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Abstract: Formal verification may play a central role in the development of safe
controllers, such as those found in electric drives or (semi-)autonomous vehicles,
whose complexity arises from the coexistence of mechanical and electrical subsys-
tems with sophisticated electronic controllers that must implement high-level con-
trol policies according to different driving modes, while optimizing several objec-
tives, such as safety first and foremost, efficiency, and performance among others.
Model-driven development resorts to simulation to assess how well the various re-
quirements and constraints are satisfied, but there is a growing awareness that more
rigorous methods are needed to achieve the required levels of safety. This paper
proposes a conceptual framework for the development of complex systems based
on (i) higher-order logic specification, (ii) verification by theorem proving, and (iii)
tight integration of verification with model-driven development and simulation. This
framework addresses both digital and analog systems, as illustrated with some ex-
amples in different fields including implantable biomedical systems, autonomous
vehicles, and electric valve actuation.
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1 Introduction

Cyber-Physical Systems (CPS) for safety-critical applications such as electrified and autonomous
vehicles need computation-intensive and distributed controllers to manage complex HW-SW
systems, where stringent Safety Integrity Levels are needed. For example, ASIL-D requires a
failure rate below 10 FIT (i.e., 10 failures each billion of hours). CPS developers must ensure
such safety requirements while facing the complexity of these systems and of their interaction
with an environment whose behavior is seldom fully predictable. In addition, CPS development
is constrained by marketing requirements.

The state-of-the-art methods for safety-critical CPSs consist in a hierarchical simulation work-
flow. In the model-in-the-loop (MIL) stage, an abstract model of a CPS, expressed in some
modeling language such as Simulink or Modelica, is executed; in the software-in-the-loop (SIL)
stage, the control algorithms are implemented in a programming language and executed within
the simulation environment, then in the processor-in-the-loop (PIL) stage the implemented algo-
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rithms run on the target processor mounted on a development board, and finally, in the hardware-
in-the-loop (HIL) stage, they run on the target processor mounted in the deployed ECU, inter-
acting with an emulated physical plant, which provides and accepts the same physical signals
as the actual one. The highest cost in this approach lies probably in the time needed to achieve
the required levels of fault coverage and failure rate. And anyway, simulation alone can never
guarantee the absence of faults. We propose Formal Verification in the Loop (FVL) as a way to
integrate formal verification in the development of CPSs, thus providing much greater confidence
on requirements compliance with respect to simulation alone, and reducing costs.

As Figure 1 suggests, formal verification can have a role in all development stages. Each stage
works on a system model at a given level of abstraction, and the model’s compliance to functional
and non-functional requirements can be proved, after the model is recast in a formally verifiable
language. For instance, many applications of formal methods to hardware analysis have been
reported, including model checking [BCDS13], stochastic activity networks [BCD11, SSS15],
and higher-order logic (HOL) [ALAA14, SRC97]. Temporal logic has been used for control
software synthesis [RXO+14].

The present work is focused on verification of the initial system model, i.e., on the MIL stage.
More specifically, the verification method is based on computer-assisted theorem proving of
HOL theories.

in the Loop
Processor

in the Loop
Software

in the Loop
Hardware

Verification
Formal

in the Loop
Model

System

Reqmts

Figure 1: Formal Verification in the Loop.

Since CPSs evolve in continuous time and are controlled by a discrete system, they require
the use of different kinds of mathematical formalisms, i.e., discrete models for controllers and
continuous models based on differential equations for plants. CPSs may be modeled by hybrid
automata [ACHH93], and much research has been carried out on model checking and theorem
proving formal verification methods applied to CPSs. Examples of symbolic model checkers for
hybrid systems are SpaceEx [FLD+11] and HySAT [FH07]. An example of theorem proving is
KeYmaera [PQ08, FMQ+15], a theorem prover for differential dynamic logic. A challenge for
these tools is providing an integrated view of verification and simulation, necessary to support
model validation and demonstration of analysis results. A promising towards this goal is co-
simulation [FLP+10, LGP+14, LFW+16, PBDF18].
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2 Formal verification in the loop

A control algorithm can be specified as a set of equations, or a switched system (e.g., finite-
state machines), or a combination of both. It can then be implemented in HW, or SW, or both.
Electronic hardware, in turn, can be hardwired or programmable (e.g., FPGAs). Finally, the
controller components interact with the plant through sensors and actuators. The challenge in
the application of FVL methods is developing new verification techniques that can deal with this
variety of design approaches.

The proposed FVL workflow can be summarized as follows: (i) MIL simulation is used for
an initial validation of the overall system model, referred to as the initial model in the following;
(ii) selected components of the system, usually the control ones, are specified in a logic-based
language; (iii) safety properties are formally verified; and (iv) the further stages of SIL, PIL, and
HIL simulation follow.

Points (ii) and (iii) above are the FVL stage proper. The translation phase requires a thorough
analysis of the initial model, which leads to a better understanding of constraints and assump-
tions and may reveal weaknesses that may have escaped the simulation-based validation. This
phase produces a theory in two parts: a definition of the system’s structure and behavior, and
a definition of the system’s constraints and requirements in the form of assertions (theorems)
to be proved. The verification phase relies on an interactive theorem prover, a software en-
vironment embodying the inference rules of some deduction system (in this case the sequent
calculus [ORSV95]). The theorem prover carries out complex formula transformations, ensur-
ing a correct execution of each inference step chosen by the developer. The causes of a failed
proof must be analyzed, since they may lie in an incorrect translation from the initial model or
system requirements to HOL, or in an incorrect representation of the intended design in the ini-
tial model, or finally in some flaw in the intended design. In any case, a failed proof provides
useful feedback to the MIL stage.

Two important issues must be considered. First, the logic-based specifications must match the
model developed in the initial MIL stage. It would be unreasonable to start from a model in a
logic-based language, since the system developers should use the standard, well-proven system
modeling languages and tools. It is then the task of a verification engineer to recast the model
in a logic language, with the support of the system engineers. A “verification engineer” is an
expert in the practical application of formal verification tools, not a full-fledged theoretician but
an engineer with a specific training.

Second, even if a single component is to be formally verified, verification must take the whole
system into account. Specifying the whole system in a logic language might be too expensive,
but it is possible to express assumptions on the whole system and verify each component against
them.

3 Higher-order logic for specification and verification

Among the formal languages for specification and verification, higher-order logic (HOL) stands
out for its expressiveness and versatility. Briefly stated, in a HOL it is possible to define func-
tions that take other functions as arguments and return functions. In this way it is possible to
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reason about function properties, thus providing developers with the means to describe systems
at various levels of abstraction.

The authors’ experience has focused on the Prototype Verification System (PVS) [ORS92]
framework, in which a system can be (i) described as a composition of logic theories in a HOL
language, (ii) simulated, and (iii) formally proved to satisfy safety requirements using the interac-
tive theorem prover. Simulation of a PVS-specified system is made possible by the PVSio ground
evaluator [Muñ03], which translates purely declarative function definitions into executable code.
Thanks to this capability, simulation can be used to validate the specification (“doing the right
system”), which in turn is formally verified (“doing the system right”). Further, simulation can
be used to validate the human-machine interface, a fundamental component in many application
fields, such as automotive, aerospace, and medical applications.

A prominent feature of HOL is its fundamental nature, as opposed to the more specialized
formalisms, such as those based on the state-machine paradigm, or on process algebras. HOL
applies equally well to discrete-time and continuous-time systems, so it suits the needs of CPSs.
The downside of this generality might be the need of developing from scratch application-specific
theories, but the PVS environment provides a large number of off-the-shelf theories that system
developers can build upon.

In the rest of this section, some examples illustrate how the above considerations can be put
to work.

3.1 Pacemaker: a complex hybrid system controller

A pacemaker is a complex controller that supports, and at times overrides, the physiological con-
trol of the heart. A pacemaker had been modeled [JPM+12] as a network of five communicating
timed automata, of which one of the simplest is shown in Figure 2. A method was developed
to translate a network of timed automata into a PVS theory [BDM18]. This theory was then
co-simulated along with a Simulink model of the human heart in order to explore relevant sce-
narios. Further, formal verification with the PVS theorem prover demonstrated specific safety
aspects of the pacemaker design, such as showing that the pacemaker response to heart signals
is deterministic.

LRI

t <= TLRI − TAVI

AS VP / t:=0

VS / t:=0

[t >= TLRI−TAVI] AP / t:= 0

Ased

VP / t:=0

VS / t:=0

Figure 2: A timed automaton in the pacemaker model.

The translation method is a set of rules that produce a PVS theory with type and function
definitions for the basic TA elements (locations, events, clocks, and transitions), and a global
transition function for the whole network. The definitions for each single TA are produced
by the code generation tool of the PVSio-web prototyping environment [OMCT13, MZJ+14,
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MTDB16], which produces PVS code from a graphical representation of a TA.

3.2 Water tank: finding constraints with simple math

In [BD16], basic mathematical reasoning was used to find constraints that guarantee a correct
behavior of a simple non-linear system. The electric exhaust valve of a water tank fed with
a constant flow receives open, close, or neutral commands issued by a controller according to
below-reference, above-reference, or at-reference signals, respectively, received from a level
sensor. The valve cross section varies linearly with time. In spite of its simplicity, this system is
hard to analyze with the standard approaches of linear control theory, so in a practical setting it
would most likely be studied by simulation. A formal description, however, can be obtained by
defining the relevant quantities as in the following excerpt:

% input and output flowrates
w_in(t): real
w_out(t): real = C*v(t)

% derivatives of v(t) and l(t)
valve_law: AXIOM deriv(v) = k;
level_law: AXIOM deriv(l) = w_in - w_out

where v, k, l, w in, w out, and C are the valve cross section, the sensor output, the water level,
the inflow, the outflow, and the ratio of flow to valve cross section, respectively, which have
been defined elsewhere. This formalization, together with off-the-shelf theories on algebra and
derivation, made it possible to find bounds on the initial level, depending on the inflow, that avoid
overflow or depletion. An example of safety property follows:

no_depletion: THEOREM
forall (t: real):

(v = (lambda (x): (-1)*x + 1)
and w_in = const_fun(0)
and L_i > L1 + C/2
IMPLIES
l(t) >= L1)

where the lambda expression represents a linear function, const fun(0) is the function identically
equal to zero, L i and L1 are the reference and minimum level, respectively.

3.3 Simple autonomous vehicle: from control theory to HOL

A single-axle robot vehicle has the task of reaching and following a straight-line, starting from
a point not belonging to the line [DFP18]. Using control theory equations expressed in the PVS
language, it was proved that the goal can be achieved with the control law ω =−dV sincθ −kθ ,
where ω is the turning speed, d the distance from the line, θ the angle between the robot’s head-
ing and the line, and k is a parameter. Function sinc equals (sinθ)/θ for θ 6= 0, and 1 otherwise.
The proof consists of writing the system’s kinematic equations, computing their Jacobian and
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characteristic polynomial, proving their correctness with respect to the assumptions, then com-
puting the eigenvalues and proving their correctness. In the process, a sufficient condition on the
value of k was found.

4 The Challenge

The case studies discussed in Section 3 show successful applications of FVL methodologies to
simple CPSs. With more complex systems, such as controllers for electrified and autonomous
vehicles, the challenge is using the formal verification methodologies discussed above, in addi-
tion to traditional simulation and testing, to improve their reliability. Classic verification flows
typically use one of these approaches: (i) applying formal verification, but only of some con-
trol parts (e.g, the logic driver of a battery management system (BMS) [BBC+14]); (ii) using
simulation-based HIL; or (ii) only verification to test complete systems, such as the complex
HIL platforms proposed for a complete BMS in [HPB13] and [KSD+17]. However, relying only
on simulation- or emulation-based HIL has several limits in terms of coverage of corner cases
and long time for exhaustive testing. To overcome these limits we propose mixing formal veri-
fication with simulation-based techniques, thus creating a new Formal-Verification-in-the-Loop
methodology. As on-going work, we are applying Formal Verification in the Loop to testing
typical safety-critical sub-systems of electrified vehicles.

Bibliography

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, P. H. Ho. Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In Grossman et al.
(eds.), Hybrid Systems. Pp. 209–229. Springer Berlin Heidelberg, Berlin, Heidelberg,
1993.
doi:10.1007/3-540-57318-6 30

[ALAA14] A. A. Almeida, C. H. Llanos, J. Arias-Garcı́a, M. Ayala-Rincón. Verification of
Hardware Implementations Through Correctness of Their Recursive Definitions in
PVS. In Proceedings of the 27th Symposium on Integrated Circuits and Systems De-
sign. SBCCI ’14, pp. 14:1–14:8. ACM, New York, NY, USA, 2014.
doi:10.1145/2660540.2660982

[BBC+14] F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella, R. Saletti. De-
sign and Safety Verification of a Distributed Charge Equalizer for Modular Li-Ion Bat-
teries. IEEE Trans. Industrial Informatics 10(2):1003–1011, 2014.
doi:10.1109/TII.2014.2299236

[BCD11] C. Bernardeschi, L. Cassano, A. Domenici. Failure Probability and Fault Observabil-
ity of SRAM-FPGA Systems. In International Conference on Field Programmable
Logic and Applications (FPL2011). Pp. 385–388. IEEE, sep 2011.
doi:10.1109/FPL.2011.75

InterAVT 2019 6 / 9

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1145/2660540.2660982
http://dx.doi.org/10.1109/TII.2014.2299236
http://dx.doi.org/10.1109/FPL.2011.75


ECEASST

[BCDS13] C. Bernardeschi, L. Cassano, A. Domenici, L. Sterpone. Unexcitability analysis of
SEus affecting the routing structure of SRAM-based FPGAs. In Proceedings of the
23rd ACM International Conference on Great Lakes Symposium on VLSI. GLSVLSI
’13, pp. 7–12. ACM, New York, NY, USA, 2013.
doi:10.1145/2483028.2483050

[BD16] C. Bernardeschi, A. Domenici. Verifying safety properties of a nonlinear control by
interactive theorem proving with the Prototype Verification System. Information Pro-
cessing Letters 116(6):409–415, 2016.
doi:10.1016/j.ipl.2016.02.001

[BDM18] C. Bernardeschi, A. Domenici, P. Masci. A PVS-Simulink Integrated Environment
for Model-Based Analysis of Cyber-Physical Systems. IEEE Transactions on Software
Engineering 44(6):512–533, 2018.
doi:10.1109/TSE.2017.2694423

[DFP18] A. Domenici, A. Fagiolini, M. Palmieri. Integrated Simulation and Formal Verification
of a Simple Autonomous Vehicle. In Cerone and Roveri (eds.), Software Engineer-
ing and Formal Methods. Lecture Notes in Computer Science 10729, pp. 300–314.
Springer International Publishing, Cham, 2018.
doi:10.1007/978-3-319-74781-1 21

[FH07] M. Fränzle, C. Herde. HySAT: An efficient proof engine for bounded model checking
of hybrid systems. Formal Methods in System Design 30(3):179–198, Jun 2007.
doi:10.1007/s10703-006-0031-0

[FLD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, O. Maler. SpaceEx: Scalable Verification of Hybrid Systems. In
Gopalakrishnan and Qadeer (eds.), Proc. 23rd International Conference on Computer
Aided Verification (CAV). LNCS 6806, pp. 379–395. Springer, 2011.
doi:10.1007/978-3-642-22110-1 30

[FLP+10] J. Fitzgerald, P. G. Larsen, K. Pierce, M. Verhoef, S. Wolff. Collaborative Modelling
and Co-simulation in the Development of Dependable Embedded Systems. In Méry
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