Electronic Communications of the EASST
Volume 076 (2019)

Automated Verification of Critical Systems 2018
(AVoCS 2018)

Climbing the Software Assurance Ladder - Practical Formal Verification
for Reliable Software

Claire Dross , Guillaume Foliard, Théo Jouanny,
Lionel Matias, Stuart Matthews, Jean-Marc Mota,
Yannick Moy, Pascal Pignard, Romain Soulat

17 pages

Guest Editors: David Pichardie, Mihaela Sighireanu

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Climbing the Software Assurance Ladder - Practical Formal
Verification for Reliable Software

Claire Dross'* , Guillaume Foliard’, Théo Jouanny”,
Lionel Matias’, Stuart Matthews®, Jean-Marc Mota®,
Yannick Moy', Pascal Pignard®, Romain Soulat’

! AdaCore, F-75009 Paris
2 Thales Air Systems, F-91470 Limours
3 Thales Communications & Security, F-49300 Cholet
4 Altran, Bath BA1 1AN, United Kingdom
> Thales Research & Technologies, F-91767 Palaiseau

Abstract: There is a strong link between software quality and software reliabil-
ity. By decreasing the probability of imperfection in the software, we can augment
its reliability guarantees. At one extreme, software with one unknown bug is not
reliable. At the other extreme, perfect software is fully reliable. Formal verifica-
tion with SPARK has been used for years to get as close as possible to zero-defect
software. We present the well-established processes surrounding the use of SPARK
at Altran UK, as well as the deployment experiments performed at Thales to fine-
tune the gradual insertion of formal verification techniques in existing processes.
Experience of both long-term and new users helped us define adoption and usage
guidelines for SPARK based on five levels of increasing assurance that map well
with industrial needs in practice.

Keywords: Certification, Formal methods, Programming by contract

1 Introduction

Taken literally, reliable software is the notion that we can rely on software to perform as intended.
This is also how the international standard bodies and academic experts define it, as phrased in
IEC 60050 terms applied to software: “reliability [is the] ability to perform as required, without
failure, for a given time interval, under given conditions”. Currently, almost no software is reli-
able in this sense, because the intention is usually expressed in ambiguous natural language, and
the confidence that software behaves as intended is obtained by a combination of development
discipline (to avoid introducing errors) and partial testing of all the possible software behaviors
(to detect errors that were introduced). Hence, reliable software today is more an aspiration when
building the software than a quality of the software produced. However, a link between software
quality and reliability does exist, and it was clarified by researcher John Rushby [Rus09]: “prob-
ability of (im)perfection [..] provides a bridge between correctness, which is the goal of software

* Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007, https://why3.gitlabpages.inria.fr/
proofinuse/)

1/17 Volume 076 (2019)

https://why3.gitlabpages.inria.fr/proofinuse/
https://why3.gitlabpages.inria.fr/proofinuse/

Climbing the Software Assurance Ladder E}

verification (and especially formal verification), and the probabilistic properties such as relia-
bility that are the targets for system level assurance.”

This interpretation of reliable software as probably perfect software has been taken seriously
in some companies like Altran UK, where specifications are routinely expressed with the preci-
sion of a formal language, and confidence is obtained by a combination of classical techniques
plus the guarantees provided by the use of formal verification. Tools for formal verification of
software have reached a degree of automation and usability that makes them suitable for use in
commercial contexts across a large set of industries, from the well-established - space, railway,
aerospace & defense - to industries that more recently included software as a critical compo-
nent like automotive and medical. The main tool used at Altran UK for formal specification,
programming and formal verification of software is SPARK [MC15], a subset of the Ada pro-
gramming language targeted at safety- and security-critical applications. The use of SPARK
allows Altran UK to provide assurance that software will not crash or behave erratically, and that
critical properties are satisfied, which it demonstrates by committing to these properties with its
customers.

While the benefits obtained by formal verification at Altran UK are clearly desirable, it may be
intimidating for companies without formal verification know-how to start on this path. Knowing
that others have replicated these benefits in other contexts is an important argument to make.
Here, we are describing the experiments done at Thales with the support of AdaCore, during the
years 2016 and 2017, to assess the costs and benefits of using formal verification of software
using SPARK. With little investment in training (2 days in one experiment, self-training only in
the other) and consulting (20 days in one experiment, online support only in the other), either
provided externally or through self-training, the operational teams managed to specify intended
behavior formally. The engineers in these teams were knowledgeable about Ada but not familiar
with formal methods. The teams also proved critical properties of their software. Specifically: in
multiple case studies the code was fully proved to be free of run-time errors (like buffer overflows
and divisions by zero); in a subset of these case studies the code was proved to implement func-
tional API specifications; while in another case study the code was proved to follow a specified
safety automaton.

In addition, the collaboration of AdaCore and Thales resulted in a set of guidelines [AT] that
should be followed for an easier adoption of formal verification in existing projects, codebases
and processes. These guidelines are based on five levels of assurance that can be achieved on
software, in increasing order of costs and benefits. These guidelines are a major result of this
work, as there is very little available guidance on the use of specific formal methods and tools
in industrial context. It could be used as an inspiration by other formal verification platforms for
software.

In section 2, we introduce the SPARK formal verification platform. In section 3, we present
the experience of Altran UK, a long-time user of formal verification with SPARK, and how it
relates to traditional assurance levels (DAL and SIL) considered in industry. In section 4, we
present two studies carried at Thales, a recent user of formal verification with SPARK, and how
such adoption can be facilitated by the use of suitable guidelines. We finish with related works
in section 5 and conclude.

AVoCS 2018 2/17

Eg ECEASST

2 SPARK: Formal Verification Focused on Practical Use

For his PhD defense in 1969 on “A Program Verifier”, J. King submitted a manuscript that started
with these sentences [Kin70]:

This research is a first step toward developing a “verifying compiler”. Such a com-
piler, as well as doing the standard translation of a program to machine executable
form, attempts to prove that the program is “correct”. In order to do this a pro-
gram must be annotated with propositions in a mathematical notation which define
the “correct” relations among the program variables. The verifying compiler then
checks for consistency between the program and its propositions.

To most programmers, this may sound like a naive dream, whose illusory nature is exemplified
by C.A.R. Hoare’s call in 2003 for researchers to tackle the “verifying compiler” as a Grand
Challenge, more than thirty years later. Yet, “verifying compilers” are available today. For
example, the formal development environments Coq and Isabelle/HOL have been used to create
a compiler for C [Ler09] and a microkernel [KEH"09] which are guaranteed to be “correct”
(related to a set of requirements and assumptions).

The problem is that these “verifying compilers” are operating on proof languages that are
reserved for experts. Since King’s PhD defense, there have been numerous attempts at defining
practical “verifying compilers” for programming languages used in industry (first Pascal, then
Ada, more recently Java and C#), none of which has succeeded in gaining industrial adoption. It
is difficult to prove that a program is “correct”, and it will remain so for the foreseeable future. As
Rustan Leino, a prominent researcher in formal program verification, put it in 2010: “Program
verification is unusable. But perhaps not useless.” [LM10]

Departing from this academic tradition, SPARK has been focused on practical formal verifi-
cation from the start. SPARK has been adopted in numerous large industrial projects and only
critical parts of the software were proved “correct” with respect to full functional (i.e. behav-
ioral) specification. SPARK was used to prove specific properties of interest about the software,
like the absence of all possible run-time errors (no division by zero, no buffer overflow, etc.) and
some user-specified safety or security properties.

SPARK is both a language and a toolset, supported by specific development and verifica-
tion processes. In this article, we are focusing on the latest generation of SPARK technology,
called SPARK 2014 [DEL"14], in which the specification language and the programming lan-
guage have been unified as a subset of the programming language Ada 2012. Constraints on
both program data and control can be specified using respectively type contracts (predicates and
invariants) and function contracts (preconditions and postconditions).

The concept of program contracts was invented by the researcher C.A.R. Hoare in 1969
in the context of reasoning about programs. In the mid-1980s, another researcher, Bertrand
Meyer, introduced the modern function contract and type invariant in the Eiffel programming
language [Mey88]. In its simplest formulation, a function contract consists of two Boolean
expressions: a precondition to specify input constraints and a postcondition to specify output
constraints. Function contracts have subsequently been included in many other languages, either
as part of the language (e.g. contracts for SPARK), as part of the standard library (e.g. Code-
Contracts for .NET [Fih10]) or as an annotation language (such as JML for Java [CKLP06] or

3/17 Volume 076 (2019)

Climbing the Software Assurance Ladder E}

ACSL for C [BCF']). Type invariants may come in two forms, depending on whether they can
be temporarily violated (type invariants in SPARK) or not (type predicates in SPARK). Contracts
can be executed as runtime assertions, interpreted as logic formulas by analysis tools, or both.

The latest version of SPARK has opted for both. This design choice has far-reaching conse-
quences. First, specifying properties of programs is similar to programming: there is no addi-
tional language to learn and the tools available to the programmer also work on specifications.
Second, contracts are executable, which means that they can be tested and debugged like code.
Another important design choice was to allow SPARK and Ada code to coexist in the same files.
Hybrid verification is obtained by using proof on SPARK code and test on Ada code. This is
possible because contracts can be executed, and because test and proof use the exact same se-
mantics for contracts [Chal0]. Other formal program verification technologies like Frama-C for
C programs have made similar although not identical choices [KMMS16].

SPARK toolset focuses on automation and usability. Generation of implicit specifications
lowers the cost of writing specifications, and generation of loop invariants, use of multiple state-
of-the-art automatic provers, possible generation of counterexamples when proof fails, combi-
nation of static analysis and proof, all lower the cost of proof by reducing the time and effort
required to prove that the code respects its contracts. Usability is similar to other tools in the
developer’s toolbox, mostly because formal verification can be performed by developers while
they are developing, using their personal computers, thanks to the modularity and parallelization
of the analysis.

We identify five levels of assurance that can be achieved with SPARK, which are - in increasing
order:

1. Stone level - valid SPARK

2. Bronze level - initialization and correct data flow
3. Silver level - absence of run-time errors (AoRTE)
4. Gold level - proof of key properties

5. Platinum level - full functional correctness

At Stone level, strict SPARK rules are enforced on the code, having the effect of ensuring that
a strong semantic coding standard is followed, which leads to better code quality and maintain-
ability. At Bronze level, the SPARK code is guaranteed to be free from a number of defects like
reads of uninitialized variables. At Silver level, the SPARK code is guaranteed to be free of run-
time errors. At Gold level, the SPARK code is guaranteed to respect key integrity properties. At
Platinum level, the SPARK code is guaranteed to implement a complete specification of intended
behavior. Note that each level builds on the previous one, so that at Platinum level the guarantees
given by all the lower levels are also achieved.

3 The Practice of Formal Verification

Altran UK has a special relationship with the SPARK technology, being the heir of both PVL
and then Praxis, the companies which have developed SPARK since 1987 [CS14]. Along the

AVoCS 2018 4/17

Eg ECEASST

Software Integrity Level SPARK Verification Objective
DAL SIL Bronze Silver Platinum

oo Q| ®| >
O = || W&~

Figure 1: Technical Planning Guidelines for the Application of SPARK. The filled cells denote
the three most common categories of application.

years, Altran has used SPARK both directly and in partnership with our customers - through
training, support and consulting - in a number of project domains which range across air traffic
management, airborne systems, avionics, railway control & protection, security and defense
systems.

SPARK is used at Altran as an efficient means to both get as close as possible to zero-defect
software and as a means to address the objectives of the relevant standards. This technical strat-
egy has been subject to careful evaluation of costs and benefits, in order to apply formal verifi-
cation where it brings more value to the business. At Altran UK, SPARK fits within an overall
software development philosophy known as Correctness By Construction [Cha06a]. The key
principles of this approach are:

e to use techniques that prevent the introduction of errors (e.g. language subsets);
e to maximize the ability to detect defects early (e.g. through the use of formal techniques);

e to generate assurance evidence as you progress.

The detail of how SPARK is applied varies from project to project, depending on factors which
include the required integrity level, applicable standards, and the overall verification strategy for
the system (in which SPARK will play a part amongst other techniques and tools). Together,
these considerations will lead to a set of verification objectives for SPARK, which will be doc-
umented in the technical plan at the start of a project (and which in turn support the assurance
case either implicitly or explicitly if it is a formal deliverable).

In spite of these variations, one can identify certain typical ways in which SPARK is applied on
projects which have been shown to deliver high value in relation to the effort required. The table
in Figure 1 summarizes Altran’s experience of how best to apply the different assurance levels
possible with SPARK vs. the relative design integrity level of the software under development.
Stone level is not represented as it is more an intermediate level during adoption of SPARK than
a target assurance level.

The way to understand this table is as both a summary of experience on industrial projects at
Altran UK and as a starting point for how Altran UK approaches new projects. Every project
at Altran will tailor its own approach. However, one would expect new projects to fall within

5/17 Volume 076 (2019)

Climbing the Software Assurance Ladder E}

the typical region(s) indicated in the table; any which did not would require justification in the
planning phase.

We have chosen to represent the software integrity level using two commonly understood
scales: DAL (Design Assurance Level) is the terminology from DO-178 and SIL (Software
Integrity Level) is the terminology used in DEFSTAN 00-55, IEC 61508, EN 50128 et al. The
correspondence between DAL and SIL is necessarily informal because different standards define
the levels according to different criteria. Note also that while DAL-E is defined by DO-178
its counterpart “SIL-0” is an informal but widely used term taken here to mean software below
SIL-1 but which is still well-engineered.

Experience shows that projects can be grouped into three broad categories, shown by the three
filled regions in the table. Category 1, shown in black, represents our practice at the highest
levels of integrity SIL-3 and SIL-4. Within this category, Silver (AoRTE proof) is considered the
“default level”, but may be increased to Gold or even Platinum depending on whether key prop-
erties and functional correctness respectively are verified by other means. Targeting Platinum
(full functional proof) becomes less likely for a SIL-3 system where verification by testing could
more easily be argued to be sufficient.

Category 2, shown in gray, captures our practice at medium levels of integrity SIL-1 and SIL-2.
Silver is still the default level, and it is very unlikely that Platinum would be employed on systems
below SIL-3. However, proof of key properties (Gold) should still be strongly considered. There
may be some key property where proof represents a very efficient means of verification, i.e. it is
relatively easy to prove and relatively difficult to verify by any other means. The nature of such
properties will vary from system to system, but could include even one key safety property (“the
lift will not move when the doors are open”) or security property (“the account details cannot be
accessed when the user is not logged in”). While testing can provide some level of confidence in
such properties it can never provide a complete guarantee for any realistically-sized system, due
to the impossibility of covering all possible states and input combinations.

Category 3, shown in light gray, represents the lowest levels of integrity, so-called SIL-0. Even
here, Silver is the default objective, but this could be weakened to Bronze if there is enough
confidence that AoRTE was being sufficiently-well assured by other means or mitigation.

The table shows that - for all but SIL-0 software - SPARK code will as a minimum be checked
for AoRTE. Note that this level of verification implicitly means that all SPARK code has also
been shown to be free of references to uninitialized variables and basic data flow errors. Experi-
ence shows that the presence of this kind of flaw - which can have far-reaching consequences -
can be immensely difficult to detect by other forms of verification [KHCPOOa].

A key part of the software engineering process which maximizes the benefit of SPARK is
a careful delineation of the “SPARK boundary” i.e. choosing which parts of the application
software will be written in SPARK. Although the benefits of SPARK would push towards max-
imizing the proportion of the software written in SPARK, other factors are likely to affect this
engineering decision. For example, there may be pre-existing libraries to support the user inter-
face or other external communication protocols that one wishes to use and which are qualified
by alternative means. It is not unusual even to use different levels of SPARK verification within
the same application. For example, SHOLIS [Cha0O6a] used this approach with SIL-4 parts of
the application attaining full functional proof (Platinum level) while in lower-integrity functions
(SIL-2) they verified only up to AoRTE (Silver level). The non-interference between different

AVoCS 2018 6/17

Eg ECEASST

sections of the code was assured by the use of information flow analysis: a contract was attached
to each subprogram specifying which global data items it could access in accordance with its
SIL and the SPARK tools were used to check that the implementation respected these contracts.
More generally, consideration has to be given to the assumptions that are made to support the
verification objectives - how these are satisfied or mitigated by other activities in the overall
V&V strategy [KCC™14].

The use of SPARK within the Correctness By Construction framework as described above has
been demonstrated to produce software with very low defect density when compared to other
high-integrity processes [Cha0O6a]. Although the above approach is the standard approach within
Altran UK, the company has continued to explore new ways in which benefits can be gained from
the use of SPARK, in particular the possibility of so-called “hybrid” approaches to verification,
where a mixture of static and dynamic verification techniques are used to exploit the SPARK
contracts.

The hybrid approach that Altran is currently pioneering, called ConTestor, uses SPARK ver-
ification at Silver level i.e. assurance of AoRTE using proof. In addition, SPARK contracts are
used to add a functional specification to the code. Rather than verifying these contracts by proof
using the SPARK tools (as per the standard Platinum approach), they are verified dynamically
by testing. To perform these tests a fully-integrated version of the code is compiled with the run-
time checks enabled for the functional contracts. Test cases for the integrated code are generated
using constrained-random test generation and if no exceptions are raised during execution then
the code has passed this functional test. The contracts effectively provide a test oracle i.e. an
independent calculation of the expected outcome for each test case. However, rather than having
to manually calculate the expected outcomes per test case, the contracts are written once and
provide an implicit definition of the expected outcome for all possible test cases.

4 The Adoption of Formal Verification

Contary to Altran UK, Thales has no established use of formal verification, but different units in
Thales have been experimenting since 2015 with formal verification of programs using SPARK
and Frama-C. The two case studies in this section describe the experiments with SPARK in
the context of two different units working respectively in the domains of air defense systems
software and cryptography.

4.1 First Study: Define an Adoption Strategy

One trait of established industrial software development processes is their inertia in accepting
new practices which could be considered as too disrupting, either by lack of understanding and
know-how or, mostly for early adopters, because of the difficulty to assess costs and benefits.
In the latter case, the upfront adoption effort is hiding the longer term process optimisation
opportunities. In order to get a first idea of the possibilities SPARK-based formal verification
could provide at Thales, a study was carried throughout 2016 with the aim of producing a first
set of deployment guidelines supported by real life experiments on actual software applications.

As formal verification with SPARK is not a widespread technology in the software industry,

77117 Volume 076 (2019)

Climbing the Software Assurance Ladder E}

a prerequisite is to picture the range of its capabilities with a simple to remember concept. This
led to the definition of the five levels of assurance previously introduced. As part of this study,
AdaCore and Thales wrote a guidance document [AT] describing how SPARK could be adopted
at these different levels. This is further conditioned by the phase of the software development
lifecycle, which has a significant impact on the definition of activities to be performed when
deploying SPARK.

Given the current state of progress of some ongoing software development projects, four case
studies were identified as potential targets for SPARK deployment experiments, from teams
working on air defense systems software.

The first case study meant to assess the effort for transitioning from Ada to SPARK code
(Stone level) using a mature software application about to be ported onto a new execution plat-
form. As porting the application on a new platform using a different compiler may introduce
a different behavior in case of errors such as references to uninitialized variables, reaching the
Bronze level seemed a desirable aim. A significant refactoring effort was required in order to
cope with constructs excluded from the SPARK subset of the Ada language, the most promi-
nent one being pointers. Thales engineers started using successfully the refactoring solutions
described in the guidance document, but did not manage to complete refactoring in the expected
time frame (5 person-days), due to the size of the chosen code base (around 300 klocs). This is
expected to be completed in the coming year.

The second case study focused on programmer proficiency. In that case study the small sub-
program of less than 10 lines of code listed in Figure 2 was given to an experienced Ada program-
mer with the goal of performing validation activities, both using the usual unitary test approach
and a contract-based approach. Based on current tools, it took less than one hour for the expe-
rienced software test engineer to set up a working test environment for the subprogram. On the
other hand, writing relevant contracts on that same subprogram to formally prove properties took
an order of magnitude more time for the same engineer. Interestingly, the amount of code to im-
plement a contract was in that case as long and complex as the code to prove. As a consequence,
there is no intention to invest in Gold level verification on numerical computations in the near
future. The lesson is that one should start with the lowest levels of assurance and work upwards,
as practiced in the subsequent case studies.

The third case study was designed to complement test result artifacts on automatically gener-
ated code. A large amount of the unit’s software application source code relating to data binary
serialization and deserialization is automatically generated. The code generator compiles data
models described through a domain specific language into Ada code. Up to now the test strategy
for the code generator was mostly based on a limited set of regression tests and the confidence
acquired over time as this technology was deployed across many projects over the last fifteen
years. However, a hard to trigger weakness was lying dormant, which was cleaned up using a
Gold level approach. With the support of SPARK experts, a first stage was to correct and refac-
tor the code (2 kloc for the runtime and 21 kloc of generated code) to pass Stone, Bronze and
Silver levels. For code written by savvy programmers making a moderate use of specialized

AVoCS 2018 8/17

ECEASST

subtype Nb_Type is Natural
subtype D_Time_Type is Float
subtype Delta_Time_Type is D_Time_Type range 0.0 .. 1.0;

range 0 .. 100;
range 0.0 .. 1.000.0;

procedure Study_Case (Nb_Of_Fp : in Nb_Type;
Nb_Of_Pp :in Nb_Type;
Delta_Time : in Delta_Time_Type;
Time : in out Float)
with
Pre = Nb_Of_-Pp > 0 and Delta_.Time > 0.0 and

Post
is
D

T_Fp :
T-Pp :

begin
D

Time > 0.5 % Float (Nb_Of-Fp + Nb_Of_-Pp) % Delta_-Time and
Time < Float’'Last — Float (Nb_Of_-Fp + Nb_Of_-Pp) * Delta_Time,

= (if Nb_Of_-Fp > 0 then Time > Time’Old)

T_Fp :
TPp :
Time :

D_Time_Type;
Float;
Float;

Float (Nb_Of_-Fp + Nb_Of_Pp) * Delta_Time;

Time — (D / 2.0);

T_-Fp + Float (Nb_Of_Fp) * Delta_Time;
T-Pp + 0.5 x Float (Nb_Of_-Fp) * Delta_Time;
end Study_Case;

Figure 2: Simple problematic case for formal verification. The initial postcondition contained
a strict inequality Time > Time’ Old that is not true for high values of Time where the
offset is absorbed. Even the fixed postcondition with a non-strict inequality is not provable as
it depends on the respective magnitures of Nb_Of_Fp and Nb_Of_Pp which are not specified in
precondition.

9/17

Volume 076 (2019)

Climbing the Software Assurance Ladder E}

language features such levels are easy targets, in this case less than half a person-day for a few
hundreds lines of code. Reaching Gold level to prove one property related to buffer overflow
on the generated code required a larger effort, two person-days in that case, in order to refactor
the code for proof (to avoid the weakness mentioned above related to buffer overflow), interact
with automatic provers through intermediate assertions and provide the required loop invariants.
Given the extra level of confidence regarding the robustness these changes provide, Thales plans
to deploy them in the next release of the code generator.

The fourth case study targeted the proof of safety properties in a context where safety stan-
dards apply. Safety properties are usually written as “nothing bad will ever happen” and, since
their scope is usually on a large part of the code, need to be specified at the highest level of the
code, almost at the entry point. Inside a 70 kloc control commands project, Thales and Ada-
Core engineers identified a few units (7 kloc) defining a set of high level automata where those
properties could be specified. As a first step, the engineers reached the Stone, Bronze and Silver
levels on this code in less than a person-day. Then, contracts were added on subprograms imple-
menting the automata, mostly to express the effect of calling each automaton, also in less than a
person-day. Automatic proof was obtained without much difficulty after that, with no need for
intermediate assertions, loop invariants or specific proof switches. The lessons learned here are
that SPARK is expressive enough for typical safety automata properties, and powerful enough
for automatic proof of such properties.

Lessons learned. From an adoption point of view, Thales concluded from this first study that
formal verification as implemented by SPARK 2014 and its associated toolset can be considered
as a toolbox providing various opportunities for subsetting and tailoring. This flexibility gives
the possibility to fine-tune the gradual insertion of formal verification techniques in existing
processes, while mitigating risks both on their efficiency from a cost and planning point of view
and their ability to output software with a defect density under control.

4.2 Second Study: Implement and Refine the Adoption Strategy

In the field of high-security applications, which is particularly important for Thales, testing rep-
resents a considerable part of the software development process. In addition to unit tests, other
principles are implemented such as enforcing coding rules, peer code reviews and qualimetry
surveys with many tools checking that those principles are strictly followed. One solution to
lighten and improve this process, to produce software of improved quality, is the use of more
suitable tools, such as formal verification tools to replace part of the tests. Indeed, formal proofs
allow a comprehensive checking of proved parts, unlike testing that can only guarantee a partial
checking of the software.

After a previous internship in 2015 comparing some available environments for formal verifi-
cation (eCv [Cro14], Frama-C [KKP " 15], SPARK), another six-months internship in 2017 was
dedicated to the study of the benefits of the Ada language and particularly the SPARK language
for the security software developed at Thales. During this internship, Thales evaluated the vari-
ous advantages of Ada and SPARK, by implementing the Adacore and Thales adoption guidance
on two proofs of concept in the field of cryptography.

AVoCS 2018 10/17

Eg ECEASST

The first case study was porting from C to Ada, then to SPARK, part of a cryptographic library
which is used as an abstraction layer between a lower level cryptographic library (also in C) and
client applications. This case study followed the guidance document produced in the previously
mentioned first study, to convert an application from Ada to SPARK.

The preliminary stage consisted of porting the C library code to valid Ada code. Porting API
(.h files) was facilitated by g++ switch “~fdump-ada-spec” which produced comprehensive Ada
specifications (.ads files) as well as Ada body skeletons (.adb files) generated automatically with
the gnatstub tool. The body code was completed manually without difficulties as most C idioms
are available with Ada. Interfacing with the C low-level cryptographic library was essential
and was supported natively by Ada. This small step brought simpler code with pointer-related
defensive code eliminated thanks to the use of handy Ada array attributes and warnings from the
Ada compiler.

Firstly, Stone level was reached by transforming the Ada code to be valid SPARK code. It
mostly consisted in suppression of pointers (or at least encapsulating them in a non-SPARK unit)
and transformation of functions with side effects into procedures (or at least encapsulating them
in wrappers within a non-SPARK unit). Thus, it was possible to make a first analysis of the code
with SPARK tools. This first step didn’t require major changes in the code but it pinpointed parts
of the code with potential security vulnerabilities (pointer casts and side effects in particular).

In a second stage, Bronze level was reached, analyzing the code for data flow and variable
initialization. Data flow (Global) and information flow (Depends) contracts were added in the
code to specify precisely the intended behavior. The analysis detected unused inputs which could
then be removed, which is useful for maintenance, as well as partially initialized data structures,
which is useful for debugging.

In a third stage, Silver level was reached, ensuring absence of run-time errors in the code
(AoRTE). Preconditions were added in the code, mostly to link the right algorithm with the right
variant of a discriminated structure.

In a fourth stage, Gold level was reached, verifying the functional behavior of the code. Pre-
conditions and postconditions were added in the code to specify key security requirements:
cleanup of security-sensitive working variables, correctness of output value, and consistency
between parameters as presented in Figure ??. At this level, all the existing defensive code had
been replaced by contracts. By achieving complete proof of these specifications, the propagation
of error codes from low-level subprograms to high-level ones was no longer necessary.

The second case study was about producing an API similar to the API ported from C during
the first proof of concept, this time based on a low-level cryptographic library in Ada, which was
also later proved with SPARK. The whole process from Stone level to Gold level was followed
again. New technical issues arised: the need for loop invariants, contracts on type hierarchies
for subprograms supporting dispatching, visibility of global variables in contracts of high level
subprograms, and non-provable Ada code. Though loop invariants are the basis of formal proof,
they are considered as tricky. Many unproved properties came mostly from weak preconditions
or weak postconditions of subprograms called inside a loop, which were not obvious to under-
stand. Object Oriented Programming brings another layer of complexity, with specific rules for
inheriting subprograms and contracts over these subprograms. Global variables mentioned in

11/17 Volume 076 (2019)

Climbing the Software Assurance Ladder E}

procedure computeSha (input :in uint8_t_array;
inputByteLen : in stdint_h.uint32_t;
digest : out uint8_t_array;
outputByteLen : in stdint_h.uint32_t;
hashByteLen : in stdint_h.uint32_t)
with
Contract_Cases = (hashByteLen = 20 = digest 'Length = 20,
hashByteLen = 32 = digest 'Length = 32,
hashByteLen = 48 = digest 'Length = 48,

hashByteLen = 64 = digest 'Length = 64),
Pre = (inputByteLen = input’Length and
(hashByteLen = 20 or hashByteLen = 32 or
hashByteLen = 48 or hashByteLen = 64));

Figure 3: Simple case of contract for expressing consistency between parameters, checking here
that the length of the hashed message digest’ Length is consistent with the type of hash used
hashByteLen.

data flow contracts propagate to the upper levels of the call tree, where they may not be visible
anymore (due to abstraction mechanisms in Ada), which required costly workarounds. A better
solution would have been to hide this particular effect in a low-level non-SPARK package body,
or to use the data abstraction feature available in SPARK. Finally, some idiomatic Ada code did
not lead to automatic proofs in SPARK, which led to changes for simpler and more readable
code.

Lessons learned. Thales learned a few lessons from this second study. First, the adoption
guidance document was really helpful: it eased the implementation of SPARK during the second
internship. As a result, it was also refined for future uses inside and outside Thales. Secondly,
as stated in the guidance document, Users should refrain from changing the program for the
benefit of only getting fewer messages from the tool, a principle that could be phrased as “do
not please the tools”. Of course, it is sometimes adequate to change the program in a way that
will cause some messages about unproved properties to disappear, provided this favors code
quality, readability or maintenance. Otherwise, tools provide ways to silence messages, that
should be used instead of changing the program. Thirdly, reaching Gold Level is more easily
achievable when clear and meaningful software specifications are available. Finally, not all code
can be proved but non-provable parts that are well identified can undergo peer code reviews. For
instance, 90% of the code was automatically provable in the second case study, after suitable
addition of contracts where necessary.

5 Related Works

Formal methods have long been considered as a means of compliance to satisfy verification ob-
jectives in critical software development for some certification domains, for example in railway
(EN 50128) and industrial processes (IEC 61508). The avionics standard DO-178C in 2012 has
more recently recognized formal methods as a means of compliance on a par with the dominant
technique of testing. Other certification standards in the domains of automotive (ISO 26262),

AVoCS 2018 12/17

Eg ECEASST

nuclear (IEC 60880) and space (ECSS-QST-80C) also recognize some uses of formal methods
as verification techniques.

The adequateness of formal methods for certification was thoroughly investigated by John
Rushby in his report for the NASA in 1993 on “Formal Methods and the Certification of Critical
Systems” [Rus93]. Although Rushby’s report talks about “formal methods”, this mostly corre-
sponds to what we call today “theorem proving”: model checking techniques are mentioned en
passant, and nothing is said about abstract interpretation techniques, which did not have then the
recognition that they do today. More recently, Graf and Garavel studied extensively the use of
formal methods for developing critical systems, and they cover in particular the impact of formal
methods on development and verification processes [GG13]. More specific guidance exists in
certain application domains, such as in avionics [BDHW10].

There is on the contrary very little guidance on the use of specific formal methods and tools.
This is somewhat remediated by the availability of tool specific user guides and publicly available
experience reports [WLBF09]. Company-specific guidance is developed to carry-over the expe-
rience gained from project to project, in the companies using formal methods, but such guidance
is kept confidential. Indeed, the experience gathered through previous projects is considered as a
business advantage over the competition, and the guidance having been developed in the specific
business context of the company, the information related to formal methods usage is very tied
to other confidential information. In their dual role of SPARK tools providers and practitioners,
Praxis and then Altran have always been keen on publicizing best practices and lessons learned
with formal verification on industrial projects [KHCPOOb, Cha06b, CS14]. The publication of
the guidance co-developed between AdaCore and Thales [AT] on SPARK adoption follows this
lead, which was possible because it was written since the start with the tool provider. This is sim-
ilar to the joint effort by tool provider CEA, certifier Bureau Veritas and user Sirehna to publish
guidelines on the use of Frama-C [DFK ™ 16].

Formal methods have been divided between heavyweight and lightweight ones, with the for-
mer being the original formal methods and the latter also being called the disappearing formal
methods [Rus00]. SPARK is a case of lightweight or disappearing formal methods, in which
the user does not directly manipulate the underlying formalism, but instead interacts with tools
through multiple interfaces. Formal methods and tools are usually placed at some point in be-
tween the heavyweight and lightweight extreme points. With the notion of software assurance
levels, we have shown that a given tool can be placed at multiple places along this axis, and that
a project can move between these places using the same tool.

In particular, it is likely that other formal verification platforms for software such as Atelier B
and Frama-C could similarly define their own software assurance levels. For example, the plugin
structure of Frama-C could be used to define levels in terms of plugin usage [KKP ' 15].

6 Conclusion

Formal program verification with SPARK has been used for years at companies like Altran UK to
get as close as possible to zero-defect software. Altran UK has developed software engineering
processes to maximize the costs-benefit ratio of using SPARK. In particular, it has defined a
mapping between levels of use of SPARK and software assurance targets (SIL/DAL), which is

13/17 Volume 076 (2019)

Climbing the Software Assurance Ladder Eﬁ

used by all projects at Altran UK. Altran UK is now investing in its use of SPARK for the future,
by investigating innovative ways to generate tests from contracts, to combine tests and proofs
and to analyze code generated from Simulink.

Other companies like Thales are starting to use SPARK to obtain similar benefits. We have
presented in this article the lessons learned at Thales on various deployment experiments at
different levels of use of SPARK. As for every promising but complex technology, the success
of its deployment is conditioned by the pace at which adopters can climb the learning curve and
identify relevant insertion points and strategies into established development processes. While
AdaCore expertise was essential in the success of these experiments, Thales has identified typical
use cases where the methodology used could be replicated without external help. Thales is
now aiming at clarifying how SPARK can be adapted to its internal processes. The guidance
document written as a result of Thales experiments is being used to support adoption of SPARK
in other teams inside Thales and is available for other companies to start on this path.

We have benefited in multiple ways from the definition of the five software assurance levels
that can be achieved with SPARK. First, the five levels clarify the verification objectives that
can be achieved with formal verification: not only they provide simple and easy-to-remember
names for communicating between stakeholders, they also make it explicit that upper levels
build on the lower levels, and they provide at each level a clear identification of the costs and
benefits. Secondly, the five levels make it easier to plan for progressive adoption of higher
levels of software assurance, with lower levels requiring less effort than higher levels, and each
level providing already very valuable benefits. These results could be translated to other formal
methods that similarly provide different depths of use that could be translated to assurance levels.

Acknowledgements. We would like to thank the anonymous referees for their useful remarks,
as well as our colleagues at AdaCore, Altran and Thales for their reviews on earlier drafts of this
article.

Bibliography

[AT] AdaCore, Thales. Implementation Guidance for the Adoption of SPARK. https:
//www.adacore.com/books/implementation-guidance-spark.

[BCF'] P. Baudin, P. Cuoq, J.-C. Filliatre, C. Marché, B. Monate, Y. Moy, V. Prevosto.
ACSL: ANSI/ISO C Specification Language. http://frama-c.com/download/acsl.
pdf.

[BDHW10] D. Brown, H. Delseny, K. Hayhurst, V. Wiels. Guidance for Using Formal Methods
in a Certification Context. In Proc. ERTS. 2010.

[ChaO6a] R. Chapman. Correctness by Construction: A Manifesto for High Integrity Soft-
ware. In Proceedings of the 10th Australian Workshop on Safety Critical Systems
and Software - Volume 55. SCS 05, pp. 43—46. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 2006.
http://dl.acm.org/citation.cfm?id=1151816.1151820

AVoCS 2018 14 /17

https://www.adacore.com/books/implementation-guidance-spark
https://www.adacore.com/books/implementation-guidance-spark
http://frama-c.com/download/acsl.pdf
http://frama-c.com/download/acsl.pdf
http://dl.acm.org/citation.cfm?id=1151816.1151820

E

ECEASST

[Cha06b]

[ChalO0]

[CKLPO6]

[Crol4]

[CS14]

[DEL" 14]

[DFK*16]

[Fah10]

[GG13]

[KCC'14]

[KEH'09]

R. Chapman. Correctness by Construction: A Manifesto for High Integrity Soft-
ware. In Proceedings of the 10th Australian Workshop on Safety Critical Systems
and Software - Volume 55. SCS 05, pp. 43—46. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 2006.
http://dl.acm.org/citation.cfm?id=1151816.1151820

P. Chalin. Engineering a Sound Assertion Semantics for the Verifying Compiler.
IEEE Trans. Software Eng. 36(2):275-287, 2010.

P. Chalin, J. R. Kiniry, G. T. Leavens, E. Poll. Beyond Assertions: Advanced Spec-
ification and Verification with JML and ESC/Java2. In Boer et al. (eds.), Formal
Methods for Components and Objects. Pp. 342-363. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

D. Crocker. Can C++ Be Made As Safe As SPARK? In Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology. HILT
14, pp. 5-12. ACM, New York, NY, USA, 2014.

doi:10.1145/2663171.2663179

http://doi.acm.org/10.1145/2663171.2663179

R. Chapman, F. Schanda. Are We There Yet? 20 Years of Industrial Theorem
Proving with SPARK. In Klein and Gamboa (eds.), Interactive Theorem Proving.
Pp. 17-26. Springer International Publishing, Cham, 2014.

C. Dross, P. Efstathopoulos, D. Lesens, D. Mentré, Y. Moy. Rail, Space, Security:
Three Case Studies for SPARK 2014. In Proc. ERTS. 2014.

L. Duboc, S. Flanc, F. Kirchner, H. Marteau, V. Prévosto, F. Sadmi, F. Védrine.
Safer Marine and Offshore Software with Formal-Verification-Based Guidelines.
In Proc. ERTS. 2016.

M. Fihndrich. Static Verification for Code Contracts. In Cousot and Martel (eds.),
Static Analysis. Pp. 2-5. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

H. Garavel, S. Graf. Formal Methods for Safe and Secure Computers Systems - BSI
Study 875. BSI German Federal Office for Information Security, 2013.

J. Kanig, R. Chapman, C. Comar, J. Guitton, Y. Moy, E. Rees. Explicit Assumptions
-A Prenup for Marrying Static and Dynamic Program Verification. 07 2014.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood.
selL.4: Formal Verification of an OS Kernel. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles. SOSP ’09, pp. 207-220. ACM,
New York, NY, USA, 2009.

doi:10.1145/1629575.1629596

http://doi.acm.org/10.1145/1629575.1629596

15/17

Volume 076 (2019)

http://dl.acm.org/citation.cfm?id=1151816.1151820
http://dx.doi.org/10.1145/2663171.2663179
http://doi.acm.org/10.1145/2663171.2663179
http://dx.doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596

Climbing the Software Assurance Ladder Eﬁ

[KHCPOOa]

[KHCPOOb]

[Kin70]

[KKP+15]

[KMMS16]

[Ler09]

[LM10]

[MC15]

[Mey88]

[Rus93]

[Rus00]

[Rus09]

S. King, J. Hammond, R. Chapman, A. Pryor. Is proof more cost-effective than
testing? IEEE Transactions on Software Engineering 26(8):675-686, Aug 2000.
doi:10.1109/32.879807

S. King, J. Hammond, R. Chapman, A. Pryor. Is Proof More Cost-Effective Than
Testing? IEEE Trans. Software Eng. 26(8):675-686, 2000.

J. C. King. A Program Verifier. PhD thesis, Pittsburgh, PA, USA, 1970.
AAI7018026.

F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, B. Yakobowski. Frama-C: A
software analysis perspective. Formal Aspects of Computing 27(3):573—609, May
2015.

doi:10.1007/s00165-014-0326-7

https://doi.org/10.1007/s00165-014-0326-7

N. Kosmatov, C. Marché, Y. Moy, J. Signoles. Static versus Dynamic Verification
in Why3, Frama-C and SPARK 2014. In 7th International Symposium on Leverag-
ing Applications. 7th International Symposium on Leveraging Applications, p. 16.
Springer, Corfu, Greece, Oct. 2016.

https://hal.inria.fr/hal-01344110

X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning
43(4):363-446, 20009.
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf

K. R. M. Leino, M. Moskal. Usable Auto-Active Verification. In Usable Verifica-
tion Workshop. 2010.
http://fm.csl.sri.com/UV10/

J. W. McCormick, P. C. Chapin. Building High Integrity Applications with SPARK.
Cambridge University Press, 2015.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1st edition, 1988.

J. Rushby. Formal Methods and the Certification of Critical Systems. Technical
report, 1993.

J. Rushby. Disappearing Formal Methods. In High-Assurance Systems Engineering
Symposium. Pp. 95-96. Association for Computing Machinery, Albuquerque, NM,
nov 2000.

http://www.csl.sri.com/papers/hase00/

J. Rushby. Software Verification and System Assurance. In 2009 Seventh IEEE
International Conference on Software Engineering and Formal Methods. Pp. 3—10.
Nov 2009.

doi:10.1109/SEFM.2009.39

AVoCS 2018

16 /17

http://dx.doi.org/10.1109/32.879807
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://hal.inria.fr/hal-01344110
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://fm.csl.sri.com/UV10/
http://www.csl.sri.com/papers/hase00/
http://dx.doi.org/10.1109/SEFM.2009.39

@ ECEASST

[WLBF09] J. Woodcock, P. G. Larsen, J. Bicarregui, J. Fitzgerald. Formal Methods: Practice
and Experience. ACM Comput. Surv. 41(4):19:1-19:36, Oct. 2009.
doi:10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436

17 /17 Volume 076 (2019)

http://dx.doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436

	Introduction
	SPARK: Formal Verification Focused on Practical Use
	The Practice of Formal Verification
	The Adoption of Formal Verification
	First Study: Define an Adoption Strategy
	Second Study: Implement and Refine the Adoption Strategy

	Related Works
	Conclusion

