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Abstract: Maneuver and driving style detection are of ongoing interest for the ex-
tension of vehicle’s functionalities. Existing machine learning approaches require
extensive sensor data and demand for high computational power. For vehicle on-
board implementation, poorly generalizing rule-based approaches are currently state
of the art. Not being restricted to neither comprehensive environmental sensors like
camera or radar, nor high computing power (both of what is today only present in
upper class’ vehicles), our approach allows for cross-vehicle use: In this work, the
applicability of small artificial neural networks (ANN) as efficient detectors is tested
using a prototypal vehicle implementation. During test drives, overtaking maneu-
vers have been detected 1.2 s prior to the competing rule-based approach in average,
also greatly improving the detection performance. Regarding driving style recog-
nition, ANN-based results are closer to targets and more patient at driving style
transitions. A recognition rate of over 75 % is achieved.

Keywords: Artificial neural networks, Driving style estimation, Overtaking maneu-
ver detection.

1 Introduction

Recently, developing new vehicle functionalities has been a challenge between almost all ma-
jor car manufacturers in order to match and exceed their competitors. Knowledge of the actual
driving state and traffic scenario around a vehicle has become a key factor for many innovative
features, enhancing safety, comfort, energy efficiency and driving experience. Traffic scenarios
are derived from diverse factors, including the actual performed maneuver and driving style, the
road type and its condition, visibility and weather conditions among others. With this informa-
tion acquainted, the vehicle is able to adapt its components accordingly: Improved handling for
parking procedures or winding roads, pre-crash preparation for safety critical scenarios or an
adaptive energy management for stop-and-go traffic are just some examples of possible benefits.

In order to gain extensive scenario knowledge, various information sources need to be merged,
including monitoring of the traffic environment using radar, camera and LiDAR sensors. Even
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though they are already available in well-equipped upper-class vehicles, they are not for the vast
majority yet. Furthermore, vehicle2x communication is only about enter markets in the near
term.

1.1 Motivation and Use Case

Drive modes have been introduced successfully to extend the application range of vehicles on
the driver’s desire. Looking at systems of different manufacturers — e.g. eDrive (BMW [1]),
Dynamic Select (Mercedes [2]), FlexRide (Opel [3]) or Volkswagen’s Driving Modes — settings
like normal, dynamic, efficient and comfort are usually available [4].

Each mode contains a set of vehicle parameters adapting handling, engine and gear selection
behavior beside others. For example, steering assistance and softer chassis suspension in comfort
mode or stiffer steering and faster throttle response in dynamic mode are common tunings. More-
over, individual allows for (yet limited) mixed adjustments according the needs and preferences
of the driver. [4]

Hence, in order to archive an optimal driving experience, the driver may change the mode dur-
ing his trip, depending on the actual traffic scenario. Nonetheless, behavior monitorings show
most drivers are not switching drive modes frequently, yet [5]. Thus, a way to significantly
enhance the drive mode concept and the driving experience is the automated suggestion or selec-
tion of suitable modes according the actual scenario; Scenarios need to be interpreted in a timely
manner.

Table 3 (appendix) lists possible drive mode suggestions as a function of road types, driving
styles and maneuvers. Taking a closer look at the maneuver part, stopping, emergency maneuvers
and reversing are easily and reliable detected using rule-based methods as they have explicit
and constant signal patterns [6]. On the other hand, the detection of overtaking maneuvers and
different driving styles is more complex, for which the development of lightweight detectors is
required.

1.2 Content and Structure

Section 1 introduces basics about overtaking maneuvers and driving style. The actual state of
the art for both topics are shown by a short comparison of related work in Section 2. As a result,
scientific gaps are worked out in Section 3, giving details on the research questions and goals for
this work. In Section 4, our approach is presented, after a brief overview upon our methodology
and the utilized soft- and hardware is given. The conducted experiments are described in Section
5, including data recording, Model-in-the-Loop (MiL) tests and the prototypal implementation.
At the end, the results are presented in the final Section 6, including a critical reflection of the
outcome and an outlook for possible future work.

2 Related Work

In the fields of driving style, overtaking and lane-change detection, numerous studies provide a
sound knowledge basis. Since both tasks have not yet been looked at together, each is considered
in detail at their respective subsection.
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2.1 Detection of Overtaking Maneuvers

Overtaking maneuvers are generally used to bypass slower vehicles (or obstacles) located ahead
on the same lane. Typically, they are conducted through acceleration and a temporal usage of the
adjacent lane, therefore, making them a dynamic and risky maneuver. Although they do also ap-
pear on multi-lane motorways (as common lane changes), these cases are not primary addressed
for this work. Following Walker et al.’s [8] definition, this maneuver consists of a sequence of
three phases, as shown in Figure 1. They are further grouped into preparation (1-2) and execution

1 2 3

a b c

t0

Figure 1: Phases of an overtaking maneuver.

(3a-c). During the preparation phases, the wish for overtaking arises and suitable gaps for a safe
execution are sought out by the driver. Both phases can be used for early prediction or detection
sensitivity optimization [11]. Normally, the indicator is set at the end of the first two phases.
In phase (3), the maneuver is finally conducted through changing lanes to the left (a), passing
the slower vehicle (b) and reeving in front of it (c). The first lane change related action can be
used to detect its beginning — either a noticeable vehicle acceleration or corresponding steering
motion. This usually happens around 1–2 s before crossing the center marking, representing a
universal measurable and comparable detection time (t0). [11]

Given this, negative values represent a prediction of upcoming overtaking maneuvers and
positive values a delayed detection, respectively. Beside timings, the detection rate is another
important measurand, representing true and false positives. In literature, several approaches of
machine learning techniques are described. This allows for a comparison as conducted by Li
[7]. Table 1 summarizes the findings, taking both, overtaking maneuvers and lane changes into
account.

Keeping in mind the different data sets used for each method, it is still notably that ANNs
and support vector machines rank within similar high performances. Leonhardt et al. [9]-[11]
got very good results combining the driver’s steering behavior and eye movement track with the
actual traffic scenario (position of other vehicles, road sign recognition), using a wide array of
radar and six camera sensors. Compared to Bayesian Networks, ANNs receive a top performance
of 98 % true positives and 2 % false positives, given an average detection time of roughly –3 s.

Mandalia and Salvucci [12] have used a support vector machine for detection while restricting
their input to onboard sensor and lane position data only. For reaching the optimum true positive
rate of 97,9 % (false positive rate of 5 %), they used a 1.2 s timeframe analysis, archiving an
average timing of roughly –1 s. In conclusion, it should be stressed that the consideration of
external sensor data greatly improves the detection timings and minimizes false positive rates.

2.2 Driving Style Detection

Looking at driving styles on the other hand, no general valid definition is available. This can
be explained by the subjective differences in classification which depends on the point of view
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Table 1: Performance of selected overtaking and lane changing detectors. [6].

Method
True

Timing
False

Reference
positive positive

Bayesian

80 % -1,5 s n/s Dagli [22]

Network

92 % n/s 20 % Hou [19]
80 % n/s 6 % Hou [19]
90 % -2 s 9 % Leonhardt [9]
70 % -7,8 s n/s Leonhardt [9]

Fuzzy Logik 88 % n/s 14 % Hou [23]

HMM
86 % 0 s 6 % Jin [26]
72 % -0,5 s 33 % Proff [24]
78 % 0,5 s 67 % Tezuka [25]

ANN
98 % -3 s 2 % Leonhardt [11]
78 % -0,5 s 12 % Proff [24]

SVM
84 % -1 s 8 % Bengtsson [28]
91 % 0,4 s 4 % Kim [27]
98 % -1 s 5 % Mandalia [12]

Table 2: Performance of selected driving style recognition methods.

Method
True

Timing
False

Reference
Positive Positive

Rule-based ca. 70 % ca. 600 s ca. 4,9 % Colombo [15]
Fuzzy Logik 68 % ca. 100 s 2 % Dörr [16]

ANN
65,5 % k. A. ca. 1,8 % Brombacher [29]
60,4 % k. A. k. A. Dong [30]
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(driver, passenger, external observer), the individual scenario (environmental influences) and
personal properties (experience, habituation, etc.). Therefore, driving styles can be understood
as an accumulation of single maneuver ratings over a variable time horizon, each having an
individual impact on its perception. For a general classification, subjective ratings are usually
objectified through averaging.

Depending on the desired application, different sets of driving styles are used for approx-
imation. They often depend on one-dimensional ratings of a single, measurable feature, e.g.
{calm, normal, aggressive} using distance keeping, {efficient, normal, inefficient} using energy
consumption, {slow, normal, dynamic/sporty} in terms of vehicle dynamics or {unexperienced,
average, experienced} in terms of general driving experience. Driving dynamics (lateral and
longitudinal acceleration) are the most common features. [13], [14]

Following this scheme, Ebersbach [17] did extensive research trying to establish a statistical
connection between driving styles and lateral acceleration. Meseguer et al. [18] chose a similar
approach using fuel consumptions for driving style classification. In essence, an increase in
the distribution is observable for more dynamic driving styles by both authors. Colombo et al.
[15] developed a promising method to overcome parts of these flaws by determining an average
across more than 20 maneuver ratings. In detail, the vectorial sum of the normalized lateral and
longitudinal acceleration is used as input features. In their evaluation, driving style are correctly
assigned with an accuracy of roughly 70 %. In practice, it takes up to ten minutes for driving
style changes to be detected.

Dörr et al. [16] assessed several dimensions of driving styles using fuzzy logic. In their sim-
ulation, they got a similar classification rate of 68 %. The thresholds and weighting values were
implemented manually. Therefore, better adaptation using machine learning can be expected for
their approach. In general, it can be stated that an objective interpretation of driving styles is dif-
ficult to archive as their transitions are smooth. Besides that, subjective perception depends on
diverse, partly unmeasurable influences. And even during dynamic driving, slower maneuvers
may appear due to limiting traffic conditions. As a consequence, the rating of a single maneu-
ver is technically possible, but the probability of hitting the right classification is rather poor,
therefore making changes more difficult to detect.

3 Scientific Gap and Research Question

Comparing the findings, it is obvious that the vehicle integration of existing machine learning-
based approaches for our application is problematic due to their extensive computing demands
and needs for external sensors. Furthermore, a reliable overtake maneuver detection has not
been proven, yet. Rule-based algorithms are available but show only insufficient performance.
Looking at driving styles, work conducted by Colombo et al. show a promising approach. Nev-
ertheless, quicker recognition timings are required.

In order to overcome these flaws, the applicability of ANNs as efficient detectors needs to be
further investigated. A simplification of the design process is expected looking at their adaptabil-
ity to real-world data. Furthermore, by using their capabilities of detecting previously unknown
correlation patterns, improved recognitions of borderline cases are expected to occur. Therefore,
attention should be given to a comprehensive training data set, including high quality target data.
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4 Simulation and Evaluation of the Concept

In this section, the main steps of the project are sketched. Section 4.1 lists the used hard- and
software. Section 4.2 gives introduction into the data recording and labeling process. Then, the
following Subsection describe how the detectors are designed inside a Model-in-the-Loop (MiL)
simulation, allowing for quick adjustments. Section 4.3 explains the training procedure. Finally,
Section 4.4 shows the results of a pilot ran and 4.5 gives details results.

4.1 Technical Preliminaries and General Concept

For this project, a MicroAutoBox II 1513 prototyping device is directly connected to a Volkswa-
gen Golf R in order to participate in its CAN bus communication. It is giving restrictions on
computing and storage capacity since both concepts need to be implemented onto the prototype
device in order to compare their behavior in real-time.

Software-wise, MATLAB and MATLAB Simulink are used for implementation of the soft-
ware model, simulation and data evaluation. The C-code compilation generated from our Simulink
is loaded onto the MicroAutoBox. In order to fit in ANNs, a MATLAB Simulink toolbox has
been set up in advance. It allows for both, online training and usage of a pre-defined nets. Fur-
thermore, a devCUBE deep-learning workstation is available for ANN offline training.

4.2 Data Recording

At the outset, no suitable labeled dataset has been available for the designated vehicle. Therefore,
data recording has been conducted at various roads around Wolfsburg. Both, recording and
labeling of the data are operated via dSPACE’s ControlDesk, while full CAN bus traces are
recorded at 100 ms. Soon it had become apparent that common overtaking maneuvers on the road
do not occur often enough in order to create a sound data set. Therefore, additional overtaking
maneuvers have been recorded on a Volkswagen test ground, supported by an auxiliary vehicle.
Among all possible speed and road course combinations {speed-categories of both vehicles, road
curses, driving and steering behaviors}, 500 out of approx. 16.000 possible maneuver types have
been chosen for readjustment.

In order to minimize input lag — especially for overtaking maneuvers — keyboard hotkeys
have been defined with the help of ControlDesk’s Python Script API. Nevertheless, a manual
adaption is still necessary to correct timings within the remaining response time of around 1 s.
Therefore, the first occurrence of acceleration pedal or steering wheel activity of the overtaking
maneuver are defined as the earliest possible time t ′0 (regardless the indicator stalk’s position).
Lane detection data serves as an additional reference in order to determine t0 for each maneuver
(cf. Figure 3).

Then, each maneuver is categorized regarding its driving dynamics {low, normal, high} and
its road course {straight, left or right corner, mixed course} for scenario-individual evaluation.
In the end, 87 overtaking maneuvers and 13 possible false positives (fast turning, evasive ma-
neuvers) resulted. For the driving styles {normal, efficient, dynamic}, recording took place on
a track containing three different driving environments {rural, overland, motorway} and varying
traffic densities. The training data set contains 73 min of driving data. Test runs were then exe-
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cuted on different tracks to prevent impacts of overfitting. Altogether, over 100 km of data have
been recorded in 92 Minutes.

4.2.1 Overtaking Detector

Useful inputs for detectors include the vehicle’s steering and movement sensors. In detail, the
steering wheel movements {position, torque, turning speed and acceleration}, the acceleration
behavior {accelerator and brake pedal usage}, turning rates and lateral acceleration as well as the
indicator lights are of special interests. On a straight stretch, the steering wheel’s position and
torque as well as the lateral vehicle acceleration and yaw rate have a similar w-shape as shown
in Figure 2. These redundant signals are left out in order to minimize the network input size.

16 17 18 19 20 21 22 23 24 25 26
time, s

-5

0

5

10 sample A
sample B

Figure 2: Signal path of the steering wheel’s position during a overtaking maneuver.

The steering wheels movement marks the derivation of its position over time, making it inherent
against bends’ impacts. Nevertheless, varying courses of the road during a maneuver cannot be
filtered out without position data [20]. Preliminary investigation showed that the near-start of
a maneuver (A), the initial lane change (B) and merging (C) can be detected best using ANNs
[11]. Figure 3 shows the relative position of the three labels (A, B, C) used at target data (dotted
lines).

The indicators (dashed lines) and the relative position of the lane markings (solid lines) are
also shown. Here, the vehicle is crossing the center markings at 24 s. We represent the maneuver
using the state machine shown in Figure 4.

Thereby, the time sequences of the phases is modeled and the three ANN detectors (A, B, C)
are responsible for the state transitions. Each state has a certain follow-up time ti. Canceling
of the maneuver is also detected by monitoring the brake pedal’s position. The final reeve is
undetectable more often due to lower driving dynamics towards the end of the maneuver (cf.
Figure 1: optional trajectory at phase 3c), making an overall time limit of 15 s necessary.

4.2.2 Driving Style Detector

Due to the limited research scope, we concentrate on a results-oriented approach, i.e., skipping
the optimization of driving style classes. Three common classes are used — namely energy
efficient (eco), normal (nor) and dynamic (dyn) driving [6].

In order to enhance the data basis on which the actual driving style is estimated, Colombo et
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
time, s

indicators

targets

target: start
target: lane change
target: merge
left indicator
right indicator
left markings
right markings

Figure 3: Overtaking maneuver represented by lane detection data and indicators showing the
relative position of the data labels.

No overtakingNo overtaking

∞

elseα

Overtaking detectedOvertaking detected

maneuver 
start

lane 
change

t1A

abort merging

t1

t15B
C

end

Figure 4: State machine representing overtaking maneuvers.

al.’s maneuver-based approach is extended by a multidimensional and continual rating process.
Therefore, driving efficiency1, longitudinal and lateral accelerations are considered separately.
For the combination of different dimensions, knowledge of their relative position is necessary.
Figure 5 shows the positions as a function of driving efficiency and dynamics. As both dimen-
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Figure 5: Left: Relative positions of driving styles {o, �, x} as a function of driving dynamics
and energy efficiency. Right: Ring buffer containing 2000 samples of 15 different sensor signals.

sions usually correlate (high dynamics – low efficiency and vice versa), this might not always
1 In regard to the flat topology around Wolfsburg, road gradients are not required in our approach.
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be the case as demonstrated by Porsche InnoDrive [14]: In contrast to average human driving
styles, a more efficient and more dynamic driving style is possible. Therefore, necessary priori-
ties derived are {dynamic} � {efficient, normal} to catch dynamic-efficient outliers.

Features like driving safety [21], steering behavior and social behavior are examples for cri-
terions that are further increasing the availability of an evaluation basis. In our case, several
ANN detectors undertake the task of driving style classification. First of all, the raw sensor
data is preprocessed by a simple maneuver detector looking for acceleration, deceleration and
turns. As soon as one of the listed basic maneuvers is observed, the sensor data are recorded and
stored with all applying maneuver type labeled. Next up, the temporary stored sensor data are
transferred into ring buffers according their received label(s).

In practice, a simple turn will only be assigned to the turn buffer, whereas braking right ahead
to a turning maneuver lead to an allocation into turn and deceleration buffer. Figure 5 (right side)
shows the content of a single ring buffer holding 2000 samples of 15 sensor signals. The visible
ridge of signal 14 represent the engine speed. Its steps result from gear shifts and maneuver
limits, as the oldest samples are overwritten when new maneuvers are buffered.

Additional to the three basic maneuver buffers, a moving time frame buffer stores the latest
sensor data whenever the vehicle is above starting speed. All ring buffer serve as continuous
input provider for the subsequent ANN detectors. Figure 6 shows several distributions of the
accelerator pedal position for each of the three driving styles. The number of input features,
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Figure 6: Distributions of the accelerator pedal positions for calm, normal and dynamic driving
styles.

originating at 2000 time samples × 10-15 signals, is decreased using temporal reduction and
quantization. This is archived with the help of discrete value distributions for each input signal.
As a result, the input vector is reduced to 5-10 samples per signal. For Figure 6, class 1 reaches
100 % in the beginning, because all buffers are initialized with zero.

The number of samples varies, an equivalent size of 30 s is used for the three maneuvers and
200 s for the moving time frame. Again, since each buffer is initialized with zero, it takes two
up to five minutes until they contain enough data for a sound detection. For dynamic driving
detection, all of the above-mentioned features are used, including an additional fast acceleration
(kick-down) detection for instant activation. For efficient driving, the turning ANN is left out as
is mainly represents driving dynamics. Finally, majority vote is used to join the respective ANN
ratings into a single output.
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4.3 Neural Network Training

In search of an optimal ANN, several configurations are rated according their performances
and complexities. Variations include different architectures (numbers of neurons, layers and
connections) as well as input features, activation functions, training methods etc. Each network
is first trained using MATLAB’s own ANN toolbox. They are then converted into a Simulink
compatible format for in-car use. In the end, the operational ANN-detector is transferred onto
the prototype for demonstrating the functionality in real time.

For the determination of an optimal architecture, a large number of ANNs is trained and com-
pared iteratively. In every iteration, properties like topology or input features vary. To ensure
equal condition, their performances are evaluated using standardized training and evaluation sets.
For signal preprocessing, a Simulink model is used assuring capability for subsequent real-time
tests. Each network is trained with a maximum of 10.000 iterations or 30 min using Levenberg-
Marquardt algorithm. Usually, ANNs are fully trained within 2.000 iterations.

Small networks with fewer inputs are always considered first as larger networks have a greater
number of necessary mathematical operations. So, the ANN architecture grows until an optimal
detection performance occurs and overfitting possibly sets in. In consequence, the driving style
detectors remain quite shallow using a [x:2 2:1]2 topology. The overtaking detectors end up at
the same depth using a [8:16 4:2] topology. Figure 7 shows the equal or poorer performance for
deeper or larger ANNs.

[8:16 4:1][8:32 4:1][8:16 8 8:1][7:16 4:1][10:16 4:1][9:16 4:1][11:16 4:1][12:16 4:1][6:16 4:1]
ANN architecture
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, % true positive
false positive

Figure 7: Performances of deep neural networks.

4.4 Prototyping and Pilot Run

In a last step, the identified ANNs are trained and tested again using all available data before
compiling them for MicroAutoBox. In order to meet the resource limitations, the ring buffer hold
8-bit quantized signals matching the subsequent distribution classes of the signals. The overtake
detectors are clocked at 100 ms, but they are only active if suitable preconditions are met (e.g.
sufficient vehicle speed). Figure 8 shows the output of the overtaking detection ANNs during an
overtaking maneuver (here, all three ANNs are active in order to compare their accuracy).

The driving style detecting ANNs are clocked on a 5000 ms cycle to reducing computational
load. As a result, the detector quickly adapts for dynamic driving styles, e.g. in the event of
a kick-down, but responds slower for inconclusive driving styles. Test runs show this behavior
suiting subjective driver needs well. Figure 9 and 10 show the results of the respective major-
ity votes (detector output, lower charts) as a sum of the three individual ANN outputs (upper-
most charts). As expected, the ANNs for dynamic driving behave contrary to those for efficient
2 Naming convention: [”inputs” : ”neurons hidden layer 1” ”hidden layer 2” ... : outputs] of a fully connected ANN.
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Figure 8: Output of the ANN-based and rule-based overtaking detectors.
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Figure 9: Output of the efficient driving style detector during a test drive.

driving. Nevertheless, isolated maneuvers conducted out of limits entail a temporary dynamic
detection (cf. middle graph in Figure 10). Once in normal driving, the efficient detector can be
enabled. However, as long as the dynamic detector is active, it overrides the efficient detector.

4.5 Results

4.5.1 Overtaking Maneuver

Due to the few overtaking maneuvers during test drives, a deep evaluation of the maneuver
detector is only possible using recordings at the test site. Therefore, different scenarios can be
compared individually emphasizing differences in the performance. During dynamic driving, it is
possible to trigger the overtake detection on purpose, e.g. by a sudden yank on the steering wheel.
Nevertheless, in regard to the application, a positive driving style and overtake detection is not
contrary. Figure 11 compares the output of the ANN- and rule-based detector next to the target.
Two very slow maneuvers can be identified around 150 and 575 s that are not recognizes at all.
But for usual and dynamic overtaking maneuvers, performed on a nearly straight road section,
both detection methods archive a 100 % detection rate. For left-handed bends and straight road
sections while driving normal, the ANN-based detector remains at 100 % true positive rate,
while the rule-based reference method drops to ca. 66.7 % and 54.2 % respectively. For calm
maneuvers, as much as 92.3 % are recognized using ANNs, while only 11.5 % are recognized
using the rule-based detector (cf. Figure 12).

Figure 13 shows two results comparing the initial detection time. In the upper part, all detected
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Figure 10: Output of the dynamic driving style detector during a test drive.
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Figure 11: Direct comparison of the ANN- and rule-based overtake detectors.
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Figure 12: Results of ANN and rule-based detectors on straight roads.

maneuvers are compared. The ANN-based detector is approximately 1.3 s quicker, while the
average lies within 0.4 s after the car crossed the lane markings. The lower bars compare all
maneuvers detected by both methods. Here, the ANN-based detector is 1.8 s faster, detecting
maneuvers 0.4 s prior to lane crossing in average. Overall, huge improvements by ANN-based
detection are bought by a minor rise in false positives during dynamic driving maneuvers. A
false positive rate of 3 % occurred whereas the rule-based detector does not give any.
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Figure 13: Compared detection timings of both methods.
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Figure 14: Direct comparison of the second evaluation run.

4.5.2 Driving Style

Two test runs have been conducted for comparison of the driving style detectors’ performances.
The congruency of label and detector output is measured — both need to match. Figure 14 shows
the output of both detectors on the second, more challenging evaluation run. On the first run, ca.
82 % have been archived; on the second run, over 75 % have been archived by the ANN-based
detector. Compared to Colombo et al.’s approach, the overall performance is approx. 30 % better.

5 Conclusion and Outlook for Future Work

Within this research project, suitable sensor signals for distinguishing driving styles and detect-
ing overtaking maneuvers have been successfully identified. Furthermore, ANNs trained with
manageable set of real-world data emphasize their advantages for the desired purpose. In com-
parison to existing rule-based approaches for vehicle controller systems, the ANN-based detec-
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Figure 15: Results of two evaluation runs.
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tors show a better performance in both, detection rate and timing. While greatly improving the
reliability of borderline cases, it must be mentioned that one is possible to provoke false positives,
e. g. by accelerating on a left-hand turn at higher vehicle speeds or other similar behaviors.

Anyhow, false positives due to dynamic driving are not contrary for the intended purpose of
automated switching driving modes. Also, in order to assess the results of this approach to the
results of related work (Table 1), our vast data set must be kept in mind.

For the automated and adaptive drive mode selection, important parameters like user-accepted
points of changeovers, switching frequencies and fully individual driving modes are identified as
further research topics. The latter may lead to smooth transitions of single driving modes.

A valid classification of driving styles, considering a wide spectrum of different behaviors,
is difficult to obtain. Either way, due to the subjective perception of driving styles, studies
using different types of drivers will be required in order to meet the individual customers’ re-
quirements. Unsupervised classification methods may help to overcome this flaw, allowing for
driver-individual classifications. Forecasts of upcoming traffic scenarios in order to realize an
optimized predictive vehicle setup become possible. In particular, slow switching systems like
air condition going on towards energy management units.
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Table 3: Suggestions for adaptive driving modes [6].
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