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Abstract: We present a novel notion of deadlock for synchronization on arbitrary
boolean conditions and a sound, fully automatic deadlock analysis. Contrary to
other approaches, our analysis aims to detect deadlocks caused by faulty system
design, rather than implementation bugs. We analyze synchronization on boolean
conditions on the fields of an object instead of targeting specific synchronization
primitives. As usual, a deadlock is a circular dependency between multiple tasks.
A task depends on a second task if the execution of this second task has a side-
effect that makes the blocking guard-condition of the first one evaluate to true. This
requires an analysis of the computations in a method beyond syntactic properties
and we integrate a logical validity calculus to do so.

Keywords: Deadlock, Dependency, Active Object

1 Introduction

Deadlock is an essential notion of error in distributed systems and is commonly defined as a
blocked configuration with circular dependencies among multiple tasks. Deadlocks have been
examined for different notions of dependency: Resource dependencies are defined between ac-
quire and release actions, or message dependencies, which are defined between receiving and
sending actions on channels, and other notions based on other synchronization primitives.

The control flow of a system design or model can be described using common synchronization
primitives like locks, in most languages. The primitives reduce to one of the aforementioned
dependency notions and allow to use dependency analyses for deadlock detection. Systems
however are rarely directly designed with concrete primitives in mind — the design makes use
of the more natural and abstract synchronization patterns with synchronization on conditions,
which can be compiled into more concrete synchronization primitives.

Condition synchronization can be expressed with, e.g., a statement await i>0, which suspends
the active task until the guard i>0 becomes true. Such a statement is not available in most
languages, but can be seen as an abstraction to the established monitor pattern. Using a condition
synchronization statement is nearer to the modelers intention of when a task will resume.

Condition synchronization can be compiled into other synchronization patterns, e.g., monitors,
but requires the addition of low-level synchronization primitives, such as condition variables and
locks. Performing a deadlock analysis on the compiled code is thus less helpful for the system
designer, as it operates on a lower level of abstraction than his system model. We propose a
formalization of dependency that fits the intuition of the system designer better than approaches
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based on translation into low-level synchronization primitives. A task f; depends on 1, if the
continuation of f, would make the guard b of # true at a point where ¢ may be scheduled.
This notion of dependency requires to evaluate the guard b and to analyze all side-effects of the
continuation of #,.

The analysis builds a dependency graph: First, for each field new dependencies are added
from each read in a condition synchronization to each write. In the second step, all those edges
are removed, for which we can show that the execution of the writing method will never make
the guard in question true.

An await statement for condition synchronization is implemented by the object-oriented Ab-
stract Behavioral Specification (ABS) modeling language [JHS"10]. However, the available
deadlock analysis tools for ABS [FAG13, GLL16, GDJ"17] do not consider such await state-
ments. Motivated by this shortcoming, we implemented our approach for ABS, while the theory
can be applied to other languages. Our implementation extends the Deadlock Checker for Con-
current Objects (DECO) tool [FAG13] in the Static Analysis for Concurrent Objects (SACO)
toolsuite, and integrates the KeY-ABS theorem prover [DBH15a] to discard dependencies.

We evaluate our approach on industrial case studies. The precision depends on the commu-
nication structure and the complexity of required SMT-theories for the types occurring in the
program. While false positive potential deadlocks are detected, the analysis is precise enough
to provide enough user feedback to manually discard the remaining potential deadlocks: The
number of false positives in all but one case studies is small enough to check them all manually.

As condition synchronization is nearer to the modelers intention when a task will resume, it
allows to detect deadlocks caused by errors in the modeled system rather than errors caused by
the wrong use of synchronization primitives. Consider the dining philosophers: The possible
deadlock is caused by an error in the modeled control flow of the system (the conditions on
putting down the fork depend on the conditions on picking up a fork and vice versa). A wrong
use of synchronization would, e.g., be a philosopher that never puts his fork down.

Our main contributions are (1) a novel notion of dependency and deadlock for condition syn-

chronization and (2) a sound deadlock analysis for full coreABS that integrates a theorem prover
into a dependency-based deadlock analysis.
Paper Overview. Section 2 introduces condition synchronization and gives examples of its usage
as an abstraction for low-level synchronization primitives. Section 3 introduces a simple lan-
guage with condition synchronization. Section 4 defines our notion of deadlock and Section 5
describes our analysis for it, Section 6 reports on the implementation and Section 7 concludes.

2  On Condition Synchronization in System Design

Our aim is to analyze the control flow of a system design to ensure that it does not include cir-
cular dependencies. For this, we concentrate on the boolean conditions on which processes may
synchronize to achieve the intended control flow. We are not concerned with the usage of low-
level primitives like locks: Deadlocks caused by low-level primitives are indications of incorrect
usage of the concurrency model, e.g., forgetting to unlock or unlocking twice. Deadlocks caused
by the boolean conditions are signs of errors in the design: the program cannot progress because
its designed control flow itself contains a bug.
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1 public void ml () { 1 public void ml () {

2 lock.lock(); 2 lock.lock () ;

3 a=1; 3 a = 2; //bug
4

4 alsOne.signalAll(); aIsOne.signalAll();
lock.unlock () ;

6} 6}

7 public void m2 () { / public void m2 () {

8 lock.lock () ; 8 lock.lock () ;

0 while (a != 1) alIsOne.await(); 9 while (a != 1) aIsOne.await();
10 a = 0; 10 a = 0;

11 lock.unlock () ; 11 lock.unlock () ;

Figure 1: Two Java snippets for monitors. The methods run in separate threads.

Example 1  Consider the Java code on the left in Fig. 1. If both described methods are running
in parallel in two threads on the same object, they need not progress, as m1 fails to unlock. Now
consider the Java code on the right. Again both methods may not progress — however the reason
is that m2 waits for m1 to change the internal state. The first example is an implementation bug:
The lock is used wrongly. The second example is a design bug: the combined control flow of m1
and m2 is designed wrongly — m2 does not continue after m1.

Both kinds of errors cannot be sharply distinguished — a wrong usage of synchronization
primitives may also be a result of erroneous design, e.g., if unlocking twice is a consequence
of the intended control flow. Deadlocks caused by synchronization primitives have been studied
extensively [NY16,PVB 13, CGHA18,HJ18,GDJ" 17, GLL16] and focus for the most part on
syntactic properties, not information in the guard. In this work we concentrate on condition
synchronization. We aim to detect bugs in the design itself, helping the software architect, not
the implementing programmer and use this system model: We abstract away from the low-level
primitives and only consider the aforementioned await statement with a cooperative scheduling
concurrency model, where every context switch is explicit.

Condition Synchronization as Abstraction To illustrate the difference between condition
synchronization and synchronization via low-level primitives, we use condition synchroniza-
tion as an abstraction of monitors. A monitor is a predicate associated with a condition variable
and a lock. All threads waiting for the condition are notified by the condition variable once the
predicate may become true. If the guard evaluates to false, the notified threads become inactive
again.

The Java code on the left in Fig. 2 shows the uses condition variables to add an element to
a bounded queue once the queue is not full. Here, the thread waits for the list to be below
its maximal capacity. Otherwise it waits on the monitor notFull until the state changes and
it is notified. If it modifies the state itself, it notifies all threads waiting for the list to be not
empty by calling signalaAll on the monitor notEmpty. Deadlock analysis can be performed
by analyzing the possible sequences of calls to the synchronization primitives 1ock, await
and signalAll [LMSI10], as every call to signalAll causes the process to execute one more
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1 public void put (Object x) {
2 lock.lock();

while (count >= items.length) 1 put (Object x){
notFull.await (); 2 await count < items.length;
5 //add x to queue here 3 //add x to queue here
notEmpty.signalAll () ; 4}

lock.unlock () ;
8}

Figure 2: A Java method and its Abstraction

loop iteration. With condition synchronization and cooperative scheduling, we can express this
method as shown on the right in Fig. 2. The lock and the monitors are not part of the code, it is
thus not necessary to check their correct usage already in the design: The method only switches
context at the await statement and continues execution once its guard evaluates to true.

Condition Synchronization as a Modeling Tool Condition synchronization is not only a use-
ful tool for modeling, it clarifies reasoning about control flow by abstracting from implementa-
tion details. E.g., in the above example the not Empty and notFull monitors are not part of the
code. This makes it unnecessary to ensure that the correct monitors are used.

Notions of deadlock for monitors based on the correct use of the involved primitives have two
down-sides: First, the condition itself is not determining the dependencies — dependencies are
determined by the additional structure the programmer assumes to guarantee deadlock freedom.
This structure (1) leads to a large overhead, as for each condition a monitor has to be added and
(2) adds another layer between the system design and the analyzed artifact. Secondly, in the
sketched situation in Java, the waiting thread may progress, if another process was active and
called signalall; as it must execute the loop to reevaluate its guard-condition. We abstract
away from the reevaluation, and assume it is handled by the runtime environment — by abstracting
to condition synchronization, the results are nearer to the intuition of the designer.

The ABS implementation of await b evaluates the guard for scheduling in the runtime envi-
ronment. The guard is side-effect free, thus evaluation does not alter the state of the object and
can safely be done in the scheduler.

Replacing Condition Synchronization in Presence of Timed Behavior In ABS, it is not
possible to replace condition synchronization with other synchronization primitives, even if a
suspend statement (with the semantics of await True) is given. As the condition has to be
checked at every point the thread could be scheduled, the check must be repeated inside the
method and a busy waiting translation for await g; would be the following:

] suspend; while(!g) { suspend; }

The first suspension ensures that the thread releases at leats once. This translation has a different
semantics than await g; as it allows to reschedule the thread multiple times if g does not hold,
thus the configuration never gets stuck, as it can always make another loop iteration. The await
statement only evaluates the guard once, until the heap memory of the object is changed.
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While this may be acceptable (because the guard cannot have side effects in ABS), it does
livelock the system if timed behavior is modeled. ABS has a await duration (t,t’) statement
which suspends a method for t to t’ symbolic time steps. Consider the following two methods:

I mWait () { mSet () {

2 await x == 1; 2 await (1,1); x = 1;

3} 3

A program running these two methods in parallel terminates. It does not terminate if await

x==1 is translated into the loop above: The semantics of timed behavior is that time is only
advanced if nothing else in the system can be scheduled — but as seen above the loop in mWait
could always be executed once more. Thus, the translated program does not terminate, because
it never advances time to execute x = 1;.

While condition synchronization may be compiled into monitors, monitors require low-level
primitives. Some concurrency models, such as the Active Objects of ABS, where locks are
handled implicitly, cannot remove condition synchronization by translating it into other synchro-
nization primitives.

3 A Language with Boolean Guards and Dynamic Logic

We introduce a simple language SYNC with cooperative scheduling, asynchronous communica-
tion and conditional synchronization. SYNC is a simplified version of ABS [JHS " 10], following
the formalization of the semantics in [FAG13]. We ignore futures, which synchronize processes
on termination similar to thread joins, and return values for presentation’s sake, as those depen-
dencies have been described by Flores-Montoya et al. [FAG13]. Our implementation considers
full coreABS.

A SYNC-program is a set of objects and a main block. Each object has fields and methods.
All objects are running in parallel and share no state. An object may only change its active task,
if the active task explicitly releases control. Control can be released by termination or a special
statement await b; which suspends the active task, and allows its reactivation only once the
boolean expression b evaluates to true. This statement models condition synchronization within
one object. Between multiple objects, only asynchronous method calls of the form async X.m(€)
are possible. Such an statement has been introduced and examined earlier [OG76]. As seen in
the previous Section, await can be compiled into monitors, if condition variables and locks are
synchronization primitives provided by the concurrency model.

Definition 1 (Syntax) We underspecify the sets of types and expressions. For the examples,
we assume types for booleans, integers, lists and Object, as well as the usual operations and
literals for their elements. Let e range over expressions, T over types, v over variable names, £
over field names and X over object names. ~ denotes possibly empty lists. A program Prgm is
defined as follows:

Prgm ::=Omain{s}  O:=object X {MT t=¢e} M:u=n(Tv){s}

si=asyncem(e)|f=e|Tv=e|awaite |if(e)s else s fi | skip | s;s

Example 2 In the following code, the object Queue models a queue with maximal length of 5
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and the main block pushes a number into the queue and afterwards removes it. It is not guaran-
teed that the push method will start to execute first. The synchronization with await, however,
guarantees that it terminates first.

object Queue(
2 List<Int> list = Nil;
push (Int i) { await size(list) < 5; list = [i]::1list;}
4 pop () { await size (list) > 0; list = tail(list);}
5}
6 main {
7 async Queue!push(l);
async Queue!pop();
9 }

Definition 2 (Runtime Syntax) D is the value domain, with {tt,ff} C D. Let X range over
object names, i over N, s over statements, o over functions that map variable names to domain
elements and p over functions that map field names to domain elements. We define configura-
tions C as follows:

C:=tsk(X,i,s,0) | obj(X,i,p) | CC

The composition of configurations is associative and commutative, i.e. C (C' C") = (C ") C”
and C C' = C' C. Well-formedness conditions can be found in [JHS " 10].

A configuration contains tasks and objects. An object obj(X,i,p) has a unique name X, an
active task id 7 and a store p. If inactive, the task id is the special symbol L. A task tsk(X, i, s, o)
has a unique id i, a local store o, the id of its object X and the remaining statement. A terminated
task has the special symbol L as its statement.

We denote the initial configuration of a program Prgm with I(Prgm). The definition is
straightforward and the main block is running in a special object. We assume that each store
p is initialized with a special field Xy for each object X with p(Xy) = X. The method body of a
method m is denoted M (m) and the initial local store of a task executing m with parameters d with
M(d).

The most important rules are shown in Fig 3: The rule (wait) suspends a process by setting the
task id of the corresponding object to L. The await statement is not removed. The rule (cont)
removes the await statement when reactivating a process — the corresponding object must be
inactive and the guard must hold. The rule (call) starts a new process, which is not set as active
upon creation.

A configuration is terminated if all tasks and objects have the forms

tsk(X;,i, L,0;) obj(X,L,px)

A configuration is stuck, if it can not be reduced further but it is not terminated. We denote with
[e]s,p the evaluation of e with the stores ¢ and p. We write C |= e iff [e] 5 = tt and the object
whose store p is evaluated is understood.

We index the reduction relation with a tuple of active tasks. A singleton tuple (i) expresses
that only i is active, a tuple (i, j) expresses that i is active and launches j. This allows us to reason
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[e]op =1t
(wait) (cont)
tsk(X, i,await e, o) obj(X,i,p) C tsk(X, i,await e, ) obj(X, L,p) C
_>(i) tsk(X,i,await e,O') obj(X,J_,p) C —>(,) tSk(X,i,J_,O') obj(X,i,p) C

lelo,p =X j does not appear in C C=obj(X,1,p") obj(X,i,p) C’

tsk(X,i,async e.n(e),0) C
— i j) tk(X,i, L, 0) tsk(X', j,M(n),M([€]s,)) C

(call)

Figure 3: Selected Small-Step Operational Semantics Rules

about restricted behavior, i.e. C =(;) C" expresses that C' is reachable from C only by executing
the task with id i.

Definition 3 (Run) Let Cy,...,C, be configurations. A run from C; to C, is denoted C; = C,
and defined as a tuple Cy,...,C, with

C1 -1 C2 e R A Cn

for some tuples of task-ids Iy,...,1,—;. We say that the run is annotated with Iy,...,I,_;. For
simplicity, we assume that all runs are finite.

Using the annotated tuples, we can define rooted runs: A run rooted in a task-id i is a run
which only executes task i and tasks started by task i. Rooted runs allow one to reason about
system behavior caused by a certain task.

Definition 4 (Rooted Runs) Let the following be the graph of some tuple of tuples of task ids
I = (11,...,1,1):

4(F) = (V,E) V={i|idioccurs in some [t} E = {(i,j) | Ik <n. L = (i, )}

A tuple .Z is rooted in i, if 4 (") is a tree with root i for each prefix .#” of .#. A run rooted in
i, denoted C; =; C,, is arun Cy,...,C, annotated with .# = I,...,I,_1, such that .# is rooted
ini.

We write C =5 C' if two configurations are equal everywhere, except for the values of fields
occurring in an expression e of object X:

C=5 C < 3C".C=C"obj(X,i,p) A C'=C"0bj(X,i,p") A\ p(£)=p'(£)
f¢fields(e)

3.1 Dynamic Logic

We use a dynamic logic, called SDL based on ABSDL [DO15] to reason about programs. SDL
extends first-order logic with a modality for SYNC programs and allows us to reason about all
possible runs of a method. We refer to [DO15, DBH15a] for full formal details about ABSDL.
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Definition 6 (Syntax) Let v range over logical variables and f over function symbols. SDL-
formulas ¢ and terms ¢ are defined by the following syntax:

¢u=3v. 0|0 |oVe|[sle|(she|r=1 1:=f()]v

The modality [s]¢ expresses that ¢ holds after the execution of s and at every suspension
point within. We introduce (s))¢ below. A formula is valid if it holds in all models. The other
formulas express constraints on given configurations. We assume a formalization of the heap
with two function symbols store and select with the connecting axiom

select(store(heap, o, £,value), o, £) = value

for every heap heap, object o, field £ and value value. A modality-free formula holds in a
configuration if the constraints are satisfied — select is interpreted such that select(heap, o, £) =
value) is satisfied in a configuration C if C has the form obj(X,i,p) C' and p(£) = [value]p o N
[o]p,c = X holds. The local store & is also modeled globally, with one special function for each
local variable. We assume for simplicity that all local variables have unique names.

Example 3 The following formula states that if in the beginning o . £ is positive, then after the
executionof £ = f+1; ino, o. £ is strictly positive.

0.£>0—=[f = £+1;]0.£>0

The full semantics and a sequent calculus for validity are presented in [DO15, DBH15a]. A
sequent calculus operates on sequents of the form I' = A, where I', A are sets of SDL-formulas.
Contrary to [DO15] we use the sequent calculus not to ensure that an invariant is preserved by a
method, but only to check that the method establishes a certain post-condition at all suspension
points.

We only show the rule for the await statement. The following rule is taken from [DOIS5,
DBH15a] and replaces the heap by a new function symbol to erase all knowledge. Afterwards,
i.e., once the method continues execution, only the guard expression can be assumed. This
mirrors the concurrency model, as other tasks may modify the heap during the suspension of
this task and the task can only be scheduled if the guard condition holds. It also proves that the
post-condition holds at each suspension point.

= ¢,A
I' = {heap := newHeap}e — [s]¢,A

(await)
I' = [await e;s]¢, A

We require a way to verify that a property holds at all suspension points, except the first
one. This is needed to verify that a method will fulfill a post-condition after being suspended at
least once — it is not relevant whether the execution up to the first suspension satisfies the post-
condition. Thus we use a special modality (s)¢ that expresses that ¢ holds after the execution
of s and at each suspension point in s, except the first one. We use (-) ¢ to verify that a method
never releases a guard ¢, after it was suspended once and thus this guard does not depend on the
method in question.
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The calculus is the same, except that for the await statement, we use the following rule
which does not check the post-condition. Note that afterwards the usual modality is used.

I' = {heap := newHeap}e — [s]9,A

I'= (await e;s)¢,A
The connection to the language’s SOS semantics follows from the correctness of the underly-
ing validity calculus [DO15].

(await)

Lemma 1 Let ¢ be a modality-free formula which contains function symbols only for the fields
of object X, (s)¢ a formula and C, a configuration of the form

Ci =tsk(X,i,s,o) obj(X,i,p) C’

If the proof for (s)¢ can be closed, then for every run Cy =; C, with intermediate configura-
tions C1,Cy,...,C, the following holds: At every position, except the very first, with a transition
Ck = (i) Ciy1 such that i is active in X in Cy, but not in Cyyy, (i.e., these configurations execute
suspension points) ¢ holds in Cy.

Sketch. Our system differs from the ABSDL calculus developed by [DO15] only by the (await)
rules. The semantics of [s]¢ is that ¢ holds at all suspension points of s. In the original calculus,
it also assumed ¢ when continuing the process, as their system proved class invariants for all
methods. Our rule for [-] does not assume ¢ after continuing execution, the formula [s]¢ is thus
valid if s ensures that ¢ holds at the continuation at all suspension points within s, independent
of how the heap is changed during the suspension, but does not use information from possible
invariants. The rule for (await) for the (-) modality differs only in the missing first premisse,
which is exactly proving that ¢ holds at the suspension point in question. As the premisse
continues symbolic execution with the normal modality, all following suspension points have to
guarantee ¢ — only the very first suspension point does not. 0

4 Dependencies for Condition Synchronization

A deadlock describes a stuck configuration, where tasks circularly depend on each other. To fix
the notion of deadlock, we need to fix the notion of dependency.

Intuitively, a stuck task ¢ depends on a task ¢’ in configuration C, if the continued execution
of ¢’ leads to a configuration where ¢ can continue its execution. If 7’ is stuck at some guard b
too, then ¢ depends on ¢’ if the continuation of ¢’ in some configuration C' where b holds leads to
a configuration where ¢ can continue its execution. We demand that C and C’ are as similar as
possible: they are equal everywhere but in the fields occurring in b, as defined in Def. 5.

Definition 7 We formally define a predicate dep(C, i, j) which expresses that i depends on j in
configuration C. The formalization is not in SDL but references SDL-formulas. To do so, we first
define a family of predicates n-dep(C, i, j), to model that i depends on j with at most n enforced
continuations. Let C be a configuration of the form

tsk(X, i,await e; s;, 0;) tSk(X,j,Sj,Gj) obj(X,L,p) Cop
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The base predicate models that by executing only j, a configuration can be reached, such that e
evaluates to true: 0-dep(C,i,j/) =CleAIC. (C=;CAC =e)

The other predicates handle the case that both i and j are blocked and j has the guard e’: and
by choosing a configuration C” w.r.t. C’, the guard e’ evaluates to true and in this configuration i
depends on j.

n-dep(C,i,j) =3e’. 3C,C". s; = await ;s AC e e AC £ ' ANC=§ C'
NC ESANC FEenC =;C"A(C" EeV(-1)-dep(C",i, )))

Task i depends on j in C, written dep(C, i, j), if some n-dep(C, i, j) holds.
We can now distinguish between deadlock and starvation.

Definition 8 (Deadlock and Starvation) The dependency graph of a configuration has its task
ids as nodes and its dependencies as edges. A stuck configuration is deadlocked if its dependency
graph contains a dependency cycle. A configuration is starving, if it is stuck, but not deadlocked.

A starving configuration requires some condition e to become true, but no task can have such
an effect. Sometimes an active process which tries to acquire a resource is also said to be starving,
but in our framework this is abstracted to await isAvailable (this.resource) — all starving
processes are stuck.

Example 4 (Deadlock and Starvation) Consider the program on the left in Figure 4. Its execu-
tion leads to the configuration

tsk(X, l,await f1; f2 = True;,0;) tsk(X,2,await £2; f1 = True;,0n)
obj(X, L,px) tsk(Xo,0,L,00) obj(Xo,L,px,)

This configuration is deadlocked as for the dependency of task 1 on task 2 we can set X.£1 = True
and for the dependency of task 2 on task 1 we can set X.£2 = True. Now consider the right
program is Figure 4. Its execution leads to

C=tsk(X,1,await £1; f2 = True;,0;) tsk(X,2,await £2; f1 = False;,0p)
Obj(X7J—7pX) tSk(X0707J—760) Obj(X07J—7pX0>

C is starving, as task 1 does not depend on task 2: no configuration can be chosen to continue
task 2, so it leads to a configuration that evaluates X;.£1 to True.

It is undecidable in general whether a configuration is deadlocked, as the computation of the
dependency includes the computation of all effects caused by the program following a guard.
Program and guard are both turing-complete, thus one can define a function encoding the uni-
versal turing machine and check in the guard for some property of the output of another turing
machine, which is computed/encoded in the code of another method.

Proposition 1 Given a stuck configuration C, it is not decidable whether C is deadlocked or
starving.
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1 object X{ 1 object X{

2 Bool fl = False; Bool f2 = False; 2 Bool fl = False; Bool f2 = False;
3 m(){ await £f1; f2 = True; } 3 m(){ await f1; f2 = True; }

4 n(){ await £f2; fl1 = True; } 4 n(){ await f2; fl = False; }

5} 5}
6 main{async X.m(); async X.n();} 6 main{async X.m(); async X.n();}

Figure 4: Two example programs: The left will deadlock, the right will starve.

Indeed even the dependency relation is undecidable. This result may appear discouraging, but
the presented notion of deadlock captures the intent of the designer more precisely than notions
which do no take the information flow through the heap into account and do not differentiate be-
tween deadlock and starvation. The aim of our analysis is to present clues to the designer where
the intended control flow has circular dependencies. It does not aim to catch any kind of error
and is not supposed to catch implementation bugs, where every erroneous state is undesirable.
The aim is to catch specific logical errors in the design of the control flow. Under these assump-
tions, undecidability is not a deal-breaker. Indeed, if the notion would be decidable, it would
restrict the possible guards — our aim however is to give the designer full freedom and support
him with clues where it might deadlock, not guarantee complete error-freedom.

Similarly, it is useful to distinguish between deadlock and starvation. Both notions describe
erroneous states, but the reason are different design flaws. Also, starvation is not always unde-
sirable. Consider the following method:

1 server () {

2 await requestList != Nil;

//handle requests

4 async this.server () ;

5}
Here, the object buffers and handles multiple requests at once. This pattern is used in prac-
tice [KH18]. Starvation is only caused by a lack of requests, not erroneous control flow. Simi-
larly, the right code in Figure 1 will terminate in a starving configuration, as m1 does not depend
on m2. A starvation analysis would also be useful, but is out of the scope for this work.

Partially Deadlocked Configurations Processes may depend on multiple other processes, and
a situation can occur where a process is deadlocked and starving at the same time: Consider the
following configuration:

C =tsk(X,1,await x > Ossy > 0; z = 1,0)
tsk(X,2,await z > 0; x = 1,0) tsk(X,3,await z > 0; y = 1,0)

This configuration is deadlocked with the following dependencies

1-dep(C,1,2),1-dep(C,1,3),1-dep(C,2,1),1-dep(C,3,1)
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Now consider the case that process 3 is not part of the configuration:

C' =tsk(X,1,await x > Os&y > 0; z = 1,0)
tsk(X,2,await z > 0; x = 1,0)

The configuration is still deadlocked, as it contains the dependencies
1-dep(C’,1,2),1-dep(C’,2,1)

if the deadlock would be resolved for process 1 (i.e., the guard x > 0 would hold), process 1
would not progress, as the second conjunct of its guard is starving.

This example shows a further point where our definition of deadlock does not coincide with
the simple notion of getting stuck: we consider configurations as C’ as deadlocked, even if they
contain further reasons than only dependency cycles for getting stuck.

If one wants to define a notion of deadlock where dependency cycles are the only reasons for
getting stuck (e.g., C above), a possible definition where to bring the guard of the process in
question into CNF, derive dependency edges for every conjunct and demand that each conjunct
is part of a dependency cycle. In this case C' would be not considered as deadlocked (as y>0 is
not part of any cycle).

5 Analyzing Condition Synchronization

To detect deadlocks, the abstract dependency graph is computed. The abstract dependency graph
subsumes all dependency graphs of reachable stuck configurations in a program: If the depen-
dency graph of a reachable stuck configuration has a circular dependency, then the abstract de-
pendency graph also has one.

Our approach extends the one of Flores-Montoya et al. [FAG13] and the implementation thus
handles a language with condition synchronization and synchronization on futures, i.e., termina-
tion of tasks. For presentation’s sake, we only define the object-insensitive abstract dependency
graph. Improvements of [FAG13] can still be applied, e.g., their main improvement relies on a
may-happen-in-parallel analysis, which is extended for condition synchronization in [AFG15].
The abstract dependency graph is defined syntactically. Let P be a program.

Definition9 Let Xy, ..., X, be all objects in P and m; 1, ...,m; , the methods of X;. The abstract
dependency graph A(P)=(V,E) is defined as follows:

e The nodes are all methods, i.e. V = (m,-J) i<n
j<o

e Edges connect methods with writes into a field with methods which synchronize on this
field: (m; j,mg;) € E iff there is a field £ such that m; ; contains a guard with £ and my,
contains £ = e or a call to a method doing so.

Note that a guard may contain multiple fields and that methods on different objects may de-
pend on each other. At this point, we do not analyse here whether call or write statement are in
a branch or in dead code.
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Example 5 Consider the following code and abstract dependency graph. The nodes in the graph
correspond to the guards in X .m and X . n. The edge (X .m, X.n) is by the write to field b2 in X.n
and its read in the guard of X .m.

| object X {
2 Bool bl = False; Bool b2 = False;
m(){ bl = True; await b2; } N - N
4 n(){ await !bl; b2 = True; T o

5}
6 main { async X.m(); async X.n();}

To incorporate the side-effects of computations, we make two additional steps. The first im-
provement aims to discards cycles because there is no reachable deadlock configuration to which
they correspond. In Definition 9, the whole method was checked for written fields. A cycle, how-
ever, only represents some concrete configuration where the processes hold at specific guards:
every field in a deadlocked configuration must be written affer some synchronization statement.

Definition 10 (Feasibility) A cycle my,...,m, in A(P) is feasible, if for each k < n, every write
causing the edge (my,my1) is after the first guard of my 1.

Nonfeasible cycles contain edges that refer to heap changes of the execution of an involved
method, but happen before the stuck configuration is reached:

Example 6  Consider again Example 5. The edge from X.n to X.m is added, because the field
bl is written in m and read in a guard in n. This edge is missing in all concrete dependency
graphs of reachable stuck configurations, because in the stuck configurations X .m has already
reached its guard and thus will not change b1. Le., the cycle (X.n,X.m,X.n) is not feasible.

We increase the accuracy further by analyzing the transmitted information and ensure that
every edge is refering to a write statement which actually may release the guard. Given a guard
e and a method my ; with method body s, we check that after some suspension of inside of s the
guard e evaluates to true. We may ignore the first suspension, as all side effects before it cannot
influence the heap afterwards. Le., if the formula (s)—e is valid, then after no execution of my;
can resolve the blocking guard and we can remove the dependency edge.

Definition 11 (Refined Abstract Dependency Graphs) Let & = (V,E) be an abstract depen-
dency graph. Let (m; j,m;) be an edge, added because of a statement await e in m; ;. Let s be the
body of m; The edge (m; j,mi;) is dispensable if the formula (s)—e holds.

The refined abstract dependency graph of a program is the graph that results from removing
all dispensable edges from its abstract dependency graph.

The use of the (-) is necessary, as we only reason about stuck configurations, thus we can
ignore any side effects that happen before the first guard - they do not refer to information flow
that may release another guard afterwards.

Example 7  Consider the right program in Figure 4. As discussed this program will starve, but
deadlock. The left graph below is its abstract dependency graph, the right graph the refined

13/19 Volume 076 (2019)



Detecting Deadlocks in Formal System Models with Condition Synchronization Eﬁ

abstract dependency graph:

—
X.n X.m X.m X.n
~ ~_ —

Theorem 1 (Soundness) If a program has a reachable deadlocked configuration, then its re-
fined abstract dependency graph has a feasible cycle.

Sketch. The proof follows the soundness proof of [FAG13]: If a reachable configuration is dead-
locked, then it has a dependency cycle: We show that for any dependency in the configuration
between two tasks 71, f,, there is a dependency between the methods m; and my executed by #;
(resp. tp) in the refined abstract dependency graph. If there is a dependency between f; and #,
(note that as the configuration is deadlock it cannot be a 0-dependency), the #, must have a rooted
run that releases the guard of #;, as we may only change the fields in the guard to do the step in
the unrolling of n-dependencies for n > 0. Thus #, must change one of the fields occuring in 71,
or call a method doing so. This is exactly the condition used to derive the dependecy between m;
and my.

Next, we show that the edge between m; and my cannot be dispensable, and the whole cycle
is feasable. If it were, (s)—¢ (where s is the statement of #, and ¢ the guard of #;) would not
be valid. As t, is doing the change in the heap after being unblock once in the definition of
dep(,,7,h)e statement making the change (write or call) is after the first await. Thus it is safe to
use (-) in the check for dispensability. The argument is analogous for feasable cycles. O

6 Evaluation

We implemented our approach in the SACO [AAF ' 14] framework for coreABS and use KeY-
ABS [DBHI5a] as the theorem prover to check for dispensable edges'. Existing tools did not
support conditional synchronization, so only six coreABS case studies made use of this feature
and we rely on micro-benchmarks to evaluate on a wider code base. Case studies and micro-
benchmarks cover full coreABS, including loops. The implementation is fully automatic.

1 class Server implements S{ 10 Unit run() {
2 List<Work> wList = Nil; 11 this!init_all();
3 Int status = 0; 12 Fut £ = this!in_pool();
4 Unit in_pool () { 13 this!add_worker (f) }
5 await status == 1; 14 Unit init_all(){
wList = 1;} 15 status = 1;

Unit add_worker (Fut f) { 16 await length (wList) >= 2;
8 await £?; 17 wList = [new Work ()| wList];
9 wList = [new Work ()| wList];} 18 status = 2; }}

Figure 5: An ABS class modeling the internal synchronization structure of a server during ini-
tialization. The main block is omitted and the ABS code is prettified.

We can show that the right example in Figure 4 is deadlock free. Figure 5 mixes conditional
synchronization and future-synchronization. The implementation can deal with deadlocks where

1 Available under formbar.raillab.de/deadlock
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some dependencies are caused by futures and some dependencies are caused by condition syn-
chronization. This example (and, e.g., Example 2) requires the application of the theorem prover
to detect and discard dispensable edges: two false positive deadlock risks are found otherwise.

We analyzed the two largest examples in ABS, the FredHopper trading and replicate systems
which model industrial software systems [DBH " 15b], and found 20 deadlock risks in the trad-
ing system and 52 in the replicate system. One reason for this is that the replicate system uses
deployment components [JST12] modeling cloud architecture, which are not supported by KeY-
ABS. In [AFG15,FAG13] the trading system was already analyzed in a setting with conditional
synchronization as deadlock free. In that work, only the MHP analysis was adjusted for con-
ditional synchronization, the deadlock analysis however was not sound and does not detect the
deadlock in the left program in Figure 4. We were able to manually identify all 20 deadlock risks
as false postives and confirm that the trading system is deadlock free. Manual post-processing
is acceptable as the tool outputs the methods involved in the deadlock risk and 18 of the 20
deadlock share one edge.

Selected Microbenchmarks (5 of 42)
Name LoC deadlock-free time found deadlocks
back_dead 39 X 8ms 1
OneQueue 37 X 13ms 2
Figure 5 43 v Tms 0
Transitive 52 X 10ms 1
Loop 39 X 8ms 1

Case Studies

Study LoC | potential deadlocks time critical edges
BlockChain 620 0 1312ms -
Compugene 860 1 83ms 1
Memory 351 3 49ms 2
YARN 199 3 144ms 3
HyVar 632 6 200ms 2
trading 1466 20 31s 3
replicate 2101 52 Ss 11
FormbaR 2200 Timeout

Table 1: Evaluation on selected examples

We analyzed the non-trivial models for industrial architecture from HyVar [LMRY17] and
FormbaR [KH16]. Additionally, we evaluated an ABS model for weak memory [KH18], an
ABS model for resource consumption in YARN clusters [LYJL16], and the Compugene model
for computational biology?. The analysis returns 3 (resp. 3 and 1) potential deadlocks, which
are easily manually identified as false positives. The false positives in the YARN model are
again due to the use of deployment components. The analysis confirms deadlock-freedom of an
ABS Blockchain model [Nak08]. The right side of Table 1 summarizes our evaluation on these
case studies. The critical edge column shows how many edges needs to be removed from the
graph to remove all cycles. The lower the number, the more feasible manual post-processing is.
Except the mentioned industrial examples, the Compugene, HyVar and weak memory models,
all examples are written by us. The tool was run on a Intel E5-2643 with 6 cores 3,4 GHz and 64
GB RAM.

Our analysis does not scale only for the FormbaR model. This has two main reasons: (1) Form-

2 http://www.compugene.tu-darmstadt.de
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baR models communication during railway operations and contains little computation, while the
other example systems are less communication-heavy. (2) FormbaR makes heavy use of maps
and contains several guards that read 4 fields of the class and every field is written in several
methods - the model contains a lot of information flow through fields. Maps complicate analysis,
as they require to ensure that the keys are passed around correctly. Such global properties cannot
be derived by analyzing methods in isolation.

7 Conclusion

We presented an approach for deadlock detection in presence of conditional synchronization,
which integrates a theorem prover to analyze side-effects. The implementation is the first sound
deadlock analysis for full coreABS. We are able to analyze all ABS case studies, but are not
precise if models contain synchronization points that access many fields of a class: the abstract
dependency graph subsumes all information flow in a program and is highly connected in those
cases. This reflects the inherent difficulty of reasoning about arbitrary side-effects.

Discussion of the Use of Deductive Verification Our analysis integrates a heavy-weight de-
ductive verification tool into a light-weight static analysis. This allows us to reason about heap
memory beyond analyzing the field names occurring in a method, but also offers other beneficial
features from a design perspective.

Theorem provers have a clear interface and our implementation is not monolithic: Our dead-
lock tool benefits from any future advance in the precision or performance of KeY-ABS. Every
invocation of KeY-ABS is caused by a pair of one guard and one method. This gives us modu-
larity of the analysis results: If method and guard are unchanged, the prover does not have to be
run again. We are able to handle unbounded data types and recursion without performance loss:
KeY-ABS works on symbolic values and analyzes single methods. Non-termination is handled
implicitly and we do not need to provide a maximal number of unrolling for loops or similar.
Contrary to that, model checking would involve rerunning the whole program after each change
and relies on finite domains and traces. We are still fully automatic, but we propose that in some
situations it would be acceptable to interact with the theorem prover.

Related Work To the author’s best knowledge, no deadlock analysis for condition synchro-
nization in an object-oriented setting has been proposed. Some work has been done on simpler
concurrency models, e.g., Owicki and Gries [OG76], which does not to models with an arbi-
trary number of threads. For Active Objects (without condition synchronization) the following
approaches are proposed: (1) The discussed approach of Flores-Montoya et al. [FAG13]. (2)
Giachino et al. [GLL16] use behavioral types to detect deadlocks in ABS code. Contracts, de-
scriptions of the dependency-structure of methods, are inferred and cycles are detected in their
composition. For boolean guards, manual annotations are proposed, but not implementeted and
no inference algorithm is given. (3) Gkolfi et al. [GDJ " 17] use Petri Nets for deadlock detection
and do not consider or discuss boolean guards.

As described, conditional synchronization is similar to condition variables and monitors.
Leino et al. [LMS10] presented an approach to deadlock detection of locks that generalizes to
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condition variables. Deadlocks are checked on a manually annotated global order for releasing
and acquiring locks, receiving and sending messages over channels, and joining on threads. de
Carvalho-Gomes et al. [CGHA18] translate Java programs into colored Petri nets for deadlock
detection. While translation into Petri nets and the analysis of these Petri nets are automatic,
the approach requires manual annotations. Recently, Hamin and Jacobs [HJ18] presented an
approach that works directly on condition variables in C code, based on symbolic execution
and verified in Coq. Java PathFinder [PVB ' 13] also uses symbolic execution, but does so on
low-level primitives in Java bytecode.

Future Work We aim to integrate user-provided specifications in SDL to use more information
about newHeap in the await rule of the SDL-calculus, at the cost of no longer being fully auto-
matic. To automate rejection of assumed false positives, we plan to adopt the approach of Albert
et al. [AGI16] to generate tests. We plan an incremental approach to summarize detected cycles
based on critical edges. We did not discuss starvation analysis, which is also an open question.
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