
Electronic Communications of the EASST
Volume 076 (2019)

Automated Verification of Critical Systems 2018
(AVoCS 2018)

Formal Verification of Synchronisation,
Gossip and Environmental Effects for

Wireless Sensor Networks

Matt Webster, Michael Breza, Clare Dixon,
Michael Fisher and Julie McCann

19 pages

Guest Editors: David Pichardie, Mihaela Sighireanu
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Formal Verification of Synchronisation,
Gossip and Environmental Effects for

Wireless Sensor Networks

Matt Webster1, Michael Breza2, Clare Dixon1,
Michael Fisher1 and Julie McCann2

1Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
{matt,cldixon,mfisher}@liverpool.ac.uk

https://www.liverpool.ac.uk/computer-science/
2Department of Computing, Imperial College London, London, SW7 2AZ, UK

{mjb04,j.mccann}@doc.ic.ac.uk
https://www.imperial.ac.uk/computing

Abstract: The Internet of Things (IoT) promises a revolution in the monitoring
and control of a wide range of applications, from urban water supply networks and
precision agriculture food production, to vehicle connectivity and healthcare moni-
toring. For applications in such critical areas, control software and protocols for IoT
systems must be verified to be both robust and reliable. Two of the largest obstacles
to robustness and reliability in IoT systems are effects on the hardware caused by
environmental conditions, and the choice of parameters used by the protocol. In this
paper we use probabilistic model checking to verify that a synchronisation and dis-
semination protocol for Wireless Sensor Networks (WSNs) is correct with respect
to its requirements, and is not adversely affected by the environment. We show
how the protocol can be converted into a logical model and then analysed using the
probabilistic model-checker, PRISM. Using this approach we prove under which
circumstances the protocol is guaranteed to synchronise all nodes and disseminate
new information to all nodes. We also examine the bounds on synchronisation as
the environment changes the performance of the hardware clock, and investigate the
scalability constraints of this approach.

Keywords: Internet of Things, Critical Systems, Wireless Sensor Networks, Formal
Verification

1 Introduction

In this paper we use formal verification, through the logical method of probabilistic model-
checking [Fis11], to analyse and verify critical communication protocols used for the Internet
of Things (IoT) [Yin14]. IoT systems often involve networks of small, resource-constrained,
computer devices embedded in an environment. These devices have low-power sensors, radios
for communication, and can potentially control motors and other devices to perform actuation
to change their environment. A common class of IoT systems, called Wireless Sensor Networks
(WSN), enable the monitoring and control of critical infrastructures made up of large, complex

1 / 19 Volume 076 (2019)

https://www.liverpool.ac.uk/computer-science/
https://www.imperial.ac.uk/computing

Formal Verification of Synchronisation for Wireless Sensor Networks

systems such as precision agriculture or smart water networks. Such systems require control
software that can synchronise the events of the nodes in the system, and disseminate parame-
ters and code updates. WSN and IoT deployments are increasingly mobile, allowing for wider
applications and new challenges in their design and deployment [NLN+16, MRJ+07].

A key problem with the development of critical IoT systems is ensuring that they will function
correctly, or at least, fail in a way that is non-destructive to the systems that they monitor and
control. The use of probabilistic models is crucial because it allows us to quantitatively analyse
the system with the dynamical effects caused by the environment — one of the most significant
causes of failure for WSNs [LBV06]. WSNs deployed on critical infrastructure suffer from the
effects of cyber-physical interactions in a way not seen with office or domestic computing. Envi-
ronmental conditions such as precipitation or changes in temperature will affect the performance
of the sensor nodes, and can degrade the WSN potentially causing node failure. The control
software that provides event synchronisation and controls message dissemination needs to be
programmed to be reliable in the light of these potential problems. Errors here can make the
infrastructure itself inefficient at best, or even unstable and failing in the worst case.

1.1 Formal Verification and Probabilistic Model Checking in PRISM

Formal methods are a family of techniques used to verify software and hardware, typically us-
ing mathematical, proof-based approaches [Fis11]. These include techniques such as automated
theorem proving [Fit96], in which full mathematical proof is carried out, and model check-
ing [BK08], in which every state of a model (also known as the model’s state space) can be
examined exhaustively. Formal methods allow for formal verification, where models of software
and hardware systems can be proved to satisfy certain requirements. These requirements are
typically provided using a precise formal logical language such as temporal logic [Fis11]. In this
paper we use probabilistic model-checking [KNP11], a variant of traditional model-checking
that allows for probabilities to be incorporated into a model, and for quantitative analyses to be
carried out on such models.

The probabilistic model checker, PRISM [KNP11, Par18], consists of two parts: a modeling
language, and a model checker. The PRISM modeling language can be used to specify the be-
haviour of a probabilistic finite state automaton (P-FSA), which can then be formally verified
via the model checker. For example, we can model a simple sensor node in the PRISM version
4.4 modelling language as follows:

module sensorNode
state: [0..1] init 0;
[] state=0 -> 0.99: (state’=0) + 0.01: (state’=1);
[] state=1 -> 0.99: (state’=1) + 0.01: (state’=0);

endmodule

This sensor node is modelled as a module in PRISM. We have one variable, ‘state’, which can
be set to 0 or 1 (which we define as representing ‘transmit’ and ‘idle’ respectively). Note that
we define an initial state of 0 for this variable. There are two lines denoting commands. The
first command says that if the state is 0, then remain in state 0 with probability 0.99 or transition
to state 1 with probability 0.01. The second command is similar, but with 0 and 1 reversed. In

AVoCS 2018 2 / 19

ECEASST

general, commands take the form

[s] guard -> p1 : u1+ . . .+pn : un;

where pi are probabilities and ui are lists of variable updates. In the case where only one list of
updates is made with probability 1.0, a simpler form is used (e.g., [s] guard -> u;). The letter
s denotes an optional synchronisation. Synchronised commands execute simultaneously with
synchronisation commands from other modules that share the same label, and can be used for
inter-module communication. Another way for modules to communicate is via the use of local
variables, which can be read by all modules, as well as global variables which can be read by,
and written by, all modules.

Multiple modules can be specified within a PRISM model. Models are executed by selecting
non-deterministically a command (from any module) whose guard evaluates to true. If there are
no commands whose guards are true, then the model has reached a fixed point and will stop
executing.

Once a formal model has been developed in the PRISM language, it can be formally verified,
with respect to some requirement, using the PRISM model checker. PRISM requirements can
be formalised as properties using logical languages such as probabilistic computation tree logic
(PCTL∗) and probabilistic linear temporal logic (P–LTL) [BK08]. Different logics allow differ-
ent kinds of properties to be specified. In this paper we will use PCTL∗ to specify properties.

PCTL∗ is based on a discrete formulation of time as a tree-like structure, starting from a
particular point and extending into the future. The following are well-formed PCTL∗ formulae:
‘p’, meaning that p is true; ‘¬p’, meaning that p is false; ‘p =⇒ q’, meaning if p is true then
q is true; p∧ q’, meaning that both p and q are true; ‘F p’, meaning p is true now or at some
point in the future; and ‘G p’, meaning p is true now and at every point in the future. PRISM also
allows the use of standard numerical operators such as =, ≥ and ≤.

Formal verification works by analysing the entire state space of a model in order to determine
whether a particular property holds. For example, for the sensor node model above, we can use
PCTL∗ to specify the probability that sensor node is eventually in the ‘idle’ state:

P=?[F (state= 1)]

We can then use PRISM model checker to determine that this probability is 1.0:

P=?[F (state= 1)] = 1.0

More complex properties can be formed, e.g., the following property says that the probability
that the model will always be in the ‘idle’ state eventually is 1.0:

P=?[G F (state= 1)] = 1.0

This kind of property is said to specify the probability that the model is in the ‘idle’ state infinitely
often.

3 / 19 Volume 076 (2019)

Formal Verification of Synchronisation for Wireless Sensor Networks

2 Related Work

Formal methods have been used previously for design and analysis of WSN and IoT. For ex-
ample, Chen et al. [CZZ+13] provide a survey of a number of approaches to formal verification
of routing protocols for WSNs. Kim et al. [KKLB17] conduct a formal security analysis of
an authorization toolkit for the Internet of Things using the Alloy verification tool. Moura-
dian & Augé–Blum [MA13] describe the formal verification of real-time WSN protocols us-
ing the UPPAAL model checker. Tobarra et al. [TCC09] use the Avispa model checking tool
to formally verify a security protocol for WSNs. Usman et al. [UMW13] demonstrate formal
verification of mobile agent-based anomaly detection for WSNs using the Symbolic Analysis
Laboratory model checking tool. Dong et al. [DSS+08] use a formal specification language for
sensor networks and perform formal verification using SAT-solvers. However, none of these
approaches uses a probabilistic model checker, as is the case in this paper, to determine the
probability of success or failure for particular requirements. Fruth [Fru11] used PRISM to anal-
yse contention resolution and slot allocation protocols for WSNs, but not synchronisation or
dissemination protocols. Synchronization [GLD+17b, GLD+17a, PSH99] and gossip proto-
cols [BBFH07, FG06, KNP08, HSS08, Kat08, CPR08] have been formally verified but not to-
gether, and not accounting for environmental effects.

Mohsin et al. [MSHA17] used PRISM to formally assess security risks in IoT systems, but
not risks due to the environment. Modelling of embedded systems and the environment have
been explored by Baresi et al. [BBK+15], who used a UML-based MADES approach to model
a system, and by Basile et al. [BDG17], who performed statistical model checking of an energy-
saving cyber-physical system using UPPAAL SMC. These approaches can find when constraints
are not met, but do not perform an exhaustive search of the entire state space, as is the case
here. Boano et al. explored the effects of temperature on CPU processing time and transceiver
performance though TempLab, a WSN test-bed which allows for the manipulation of the tem-
perature of each individual sensor node [BZB+14]. Lenzen et al. [LSW09] studied the effect of
temperature on the hardware clocks chips used as timers on many common WSN sensor node
platforms.

3 Modelling a WSN Protocol in PRISM

It is possible to model various WSN protocols in PRISM. In order to illustrate the approach,
we create a model of a non-trivial decentralised WSN management protocol known as FiGo
(an abbreviation of Firefly–Gossip) [BM08]. FiGo enables synchronisation of different sensors’
clocks in order to unify the measurement of time across the network based on firefly-like syn-
chronisation. FiGo also enables consensus on key information between nodes via gossiping, in
which nodes pass on new information to their neighbors. FiGo was chosen because it is a simple
protocol that contains elements, such as epidemic propagation [JMB05], found in more complex
protocols like Trickle [LLWC03] and RPL [Bra12].

AVoCS 2018 4 / 19

ECEASST

3.1 The Firefly-Gossip (FiGo) Protocol

Current techniques for large-scale computer management are not suitable for WSNs due to the
unreliable nature of the nodes and their networks. A potential solution is to use management
protocols, such as FiGo, that scale well and are robust to the failure of individual nodes. In appli-
cations such as precision agriculture [UAIS14, OMR15], wireless nodes need to be synchronised
to be able to deliver time-correlated samples of data such as moisture levels and temperature, and
to analyse the data. If the analysis shows a problem, control messages need to be sent to nodes
with actuators, e.g., to increase irrigation in a drought, or decrease it if a particular disease is
discovered.

Synchronisation of WSNs is essential in many applications, for example in adaptive sens-
ing for smart water networks [KYAM16]. WSNs allow urban water providers to monitor the
water flow to match customer demand. Synchronisation enables the sensor nodes to measure,
communicate and aggregate the flow rates and water pressure data. A control algorithm on the
actuator nodes can open or close valves to stabilise water flow for the network, or re-route water
in the case of a major leak. Importantly, the control software can also disseminate new control
algorithms or critical security updates to all the sensing and actuation nodes via gossiping.

FiGo is typical of a class of algorithms that combine firefly synchronisation [WTP+05] and
gossip protocols [JMB05] into a single epidemic process [BM08]. This mixture of synchronisa-
tion and dissemination processes is used to bring the internal states of WSN nodes to a stable,
global equilibrium where all nodes are synchronised with respect to both time and metadata.
Experiments have shown such protocols to be both scalable and resilient to individual node fail-
ure [BM08, Bre13, BM17]. A typical FiGo algorithm is shown in Figure 1.

FiGo algorithms have been deployed for the synchronisation and management of several WSN
deployments run by the Adaptive Emergent Systems Engineering group at Imperial College1.
For example, they were used to organise pollution sensors for an experiment with mobile data
mules as part of an Imperial College Grand Challenge project, and to synchronise and control the
sampling rate for a rainfall monitoring sensor network as part of a floodplain monitoring project
done in collaboration with the Imperial College Department of Civil Engineering. They are cur-
rently undergoing evaluation for deployment across the Liverpool Sensor City IoT-X/LoRaWAN
network2.

3.2 A PRISM Model of FiGo

A PRISM model of FiGo was developed precisely capturing the control flow of the algorithm
in Figure 1. The algorithm begins with a number of variable assignments which are directly
translated into variable assignments in PRISM. Some of the variables are not updated at all in the
model, so these are set as global constants in PRISM, e.g.:

const int cycleLength = 100;
const int refractoryPeriod = floor(cycleLength/2);

The main loop of the algorithm is then divided into a number of phases. For example, the
transmit phase corresponds to the if-statement in lines 9 to 14. The next if-statement consists of
1 http://wp.doc.ic.ac.uk/aese/
2 http://www.sensorcity.co.uk/

5 / 19 Volume 076 (2019)

http://wp.doc.ic.ac.uk/aese/
http://www.sensorcity.co.uk/

Formal Verification of Synchronisation for Wireless Sensor Networks

Figure 1: Phases of the FiGo Gossip–Synchronisation Algorithm.

a number of nested if-statements called clockCheck, listen, sync1, sync2, and so on. The final
phase corresponds to the final if-statement in the main loop and is called updateClock. These
phases are defined as global constants and are used as the values of a local variable s1Phase
which contains the currently-executing phase:

s1Phase : [0..7] init transmit;

Note that s1Phase refers to the phase of the first sensor node module, which is called s1. The
phases of other sensors (sensors s2, s3, etc.) are called s2Phase, s3Phase, etc.

When one phase has finished executing the next phase is chosen according to the control flow
of the algorithm in Figure 1. For example, during the sync1 phase in lines 17 to 19 the algorithm
checks whether the clock is outside a ‘refractory period’ set to half of the cycle length. If it is,
then the sensor updates its clock to the average of its own clock and the clock of the other sensor.

AVoCS 2018 6 / 19

ECEASST

The ‘circular average’ is used, in which the average of 90 and 10 are 0 (with respect to the clock
cycle of length 100), rather than 50. The circular average ensures that the update to the clock
variable moves it closer to the clock of the other sensor.

In the PRISM model, this behaviour is shown in the following three commands:

[] s1Phase=sync1 & s1LocalClock>=refractoryPeriod & diff<=floor(cycleLength/2)
-> (s1LocalClock’=s1avg1) & (s1Phase’=sync2);

[] s1Phase=sync1 & s1LocalClock>=refractoryPeriod & diff>floor(cycleLength/2)
-> (s1LocalClock’=s1avg2) & (s1Phase’=sync2);

[] s1Phase=sync1 & !(s1LocalClock>=refractoryPeriod) -> (s1Phase’=sync2);

The first two commands say that if the sensor is in the sync1 phase and the clock is greater than or
equal to refractoryPeriod, then set s1’s clock to the circular average of s1’s clock and s2’s clock.
The third command says that if these conditions are not set, then proceed to the next phase of the
algorithm, sync2.

The sensor which we have modelled here is called s1. To model communication between
sensor nodes we need at least one more sensor in the model, s2. The sensor s2 is exactly the
same as s1, except all references to ‘s1’ in the code are modified to ‘s2.’ Communication in the
model is achieved asynchronously through the use of inboxes: when a sensor sends a message
to another sensor it does so by leaving the message in an inbox, which can then be read by the
receiving sensor when it is ready to do so.

The resulting combined model is around 140 lines of code long including variable declara-
tions, and can be found in the online repository3. This PRISM model is an almost direct transla-
tion from the pseudocode to PRISM and has not been optimised for formal verification.

4 Formal Verification of FiGo Using PRISM

We build a formal model in PRISM, in a manner analogous to compiling a program: the source
code, in this case the PRISM model, is automatically converted into a mathematical model, essen-
tially a finite state structure. During this construction, PRISM calculates the set of states reach-
able from the initial state and the transition matrix which represents a probabilistic finite state
automaton. Building revealed that the full model consisted of 4,680,914 reachable states, with
9,361,828 transitions between those states, and took 21 minutes on an Intel Core i7-3720QM
CPU @ 2.60GHz laptop, with 16 GB of memory, running Ubuntu Linux 16.04. As we shall see
in Section 4.1, it was possible to reduce the size of this model significantly.

One of the key features of PRISM is that it can find the probability of a particular property
holding through some path through a computation tree. For example, we can create a property
to determine the probability that eventually the two sensors are synchronised:

P=?[F (s1Clock= s2Clock)] = 1.0 [23.8s] (1)

In this case the probability is 1.0, meaning that on all paths through the model the clocks will
eventually synchronise. (The time taken for model checking was 23.8 seconds.) That is not
to say that they remain synchronised, or that they become synchronised again once they are no

3 http://livrepository.liverpool.ac.uk/3021710/

7 / 19 Volume 076 (2019)

http://livrepository.liverpool.ac.uk/3021710/

Formal Verification of Synchronisation for Wireless Sensor Networks

longer synchronised. If we wish to verify the latter, that synchronisation happens repeatedly,
then we can create a probability with a different formula:

P=?[G F s1Clock= s2Clock] = 1.0 [100s] (2)

This probability, in which synchronisation occurs infinitely often, is 1.0. We can strengthen the
property further: we can determine the probability that, once the clocks are synchronised, they
remain synchronised:

P=?[F G s1Clock= s2Clock] = 0.0 [75.6s] (3)

In this case the probability of this property being true is 0.0, meaning that it is never the case that
the two clocks synchronise and then remain synchronised forever. The reason this is so can be
seen by examining a simulation, or trace, of the model. (A simulation is a sample path or execu-
tion of the model [Par18].) Below is a simulation of the model showing how de-synchronisation
occurs after synchronisation:

action s1Phase s1Clock s2Phase s2Clock
s1 updateClock 4 updateClock 4
s2 updateClock 4 transmit 5
s2 transmit 5 transmit 5

The table shows the values of certain state variables during an execution of the model. The
leftmost column, ‘action’, shows which module, s1 or s2, is currently executing. In the first
state, both clocks have the value ‘4’ and are synchronised. However, a transition occurs in which
one of the sensors, in this case, s2, increments its clock value resulting in de-synchronisation.
However, in the next state we can see that the sensor s1 updates its clock as well, resulting in
synchronisation.

We might postulate that once synchronisation occurs, then de-synchronisation will occur at
some point. This can be encoded as the following property:

P=?
[
G

(
s1Clock= s2Clock =⇒
F ¬(s1Clock= s2Clock)

)]
= 1.0 [123s] (4)

We can also verify whether once de-synchronisation has happened, that synchronisation will
eventually happen:

P=?
[
G

(
¬(s1Clock= s2Clock) =⇒

F s1Clock= s2Clock

)]
= 1.0 [175s] (5)

Property 1 tells us that synchronisation will occur at some point during the execution of the
model and Property 2 tells us that synchronisation will occur infinitely often. Properties 4 and 5
tell us even more: that periods of synchronisation are separated by periods of de-synchronisation,
and vice versa.

AVoCS 2018 8 / 19

ECEASST

4.1 Increasing the Model’s Accuracy

Examining simulations using PRISM reveals that clocks will rapidly de-synchronise after syn-
chronisation, as we saw in the previous section. This is a result of the way clocks were handled
in this model: we allowed for clocks to tick at any rate. Therefore it is possible for clocks to tick
unevenly, as in this case. In fact, it is possible for one clock to tick indefinitely without the other
clock ticking. This assumption of the model can be seen to correlate with a real-world sensor
system in which clocks are unreliable and may vary widely in comparative speeds.

The FiGo sensor network we are modelling is based on the ‘MICAz’ sensor mote developed
by Memsic Inc. [MEM18] The network is homogeneous across nodes, meaning that the same
hardware and software is present on each node. This includes the microcontroller, in this case
the ‘ATmega128L’ developed by Atmel Corporation [Atm18]. This microcontroller has a clock
speed of 16 MHz and operates at up to 16 million instructions per second. As the network is
homogeneous we can model the clock speed as constant across different nodes. In practice, and
as we shall see in Section 5, clock speeds are never exactly the same. However, treating the clock
speeds as constant is much closer to reality than one clock being able to tick indefinitely without
the other ticking.

Clock speeds were made constant by introducing synchronisations in the updateClock phase:

[tick] s1Phase=updateClock & s1Clock<cycleLength -> (s1Clock’=s1Clock+1) & (s1Phase’=transmit);
[tick] s1Phase=updateClock & s1Clock=cycleLength -> (s1Clock’=0) & (s1SameCount’=0)

& (s1Phase’=transmit);

The first command says that if the clock is less than the cycle length (equal to 99 in this model),
then increment the clock, but if the clock is equal to 99, then reset the clock to zero.

These commands both use a synchronisation label, tick, and correspond to a similar set of
commands in the s2 sensor module, which use the same label. The label means that one of
these commands must execute at the same time as one of the corresponding commands in the s2
module. Since these commands handle clock updates, this ensures that the clocks will update
synchronously, and therefore it is impossible for one clock to tick faster than the other. This
models more closely the homogeneous network on which FiGo is used.

One advantage of constant clock speeds is that it reduces the total number of states of the
probabilistic model. In this case the model reduced in size from 4,680,914 states with 9,361,828
transitions to 8,870 states and 13,855 transitions. The time taken for model building also de-
creased, from 21 minutes to 17 minutes.

Property 1 was formally verified for this revised model:

P=?[F s1Clock= s2Clock] = 1.0 [5.4s] (6)

In the definition of the FiGo algorithm, the variable nextBroadcast is assigned a random value
between 0 and 99. During model translation, however, this random value was modified to a
constant integer value. We used PRISM variables to automatically check every possible value of
nextBroadcast. This is done by removing the values of the global constants that represent the
next broadcast value. Then, PRISM can be used to perform automatic, and exhaustive, model-
checking of a property across a range of values for these constants, by automatically building
and verifying a model for each value. However, the PRISM model has a large verification time

9 / 19 Volume 076 (2019)

Formal Verification of Synchronisation for Wireless Sensor Networks

of 17 minutes. PRISM needs to build a model for each value of the two variables above, meaning
that 10,000 models would need to be constructed, each taking 17 minutes. To reduce the size
of the model the duty cycle length was reduced from 100 to 20. This reduces the size of the
model to 1,947 states and 3,040 transitions, and takes 16.8 seconds to build. The duty cycle
length can be reduced from 100 to 20 without significantly affecting the accuracy of the model,
as there is still a large enough range of possible values to allow for an accurate depiction of clock
synchronisation via circular averaging.

Property 2 was verified with a range of [0,20] for both variables, modelling every possible
combination of the two nextBroadcast values. The results showed that the probability that syn-
chronisation will occur infinitely often is always 1.0.

4.2 Gossip and Synchronisation

The properties examined thus far have concerned clock synchronisation. The other main function
of the FiGo algorithm is to spread information across a network using a gossip protocol in which
sensors tell their neighbours about new information. In the case of the FiGo algorithm, this is
represented by an integer variable whose initial value is zero, but which may increase when a
node is updated with a new piece of information. This captures a common function of WSNs
that must share new information, roll-out software updates, etc.

In order to analyse metadata synchronisation the model was modified to allow new metadata
values. This was done by creating a branching point during the updateClock phase of the algo-
rithm:

[tick] s1Phase=updateClock & s1Clock=cycleLength & s1Metadata<3
-> (1-pUpdateMetadata): (s1Clock’=0) & (s1SameCount’=0) & (s1Phase’=transmit)
+ pUpdateMetadata: (s1Clock’=0) & (s1SameCount’=0) & (s1Metadata’=s1Metadata+1)

& (s1Phase’=transmit);

The metadata can take any value from 0 to 3, representing a sequence of three possible updates.
This updated command allows the metadata to be incremented at the point the duty cycle ends.
This happens with probability pUpdateMetadata which is equal to 0.5, a value chosen to repre-
sent that new metadata will happen, on average, every other duty cycle. Therefore the probability
that the metadata will not be updated at the end of the duty cycle is also 0.5. This functionality
is included in s1, but not in s2, to model a sensor node that receives updates first. For exam-
ple, this could be the sensor node located closest to an engineer who is updating node software,
which will therefore receive an update first. Adding this branch point to the model introduces
new states for the various values of the local metadata variables. This increased the size of the
model from 1,947 states and 3,040 transitions to 4,776 states and 7,467 transitions for a model
with a duty cycle of 20. It is now possible to form properties that verify the gossip part of the
FiGo algorithm. For example:

P=?[F s1Metadata= s2Metadata] = 1.0 [0.041s] (7)

This formula says that the probability that the metadata is eventually synchronised across nodes
is 1.0. As is the case with software version numbers, the metadata increases but never decreases,

AVoCS 2018 10 / 19

ECEASST

i.e., once it reaches 3 it stays at 3. Therefore it can also be verified that at some point the metadata
is synchronised (e.g., when it is equal to 3) and remains so:

P=?[F G s1Metadata= s2Metadata] = 1.0 [2.0s] (8)

Furthermore, we can verify that the Firefly and Gossip parts of the algorithm both work, and that
eventually the two sensors will by synchronised on both time and metadata, and will remain so:

P=?
[
F G

(
s1Metadata= s2Metadata
∧ s1Clock= s2Clock

)]
= 1.0 [1.6s] (9)

To examine the scalability of the model, the two-sensor network was extended to three and four
sensors. A complete graph topology was used, so that every node can communicate with every
other node. A range of clock duty cycle lengths was examined for 2–, 3– and 4–sensor networks.
The aim was to see how the total time to verify Property 2 (including build and verification time)
was affected. The results are summarised in Figure 2.

Figure 2: Total time for formal verification of Property 2 for 2– and 3–sensor networks.

The 2– and 3–sensor networks could be verified formally with a clock cycle length of up to
100 for 2-sensor networks, and 28 for 3–sensor networks. However, the 4–sensor network could
not be analysed at all. The amount of time taken to verify this property increases with cycle
length, and increases significantly with the number of sensors (see Figure 2). This is due to
a state space explosion [CKNZ12] occurring as a result of a larger number of large variables
occurring in the model (e.g., the duty cycle has a range of up to 100 for each sensor). The state
space also increases with cycle length due to increased non-determinism in the model: the larger
the duty cycles for the clocks of each sensor, the more combinations of these clock values there
are in the model.

All of the probabilities for Property 2 for the different network and duty cycle sizes were
found to be 1.0, showing that synchronisation happens infinitely often in all the cases examined.
It should be noted that these results only pertain to the model examined in this paper, and other
models and protocols may permit larger sensor networks to be analysed. While state space
explosion is a recurrent theme in model checking, it can be mitigated through abstraction and
re-modelling to reduce the size of the state space.

11 / 19 Volume 076 (2019)

Formal Verification of Synchronisation for Wireless Sensor Networks

-10 0 10 20 30

Temperature (°C)

921.809

921.810

921.811

921.812

921.813

921.814

921.815
F

re
qu

en
cy

 (
kH

z)
Node 1

Figure 3: Mica2 hardware clock frequency for different ambient temperatures [LSW09].

5 Environmental Effects on Hardware

Microcontrollers such as the ATmega128L [Atm18] are often set to process instructions at a par-
ticular speed, known as the clock speed. (Here, the clock speed refers to the clock internal to the
microcontroller, not the clock used in the FiGo algorithm.) These clock speeds can vary slightly
due to environmental conditions (principally temperature). Laboratory tests with synchronised
MICAz [MEM18] sensor nodes, which use the ATmega128L controller, have revealed that the
drift in clock speed can be pronounced over a period of hours. Lenzen et al. [LSW09] studied
the effect of varying ambient temperature on the clock speed of a ‘Mica2’ node, which uses the
same processor as the MICAz node used in this paper. It was found that drift was up to one
microsecond per second for a difference of five degrees Celsius (see Figure 3).

Using the raw data from [LSW09] it was determined that at 0.0 degrees Celsius the operating
frequency was 921,814 Hz, and at 30.0 degrees Celsius the frequency was 921,810 Hz. There-
fore, for each tick of the clock, the amount of time taken per tick for a processor at 30.0 degrees
Celsius will be 1.000004339 times longer than for a clock at 0.0 Celsius. Eventually the warmer
clock will lag the colder clock by one whole tick, i.e., the colder clock will have ticked twice and
the warmer clock will have ticked once.

Suppose that clock c1 has ticked n1 times, with each tick having length l1. Then, after a period
of time, the total time elapsed is n1l1. Similarly for clock c2, after n2 ticks the total time elapsed
is n2l2. After a period of time, the clocks will tick in unison, so that n1l1 = n2l2. Suppose that
clock c2 has ticked exactly once more than c1, so that n1 = n2 + 1. Therefore we know that
(n2+1)l1 = n2l2. If we let c1 be the colder clock, and c2 be the warmer clock, then we know that
c2’s tick is 1.000004339 times longer that the tick of c1, so that l2 = 1.000004339l1. Therefore
(n2 + 1)l1 = 1.000004339l1n2. Therefore n2 = 230,467, and we know that after 230,468 ticks
of c2’s clock it will be exactly one tick behind c1’s clock.

Therefore, on average, every 230,468 ticks, the warmer clock will lag behind the colder one
by one whole tick. We can convert this to a probability, 1 in 230,468, or 0.000004339, which
can be incorporated into the PRISM model:

[tick] s1Phase=updateClock & s1Clock=1 -> (1-pClockDrift): (s1Clock’=s1Clock+1) & (s1Phase’=start)
+ pClockDrift: (s1Clock’=s1Clock+2) & (s1Phase’=start);

This command says that if it is time to update the clock, then increase the clock value by 1
with probability 1−pClockDrift, or by 2 with probability pClockDrift, where pClockDrift =

AVoCS 2018 12 / 19

ECEASST

0.0004339. Note that pClockDrift is 100×0.000004339. This is because clock drift is modelled
as happening once per duty cycle (specifically, when s1Clock= 1), which is every hundred clock
ticks. This helps reduce the state space because this branching point can only happen once per
duty cycle, rather than on every tick. Note that the clock is increased by 2 when clock drift
occurs. This is to ensure that the clock drifts only once per duty cycle — if the clock was
increased by 0 (representing a slower clock rather than a faster one) then the precondition of this
command would be true on the next iteration of the algorithm meaning that the clock could drift
more than once in the duty cycle. As clock drift can be modelled either by one clock slowing by
one tick, or the other clock speeding up by one tick, the accuracy of the model is not affected.

It is possible to calculate the effect of clock drift on the stability of clock synchronisation. One
way to do this is use a steady-state probability in PRISM, denoted S=?[s], which is the probability
that a model is in a particular state s at any given time. For example it was found that:

S=?[s1Clock= s2Clock] = 0.996709321 [0.5s] (10)

i.e., the probability that the model is in a synchronised state is equal to 0.996709321. That is to
say, 99.67% of the time the model is in a synchronised state.

It should be noted that the numerical methods normally used to determine the steady state
probabilities in PRISM were not suitable in this case, as they either did not converge or returned
a value of 1.0 after a very short execution time, indicating a possible problem with the use of the
numerical method. One possible reason for this is the closeness of the probability of clock drift
to zero. Instead, ‘exact model checking’ was used, a technique in which the model checker builds
the state space explicitly, and returns a probability based on the number of states matching the
specified formula divided by the total number of states. Exact model checking is not enabled by
default as it requires a lot of time and memory [Par18], but in this case the model was sufficiently
small to allow its use.

Experiments with different values for pClockDrift showed that the steady state probability
of synchronisation is dependent on the clock drift rate. If the clock drifts more often, then
the model will spend less time in a synchronised state. The varying clock drift rates due to
ambient temperature were examined to determine the effect on synchronisation of operating at
varying temperatures. Various clock speeds were taken from the data in Lenzen et al. [LSW09]
corresponding to different temperatures. These were compared against a base clock speed of
921,814.624 Hz. This value was chosen as it was the highest frequency observed, and it occurred
at approximately zero degrees Celsius. Therefore the drift rates in our experiment were relative
to a reference node operating at that temperature.

Figure 4 shows the effect on synchronisation between two nodes when one node is at zero
degrees Celsius, and a second node is at a varying ambient temperature between−12.48 degrees
Celsius and 30.48 degrees Celsius. It can be seen that the steady-state probability never drops
below 0.9959677566, and decreases with increased difference in temperature between the two
nodes. The shape of the curve closely matches that in Figure 3, as expected.

13 / 19 Volume 076 (2019)

Formal Verification of Synchronisation for Wireless Sensor Networks

Figure 4: Probability of synchronisation for varying temperatures of a second node.

6 Conclusions and Future Work

We have shown how formal methods, in particular probabilistic model checking using PRISM,
can be used to model and verify protocols used in critical IoT systems. Models were developed
based on a straightforward translation from a pseudocode-style language into the PRISM mod-
elling language. Key requirements of a gossip–synchronisation algorithm were encoded using
probabilistic computation tree logic (PCTL∗) and then verified formally using PRISM. These
requirements included clock synchronisation, metadata synchronisation and steady-state proba-
bility of synchronisation.

Environmental effects, such as temperature, can affect a WSN node’s hardware and cause
clock drift. We have explored the use of formal verification to quantify the extent to which clock
drift affects the synchronisation of WSN nodes. Results such as these can be useful for system
designers who may wish to adjust the parameters of FiGo, or even develop new algorithms, to
better cope with sources of unreliability such as clock drift. These new algorithms can then be
verified formally in a similar way to that described in this paper.

We have also demonstrated that state space explosion is a key challenge in the formal veri-
fication of WSNs. State space explosion issues are common when using model checkers like
PRISM [CKNZ12], and the results in Figure 2 are typical. However, it is often possible to com-
pensate for state space issues through the use of abstraction and re-modelling. For example,
rather than modelling the algorithm completely for each sensor, we could model it in detail for a
single sensor, and model the rest of the network of n nodes with a second module in PRISM. In
doing so the module size would be kept to a minimum, but would still allow for verification of the
behaviour of the node in response to a network. A possible application of this approach would
be to verify how long a particular sensor node takes to synchronise with an already-synchronised
network. Another possibility is to use a population model (e.g., [GLD+17b, GLD+17a]), in
which sensors are not modelled in detail, but rather the whole network, or several sub-networks,
are modelled in order to verify properties concerning overall sensor network behaviour. These
approaches, which could also be applied to investigate different sensor network topologies, are
intended for future work.

Another way to compensate for state space explosion is to complement model checking with
other verification methods, e.g., simulation. For example, sensor networks consisting of thou-
sands of nodes can be analysed by simulation software [Bre13]. Of course, the disadvantage of
simulation is that it does not allow exhaustive examination of the state space, and is therefore
prone to missing highly improbable events that can be detected using model checking: so-called

AVoCS 2018 14 / 19

ECEASST

‘black swans’ [Tal07]. However, this can be mitigated through analysis of sufficiently large num-
bers of simulations, as is the case with statistical model checking [LDB10, AP18]. Naturally, we
advocate the use of a range of different methods of verification for critical IoT systems, as their
different characteristics are often complementary.

Our intention is to extend this approach beyond specific synchronisation and distribution algo-
rithms, through the generation of a more general approach to critical IoT systems design. Such
systems have commonly-used programming archetypes, such as sense–compute–send cycles for
sensor nodes, or clock duty cycles. Formal modelling of these elements is often straightforward
and could potentially be automated. In addition, simulation, algorithm animation, testing and a
range of formal verification elements could all be included in a single tool to provide a strong
and useful apparatus for the exploration and analysis of a range of design decisions. While there
is much work still to be done to facilitate this, the research reported in this paper shows how
certain design choices can be explored in a more precise, formal way.

Acknowledgements: The authors would like to thank Philipp Sommer for the experimen-
tal data from [LSW09]. This work was supported by the EPSRC-funded programme grant S4
(EP/N007565/1) and the FAIR-SPACE (EP/R026092/1), RAIN (EP/R026084/1). and ORCA
(EP/R026173/1) RAI Hubs.

Bibliography

[AP18] G. Agha, K. Palmskog. A Survey of Statistical Model Checking. ACM Transactions
on Modelling and Computer Simulation 28(1):6:1–6:39, 2018.
doi:10.1145/3158668

[Atm18] Atmel Corporation. ATmega128L: 8-bit Atmel Microcontroller with 128 kBytes In-
System Programmable Flash. http://www.atmel.com/images/doc2467.pdf, 2018.
Last accessed 6/4/18.

[BBFH07] R. Bakhshi, F. Bonnet, W. Fokkink, B. Haverkort. Formal Analysis Techniques for
Gossiping Protocols. ACM SIGOPS Operating Systems Review 41(5):28–36, Oct.
2007.
doi:10.1145/1317379.1317385

[BBK+15] L. Baresi, G. Blohm, D. Kolovos, N. Matragkas, A. Motta, R. Paige, A. Radjenovic,
M. Rossi. Formal verification and validation of embedded systems: the UML-based
MADES approach. Software & Systems Modeling 14(1):343–363, Feb 2015.
doi:10.1007/s10270-013-0330-z

[BDG17] D. Basile, F. Di Giandomenico, S. Gnesi. Statistical Model Checking of an Energy-
saving Cyber-physical System in the Railway Domain. In Proceedings of the Sym-
posium on Applied Computing. SAC ’17, pp. 1356–1363. ACM, New York, NY,
USA, 2017.
doi:10.1145/3019612.3019824

15 / 19 Volume 076 (2019)

http://dx.doi.org/10.1145/3158668
http://www.atmel.com/images/doc2467.pdf
http://dx.doi.org/10.1145/1317379.1317385
http://dx.doi.org/10.1007/s10270-013-0330-z
http://dx.doi.org/10.1145/3019612.3019824

Formal Verification of Synchronisation for Wireless Sensor Networks

[BK08] C. Baier, J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[BM08] M. Breza, J. A. McCann. Lessons in Implementing Bio-inspired Algorithms on
Wireless Sensor Networks. In 2008 NASA/ESA Conference on Adaptive Hardware
and Systems. Pp. 271–276. June 2008.
doi:10.1109/AHS.2008.72

[BM17] M. Breza, J. McCann. Polite Broadcast Gossip for IoT Configuration Management.
In 3rd International Workshop on Sensors and Smart Cities. 2017.

[Bra12] Brandt, A., et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
RFC 6550, 2012.
doi:10.17487/rfc6550

[Bre13] M. Breza. Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating
System. PhD thesis, Imperial College, London, 2013.

[BZB+14] C. Boano, M. Zúñiga, J. Brown, U. Roedig, C. Keppitiyagama, K. Römer. Tem-
pLab: A testbed infrastructure to study the impact of temperature on wireless sen-
sor networks. In Proceedings of the 13th International Symposium on Information
Processing in Sensor Networks. Pp. 95–106. 2014.

[CKNZ12] E. M. Clarke, W. Klieber, M. Nováček, P. Zuliani. Model Checking and the State
Explosion Problem. In Tools for Practical Software Verification. Volume 7682,
pp. 1–30. Springer LNCS, 2012.

[CPR08] P. Crouzen, J. van de Pol, A. Rensink. Applying Formal Methods to Gossiping
Networks with mCRL and Groove. SIGMETRICS Perform. Eval. Rev. 36(3):7–16,
Nov. 2008.
doi:10.1145/1481506.1481510

[CZZ+13] Z. Chen, D. Zhang, R. Zhu, Y. Ma, P. Yin, F. Xie. A Review of Automated Formal
Verification of Ad Hoc Routing Protocols for Wireless Sensor Networks. Sensor
Letters 11(5):752–764, 2013.

[DSS+08] J. S. Dong, J. Sun, J. Sun, K. Taguchi, X. Zhang. Specifying and Verifying Sensor
Networks: An Experiment of Formal Methods. In Liu et al. (eds.), 10th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2008, Kitakyushu-City,
Japan, October 27-31, 2008. Pp. 318–337. Springer, 2008.
http://dx.doi.org/10.1007/978-3-540-88194-0_20

[FG06] A. Fehnker, P. Gao. Formal Verification and Simulation for Performance Analysis
for Probabilistic Broadcast Protocols. Pp. 128–141. Springer, 2006.
http://dx.doi.org/10.1007/11814764_12

[Fis11] M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley, 2011.

AVoCS 2018 16 / 19

http://dx.doi.org/10.1109/AHS.2008.72
http://dx.doi.org/10.17487/rfc6550
http://dx.doi.org/10.1145/1481506.1481510
http://dx.doi.org/10.1007/978-3-540-88194-0_20
http://dx.doi.org/10.1007/11814764_12

ECEASST

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.

[Fru11] M. Fruth. Formal Methods for the Analysis of Wireless Network Protocols. PhD
thesis, University of Oxford, 2011.

[GLD+17a] P. Gainer, S. Linker, C. Dixon, U. Hustadt, M. Fisher. Investigating Parametric In-
fluence on Discrete Synchronisation Protocols using Quantitative Model Checking.
In Proceedings of QEST 2017. Volume 10503, pp. 224–239. Springer LNCS, 2017.

[GLD+17b] P. Gainer, S. Linker, C. Dixon, U. Hustadt, M. Fisher. The Power of Synchro-
nisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled
Oscillators. ArXiv e-prints, 2017. https://arxiv.org/abs/1709.04385. Last accessed
23/5/18.

[HSS08] B. R. Haverkort, M. Siegle, M. van Steen. Quantitative Analysis of Gossiping Pro-
tocols. SIGMETRICS Perform. Eval. Rev. 36(3):2, 2008.
doi:10.1145/1481506.1481508

[JMB05] M. Jelasity, A. Montresor, O. Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Transactions on Computer Systems 23(3):219–252, 2005.

[Kat08] J.-P. Katoen. How to Model and Analyze Gossiping Protocols? SIGMETRICS Per-
form. Eval. Rev. 36(3):3–6, Nov. 2008.
doi:10.1145/1481506.1481509

[KKLB17] H. Kim, E. Kang, E. A. Lee, D. Broman. A Toolkit for Construction of Authoriza-
tion Service Infrastructure for the Internet of Things. In Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation, IoTDI
2017, Pittsburgh, PA, USA, April 18-21, 2017. Pp. 147–158. ACM, 2017.
doi:10.1145/3054977.3054980

[KNP08] M. Kwiatkowska, G. Norman, D. Parker. Analysis of a Gossip Protocol in PRISM.
SIGMETRICS Performance Evaluation Review 36(3):17–22, Nov. 2008.
doi:10.1145/1481506.1481511

[KNP11] M. Kwiatkowska, G. Norman, D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In Proc. 23rd International Conference on Computer Aided
Verification (CAV’11). LNCS 6806, pp. 585–591. Springer, 2011.

[KYAM16] S. Kartakis, W. Yu, R. Akhavan, J. A. McCann. Adaptive edge analytics for dis-
tributed networked control of water systems. In 2016 IEEE First International
Conference on Internet-of-Things Design and Implementation (IoTDI). Pp. 72–82.
2016.

[LBV06] K. Langendoen, A. Baggio, O. Visser. Murphy loves potatoes: Experiences from
a pilot sensor network deployment in precision agriculture. In 20th International
Parallel and Distributed Processing Symposium. 2006.

17 / 19 Volume 076 (2019)

https://arxiv.org/abs/1709.04385
http://dx.doi.org/10.1145/1481506.1481508
http://dx.doi.org/10.1145/1481506.1481509
http://dx.doi.org/10.1145/3054977.3054980
http://dx.doi.org/10.1145/1481506.1481511

Formal Verification of Synchronisation for Wireless Sensor Networks

[LDB10] A. Legay, B. Delahaye, S. Bensalem. Statistical Model Checking: An Overview. In
Barringer et al. (eds.), Runtime Verification. Pp. 122–135. Springer, 2010.

[LLWC03] P. Levis, N. Lee, M. Welsh, D. Culler. TOSSIM: accurate and scalable simulation
of entire TinyOS applications. In Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems. Pp. 126–137. 2003.

[LSW09] C. Lenzen, P. Sommer, R. Wattenhofer. Optimal Clock Synchronization in Net-
works. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’09, pp. 225–238. ACM, New York, NY, USA, 2009.
doi:10.1145/1644038.1644061

[MA13] A. Mouradian, I. Augé-Blum. Formal Verification of Real-Time Wireless Sensor
Networks Protocols with Realistic Radio Links. In Proceedings of the 21st Inter-
national conference on Real-Time Networks and Systems. Pp. 213–222. 2013.

[MEM18] MEMSIC, Inc. MICAz Wireless Measurement System. http://www.memsic.com/
userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf, 2018. Last accessed 6/4/18.

[MRJ+07] S. A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, J. Ma. Mobile Wireless Sensor
Network: Architecture and Enabling Technologies for Ubiquitous Computing. In
Proceedings of the 21st International Conference on Advanced Information Net-
working and Applications Workshops. AINAW ’07 2, pp. 113–120. IEEE, Wash-
ington, DC, USA, 2007.
doi:10.1109/AINAW.2007.257

[MSHA17] M. Mohsin, M. Sardar, O. Hasan, Z. Anwar. IoTRiskAnalyzer: A Probabilistic
Model Checking Based Framework for Formal Risk Analytics of the Internet of
Things. IEEE Access 5:5494–5505, 2017.

[NLN+16] K. Nahrstedt, H. Li, P. Nguyen, S. Chang, L. H. Vu. Internet of Mobile Things:
Mobility-Driven Challenges, Designs and Implementations. In First IEEE Interna-
tional Conference on Internet-of-Things Design and Implementation, IoTDI 2016,
Berlin, Germany, April 4-8, 2016. Pp. 25–36. 2016.
doi:10.1109/IoTDI.2015.41

[OMR15] T. Ojha, S. Misra, N. S. Raghuwanshi. Wireless sensor networks for agriculture:
The state-of-the-art in practice and future challenges. Computers and Electronics
in Agriculture 118:66–84, 2015.

[Par18] D. Parker. PRISM 4.4 Manual. Department of Computer Science, University of Ox-
ford, April 2018. http://www.prismmodelchecker.org/manual/Main/Welcome. Last
accessed 18/4/18.

[PSH99] H. Pfeifer, D. Schwier, F. W. von Henke. Formal Verification for Time-Triggered
Clock Synchronization. In 7th IFIP International Working Conference on Depend-
able Computing for Critical Applications (DCCA-7). Pp. 207–226. IEEE, 1999.

AVoCS 2018 18 / 19

http://dx.doi.org/10.1145/1644038.1644061
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://dx.doi.org/10.1109/AINAW.2007.257
http://dx.doi.org/10.1109/IoTDI.2015.41
http://www.prismmodelchecker.org/manual/Main/Welcome

ECEASST

[Tal07] N. N. Taleb. The Black Swan: The Impact of the Highly Improbable. Penguin
Books, 2007.

[TCC09] L. Tobarra, D. Cazorla, F. Cuartero. Security in Wireless Sensor Networks: A For-
mal Approach. In From Problem Toward Solution: Wireless Sensor Networks Se-
curity. Chapter 8, pp. 145–164. Nova, 2009.

[UAIS14] A. Ur-Rehman, A. Z. Abbasi, N. Islam, Z. A. Shaikh. A review of wireless sen-
sors and networks’ applications in agriculture. Computer Standards & Interfaces
36(2):263–270, 2014.

[UMW13] M. Usman, V. Muthukkumarasamy, X.-W. Wu. Formal Verification of Mobile
Agent Based Anomaly Detection in Wireless Sensor Networks. In 8th IEEE Work-
shop on Network Security. Pp. 1001–1009. IEEE, 2013.
doi:10.1109/LCNW.2013.6758544

[WTP+05] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal. Firefly-inspired sensor
network synchronicity with realistic radio effects. In Proceedings of the 3rd inter-
national conference on Embedded networked sensor systems. Pp. 142–153. 2005.

[Yin14] Yinbiao, S. et al. Internet of Things: Wireless Sensor Networks. International Elec-
trotechnical Commission White Paper, July 2014. http://www.iec.ch/whitepaper/
pdf/iecWP-internetofthings-LR-en.pdf. Last accessed 23/5/18.

19 / 19 Volume 076 (2019)

http://dx.doi.org/10.1109/LCNW.2013.6758544
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf

	Introduction
	Formal Verification and Probabilistic Model Checking in Prism

	Related Work
	Modelling a WSN Protocol in Prism
	The Firefly-Gossip (FiGo) Protocol
	A Prism Model of FiGo

	Formal Verification of FiGo Using Prism
	Increasing the Model's Accuracy
	Gossip and Synchronisation

	Environmental Effects on Hardware
	Conclusions and Future Work

