory website: https://cinco.scce.info/examples/webstory/

3/12 Volume 75 (2018)

https://cinco.scce.info/examples/webstory/

Model-to-Model Transformation in Meta-Modeled CiNCcO Domains E}

Section 3.1 elaborates more on the technical background of the meta-model of the Webstory
editor.

As displayed in the webstory model depicted in figure 1, screens are represented by their
chosen background image while the pink areas in the two left screens are clickable areas. The
transitions leading from the areas to other model elements define the process flow and can point
to other screens or process flow elements, in this case a condition (yellow diamond) and variable
modification (green traffic light) nodes. A screen is not limited to one clickable area, and different
areas may have different process flow targets.

Beside the process flow, webstories also provide basic data flow elements. Boolean variables
(blue circles) can be connected with the modification nodes, which set the state of the variable to
either t rue or £alse, or with condition nodes, which switch over the current state of a variable
and define the process flow in both the t rue case (straight line) and false case (dotted line).
With the capability to model decisions like this, webstories can go back to previous screens
without resulting in an infinite loop, allowing to model anything from a quiz in the fashion of a
multiple-choice gameshow to point-and-click adventure games.

2.2 DIME

DIME (DyWA Integrated Modeling Environment) [BFK'16] is a CINCO product that provides
a framework for creating web applications. It follows the One Thing Approach (OTA) [MS09]
in that it — unlike the Webstory editor which has one comprehensive model for each webstory —
provides multiple model types for specialized purposes of one central web application. Of the
following model types, the GUI and process models are the two relevant kinds for this paper since
webstories only use primitive data types which are always included by default. More complex
domains would utilize a data model for the definition of complex domain-specific data types and
enumerations.

the data model defines the application-specific types and describes their attributes, relations
(such as inheritance or uni-/bidirectional associations)

GUI models represent single web pages or page components
process models handle the process flow and business logic

GUI models describe the structure and appearance of individual pages inside the web applica-
tion. They contain all elements that style or the associated page but can also describe only parts
of a page and be used as components in other GUIs. GUI models also have a data binding mech-
anism and can display and manipulate primitive values and types defined in the application’s data
model in various ways.

Process models specify the business logic of the application, handling the transition from GUI
to GUI — ergo the process flow — and the management of context data. Each process contains
a number of activities (these are called service independent building blocks, or SIBs) which are
connected via process flow transitions. A SIB is an encapsuled component that is a reference to
a process model, a GUI model, or a code-level implementation of a service (called a native SIB
in DIME).

SOFSEM SRF 2017 4/12

E} ECEASST

ManualWebstoryProcess % = g
% Palette 4
start firstScreen was key found? finalScreen I+ select
‘ —){ E }~ door clicked 'ﬁ, true i} Marquee
© variable :Boolean ----- & Interface SIBs
¥ startsie
ek EndsIB
 Blueprint ®©

ProcessBluepri...
secondScreen .
BranchBlueprint
= = Ports ®

® Primitivelnpu...

bell clicked DATA PrimitiveOut...
= Data *®
“oope > key found :Boolean DataContext
found key! . © PrimitiveVari...
(= Control SIBs
(= Nodes @
true t Documentati...
T ContainsPrimiti...
IteratePrimitive...
PutToContextsIB
fill DeletesiB
(= Data SIBs ®

SaveToDBSIB

Diagram | Source

Figure 2: Exemplary DIME process, representing the webstory in figure 1

Figure 2 shows a DIME process model that is the equivalent of the webstory depicted in
figure 1. The model contains three elements that each represent separate GUI models for the
three screens of the original webstory. The DATA-container manages the variables, namely
“key found” of type boolean. The process SIB “found key” sets the variable to true, while the
evaluating SIB “was key found?” checks the variable content and defines the process flow for all
cases, i.e. true and false. Further technical detail concerning GUI and process models is provided
in [BFK"16].

Once the web application is modeled using the three model types, DIME is capable of generat-
ing the web application and deploying it using the integrated Dynamic Web Application (DyWA)
[NFSM14] technology. With DyWA, data persistence and the runtime environment are provided
for the target application and are set up automatically from the application specification without
further need for configuration.

2.3 CINCO Architecture

CINCO products are specified on the meta-model level using two types of meta-level specifica-
tions, the Meta Graph Language (MGL) and the Meta Style Language (MSL). These two lan-
guages are specified in the Eclipse Modeling Framework (EMF) [SBPMOS8] core meta-model.

For each model type that will be available in the target CINCO product, an MGL and MSL
must be defined. The Webstory domain, as an example, is specified by a Webstory.mgl and
Webstory.style, while the DIME meta-model definition includes an .mgl and .style
specification for Data, Process and GUL

The MGL describes the graph structure for the respective model type in the target CINCO
product. These graph models consist of elements that are either nodes or edges. The MGL

5/12 Volume 75 (2018)

Model-to-Model Transformation in Meta-Modeled CiNncO Domains

@style(guisIB, “${label}*)
@postCreate("info.scce.dime.process.hooks.GUISIBHook")
@doubleClickAction("info.scce.dime.process.actions.OpenModel”)
@contextMenuAction(“info.scce.dime.process.actions.UpdateGuiSIB")
@contextMenuAction("info.scce.dime.process.actions.CreateGUIEventListener”)
@preDelete(“info.scce.dime.process.hooks.DeleteBranchesonSIBDelete")
@postResize("info.scce.dime.process.hooks.SIBPostResize")
@postMove(“info.scce.dime.process.hooks.DataFlowTargetPostMove")
container GUISIB extends SIB {
prime gui::GUI as gui
attr EString as name
@possiblevaluesProvider(“GUISIBDefaultContentPossiblevaluesProvider®)
attr GUISIB as defaultContent
@possiblevaluesProvider(“GUISIBMajorBranchPossiblevaluesProvider®")

208° nodeStyle guiSIB(1) {
S {

text {
appearance labelFont
position (CENTER, TOP 4)
value "%s”

}

image {
position (CENTER, TOP 24)

size (fix 32, fix 32
path ("icons/guiSIB.png")
}

attr Branch as majorBranch polyline {
attr EBoolean as majorPage := true points [(7,64) (113,64)]
outgoingEdges(EventConnector)
) }
6}
Process.mgl Process.style

Figure 3: Excerpt of the MGL and MSL meta-model definition of the process type in DIME

specification defines the permitted node elements for the respective graph model, each of these
elements’ attributes and the possible outgoing edges.

The MSL specifies the appearance of different node- and edge styles. The MGL then links
elements to their style description in the MSL by referring to the corresponding style using
the @style annotation. Figure 3 depicts two examples of the MGL and MSL definition for a
DiME-specific element called GUISIB , which is a type of node inside DIME process models. In
this example, the MSL definition also requires one additional value, indicated by the (1) after
the style name, and this value is provided in the MGL @style annotation with the GUISIB
element’s value for its label attribute.

The tool can be generated once every future model type of the target CINCO product is de-
scribed by a respective MGL and MSL specification. This produces a meta-model which consists
of specific generated implementations for the respective domain, based on the meta-model spec-
ification such as the Webstory- or DIME meta-model in figure 4. The generated meta-model
can then be deployed to start the target editor suite which allows modeling inside the specified
domain.

meta-model

description MGL + MSL MGL + MSL

b b

generated Webstory model-to-model DIME
meta-model » meta-model

concrete
model instances

Figure 4: Architecture outline for meta-model and CINCO product level with focus on Webstory
and DIME

SOFSEM SRF 2017 6/12

Eg ECEASST

3 Webstory-to-DIME Generator

The model transformation approach presented in this paper aims to transform models of a source
domain into DIME models in order to deploy the resulting DIME project as a web application.
To generate these DIME models, first the transformation rules need to be devised. This is done
exemplary for Webstory models in section 3.1, since this task is individual to each source domain.
The resulting conceptual rules describe how the source models can be translated into DIME
models, either manually or when implemented as a generator that can be executed to automate
the process.

Generators are defined as part of the meta-level description and use the C-API (CINCO trans-
formation API) that is described in section 3.2. To implement a generator, meta-modeler spec-
ifies the model-to-model transformation on the generated meta-models of the source domain
and DIME (see figure 4), based on the devised transformation rules, as depicted in section 3.3.
The domain-specific generator, in this case the WebstoryToDIMEGenerator , can then be
executed on instances of Webstory models in order to create instances of DIME applications.

3.1 Generator Concept

This paper focuses on the translation from Webstory to DIME to show an exemplary transfor-
mation of models from one CINCO product to another. For a generic transformation approach,
the key aspects that need to be addressed to transform a source domain model into a DIME
application are the process flow and a visual representation or feedback.

Without any kind of process flow defining an executable sequence, models from the source
domain would only be descriptive, for example character relation diagrams or building layouts.
These could theoretically become interactive web applications by adding process flow that allows
to navigate between entries of a relationship diagram or by defining the transition between certain
floors in a building layout, but unless specified in the source domain’s representation the resulting
DIME application would only be static with no way to switch perspectives or access information
other than the default representation.

The need for a visual representation of the central aspects of the models is trivial; it must
be possible to display information that the models hold. Even if the models do not inherently
require any graphical representation — as the Webstory domain does — but serve to solve a prob-
lem like Dijkstra’s algorithm for shortest path or other graph-theoretical questions, some form of
feedback must be delivered to the user.

In the example of the Webstory domain, models have both characteristics as distinct features:
the graphical representation is clearly recognizable as each screen symbolizes and describes
the appearance of one scene, while the process flow is defined by the clickable areas on said
screens and defines the transitions between the screens. An additional aspect of Webstory is the
manipulation of data which happens on primitive boolean values but shows how data flow must
be addressed during the transformation as well.

To prepare the model transformation the primary consideration is how the information will
be presented in the target domain models. This was done for Webstory by taking into consider-
ation all of the possible node and edge types of a model and matching the behaviour to DIME

7/12 Volume 75 (2018)

Model-to-Model Transformation in Meta-Modeled CiNCcO Domains E}

graph model (9 webstory

node
edge
container

* variables: [Variable]
* activities: [Activity]

abstract type
concrete type

[activities] [variables]

() variabl
source target target
mﬂcfmty @Transltmn @TrueTransltmn G FalseTransition
NV AW * source: Activty * target: Actity * target: Activty
® target: Activity
Screen Condition L \
G 07 trueTransition
* areas: [Area] * trueTransiion: T
[areas] * falseTransition: F| falseTransition varialjle
® readvariable: Re
readVariable @ Readvariable (3 DataFlow
@ Area () ModifyVariable T P —
value: Baolean wTevanable (3@ WriteVariable
® writeVariable: WriteVar

(@ TextArea @ clickArea] y,
content; Text * vansiton: Trar | transition

[@ EllipseClickArea } [Gl RectangleClickArea }

Figure 5: Relation diagram of webstory types in the meta-model

components. Figures 5 and 6 correlate the relevant node and edge types for this transformation.

The structure that allows to progress through a webstory is represented by a DIME process
containing the business logic as well as the (in Webstory very limited) data flow of the webstory
model. This global process will be referred to as “interaction process”, which is the process
type of the overarching process model. Every other transformed element of the webstory will be
added to the interaction process.

Webstory screens represent individual “pages” of the webstory end product, which correlates
with GUI models in DIME. For every screen, a new GUI model needs to be created, yield-
ing the background image and all areas contained in a screen. Areas will be represented by
GUIElements; TextAreas simply display text content on a GUI model, while ClickAreas can be
represented by Buttons with various CSS attributes for elliptic appearance.

Variables in the Webstory domain are only primitive booleans. For this reason, the target web
application does not need to define complex types to support the use of variables, and DIME’s
default data model is sufficient, but for more complex source domains the data model would be
enriched by relevant types with their respective attributes. Primitive boolean variables can be
added to a data context in the interaction process.

Conditions and variable modification nodes are not directly correlating to any type in DIME
but can be represented by sub-processes. These process SIBs must be predefined as process
models and stored to a resources folder for the Webstory meta-model. This allows the generator
to access the SIBs as assets and copy the process models into the CINCO products target directory
when needed, i.e. when generating a webstory to DIME.

3.2 CiINcO transformation API

Generating the meta-model of a specific CINCO product creates implementations of the previ-
ously specified meta-model definitions for for every model type, including the nested node- and

SOFSEM SRF 2017 8/12

E} ECEASST

graph model
node @ controlFlow (D Branch

edge ® source: Branch
i source : X
container * target: SIB branchConnector: Brai

abstract type target branchConnector
concrete type

target

Process BranchConnector
(G) [QSIB l [branchConnectors] 97
* dataContexs: [DataContex] [sibs] t = branchConnectors: [BranchConnecior] J source | ‘& souroe: S8
* sibs: [SIB] ﬂ K 8 target: Branch
dataContexts] prime (D ProcesssIB ®ocuisi
® prime: Process * prime: GUI
prime
@7GUI [components]
(® DataContext PR —— p O oumement
* variables: [Variable] [dataContexts] * elements: [GUIElement] [elements] T
3] : [GUI
[variables] companents: (U1
[gUIElements]
() variable (®sutton
D rield

[@Rnw J[@Cnlumﬂ H@]

Figure 6: Simplified relation diagram of DIME types in the meta-model

edge types they define. The generated output from the MSL and MGL represent the information
given in the meta-model description in separate classes. For DIME the generated meta-model has
the implementations ProcessDiagram which is generated from the MSL and Process,
constructed from the MGL to hold the business object information (see figure 7).

The CINCO transformation API (C-API) provides an interface to modify and access the essen-
tial information of the Diagram and Business model, and concentrates the two representations
into one object. This enhances procedures such as adding new elements to the existing process,
as the CProcess offers methods to directly add elements that the Process is capable of
holding. To access the C-API, each model type of the target domain has a wrapper class that is
also generated during the meta-model generation. This way, the ProcessWrapper encap-

sulates the Process and ProcessDiagram to provide utility methods for working with
DIME processes.

The WebstoryToDIME generator creates and manipulates concrete instances of DIME
models using the C-API. These models are accessed via the wrapped C-API objects but exist
as actual domain-models in the CINCO product project.

3.3 Implementation

When the WebstoryToDIMEGenerator is executed for any Webstory model, it is called
with the instance of that WebStory , the source business model” for the specific webstory, and

2 Note that the graphical information concerning the webstory components are irrelevant, which is why the business
model suffices. Otherwise, the WebStoryWrapper could be utilized to access the C-API for the webstory

9/12 Volume 75 (2018)

Model-to-Model Transformation in Meta-Modeled CiNncO Domains Eﬁ

120

o $"%e" Diagram (MSL) graphical data: shape, color, labels, ... (i

name: firstScreen . j L
GUISIE { branches: {clicked} | Business model (MGL) business data: SIBs, branches, transitions, ... aemf

. f !
majorPage: true public class Process

business object

Wrapper

. B 1207)
| [firstscreen C .
CGUISIB 5 = Business & Diagram business and graphical data
. public class CProcess |

wrapped object

Figure 7: Architecture of the CINCO meta-model that encapsulates business model and diagram
of a domain-specific type (here: DIME process) using the C-API

a reference to the resource that represents the Eclipse project in which the model is located.
The structure of the generator can be summarized by these steps:

1. create the main interaction process
2. copy resources from the meta-level to the CINCO product’s project location

3. for every node element in the source webstory create the corresponding element in the
interaction process

4. create transitions between the newly created elements based on edges in the source web-
story

5. save interaction process to project location

Creating the interaction process in step 1 uses the C-API by invoking the ProcessWrapper ,
referencing the target project and specifying the process model name:

CProcess interactionProcess = ProcessWrapper.newProcess (
location, "WebstoryMainInteractionProcess.process");

Step 3 transforms every node element of the webstory model based on the approach presented
in section 3.1. As one example, the following excerpt transforms a screen into a CGUISIB :

String guiModelName = convertToName (screen.getId())+".gui";
CGUI guiModel = GUIWrapper.newGUI (location, guiModelName) ;
guiModel.setGeneralStyle (setBackgroundImage (screen.getBackgroundImage

)i
for (EObject subElement : screen.eAllContents) {

addSubElement (guiModel, subElement) ;

CGUISIB guiSIB = process.newCGUISIB (guiModel.getModelElement (),
getXCoord(screen), getYCoord(screen));

SOFSEM SRF 2017 10/12

Eg ECEASST

process.save () ;
return guiSIB;

This first creates a new GUI model, adds elements for the areas of the screen and then creates
the CGUISIB that is directly added to the interaction process using the C-API.

4 Conclusion and Outlook

In this paper we presented an approach to transform models of MDD domains into DIME web
applications by introducing the specification of cross-product generators to the meta-model def-
inition of the source domain. Meta-modelers are able to automate model transformation of the
specific domain to the DIME domain using the C-API to create and manipulate model instances
in the target domain.

We demonstrated the transformation of models from one domain into another for the specific
domains of Webstory and DIME. For this purpose we elaborated on the generator approach in
general as well as the transfer of Webstory-specific model elements into a DIME web application.

While in this paper we showcased the transformation from a CINCO product to DIME to
demonstrate that the C-API can be used to access DIME model creation, this approach can also
be applied on non-CINCO transformation cases. This includes domains with more complex data
types than the primitive boolean values, which can be handled by utilizing the C-API to access
DIME’s Data model. Source domains are however required to specify a process flow that can be
recreated in the target DIME model as well as a visual representation to define the appearance
of the modeled content. For an automated transformation it is further required that the source
domain offers an API to access the information its models hold.

With the transformation of domain-specific MDD models to a DIME application, we facilitate
the possibility to benefit from all the features that DIME has to offer: the data management
inherent through DyWA as well as the feature support for more complex background services,
responsive behaviour of the web application and the easy deployment.

For the example of Webstory, there are also vast opportunities to enhance the transformed
DIME representation of the webstory by features such as savegames (becoming an option through
data management as well), allowing access from different devices since the web application can
easily be hosted anywhere and not only deployed locally, or multiplayer gaming. In fact, these
features could become future elements of the Webstory editor as well and could be automatically
set up in DIME through the generator. Another possibility is to allow for templates to be created
so that — for example — the content of screens can be modeled to follow themes that the user
can define. This would allow to more easily specify and use a unified appearance for the entire
webstory.

In conclusion, the model-transformation approach offers a wide range of opportunities and
can be used to benefit from the inter-domain advantages to reuse existing tool stacks.

11/12 Volume 75 (2018)

Model-to-Model Transformation in Meta-Modeled CiNCcO Domains E{}

Bibliography

[BCW12] M. Brambilla, J. Cabot, M. Wimmer. Model-Driven Software Engineering in Prac-
tice. Morgan & Claypool, 2012.
doi:10.2200/S00441ED1V01Y201208SWEO001

[BFK*16] S. Boelmann, M. Frohme, D. Kopetzki, M. Lybecait, S. Naujokat, J. Neubauer,
D. Wirkner, P. Zweihoff, B. Steffen. DIME: A Programming-Less Modeling En-
vironment for Web Applications. In Proc. of the 7th Int. Symp. on Leveraging Ap-
plications of Formal Methods, Verification and Validation, Part Il (I1SoLA 2016).
LNCS 9953, pp. 809-832. Springer, 2016.
doi:10.1007/978-3-319-47169-360

[KIMS09] C. Kubczak, S. Jorges, T. Margaria, B. Steffen. eXtreme Model-Driven Design with
JABC. In CTIT Proc. of the Tools and Consultancy Track of the Fifth European Con-
ference on Model-Driven Architecture Foundations and Applications (ECMDA-FA).
Volume WP(09-12, pp. 78-99. 2009.

[MS09] T. Margaria, B. Steffen. Business Process Modelling in the JABC: The One-Thing-
Approach. In Cardoso and Aalst (eds.), Handbook of Research on Business Process
Modeling. 1GI Global, 20009.

[MS12] T. Margaria, B. Steffen. Service-Orientation: Conquering Complexity with XMDD.
In Hinchey and Coyle (eds.), Conquering Complexity. Pp. 217-236. Springer Lon-
don, 2012.
doi:10.1007/978-1-4471-2297-5,0
http://dx.doi.org/10.1007/978-1-4471-2297-5_10

[NFSM14] J. Neubauer, M. Frohme, B. Steffen, T. Margaria. Prototype-Driven Development
of Web Applications with DyWA. In Proc. of the 6th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, Part I (ISoLA 2014).
LNCS 8802, pp. 56-72. Springer, 2014.
doi:10.1007/978-3-662-45234-95

[NLKS17] S.Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: A Simplicity-Driven Ap-
proach to Full Generation of Domain-Specific Graphical Modeling Tools. Software
Tools for Technology Transfer, 2017. to appear.
doi:10.1007/s10009-017-0453-6

[SBPMO8] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley, Boston, MA, USA, 2008.

[SN16] B. Steffen, S. Naujokat. Archimedean Points: The Essence for Mastering Change.
LNCS Transactions on Foundations for Mastering Change (FoMaC) 1(1):22-46,
2016.
doi:10.1007/978-3-319-46508-13

SOFSEM SRF 2017 12/12

http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001
http://dx.doi.org/10.1007/978-3-319-47169-3_60
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-3-662-45234-9_5
http://dx.doi.org/10.1007/s10009-017-0453-6
http://dx.doi.org/10.1007/978-3-319-46508-1_3

	Introduction
	The domains and Cinco
	Webstory Editor
	Dime
	Cinco Architecture

	Webstory-to-Dime Generator
	Generator Concept
	Cinco transformation API
	Implementation

	Conclusion and Outlook

