
Electronic Communications of the EASST
Volume 078 (2019)

8th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium and Industry Day, 2018

Evolve: Language-Driven Engineering in Industrial Practice

Tim Tegeler and Jonas Schürmann

16 pages

Guest Editors: Falk Howar, Anna-Lena Lamprecht
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Evolve: Language-Driven Engineering in Industrial Practice

Tim Tegeler12 and Jonas Schürmann1

Chair for Programming Systems
TU Dortmund University, Germany1

Creios GmbH
Selm, Germany2

Abstract: In general, software projects still have a very high failure rate. We no-
ticed that one of our projects did not gather pace. It was delayed from the beginning
and on the way to fail. After investigating the development process, we located the
issue in the chosen architecture of the software. Even though the used technology
has many advantages, application developers were handicapped due to the cumber-
some architecture. The challenge was how we could keep the advantages, but sim-
plify the work of the application developers. We came up with the approach to build
a toolkit and family of dedicated Domain-Specific Languages which are developed
alongside the project. We called it Evolve, and it is built upon the Language-Driven
Engineering paradigm. We were able to salvage the project and establish Evolve
in the development process of related applications. With Evolve, we successfully
brought Language-Driven Engineering to industrial practice. It will play a major
role in our future software development.

Keywords: Language-Driven Engineering, Language Evolution, Domain-specific
Languages, Code Generation, Industrial Practice, Web Application

1 Introduction

This paper is an experience report of a delayed industrial software project in the domain of web
applications. It discusses challenges which occurred during the implementation phase and how
the adoption of Language-Driven Engineering (LDE) helped to resolve them. The practical
utilization shows the positive effect for the developing process. It introduces Evolve, a toolkit
and family of dedicated Domain-Specific Languages (DSL) following the LDE approach.

In the early stage of the project we observed that it was already behind schedule. The whole
project was in danger of missing its deadline. After having a more in-depth look inside the
development process of the project and interviewing the application developers, we identified the
major problem. The given architecture forced the application developers to write similar code
over and over again. Furthermore, the code was very cryptic with complex syntax. Thus resulted
in a very error-prone development process with had a negative impact on the motivation of the
developing team and the progress of the project in general. The success of the project was at risk.
It was clear that we had to act radically if we wanted to salvage the project. The initial idea was
to tailor a Domain-specific Language (DSL) once for a critical part of the application to speed up
the overall development process. The DSL should help to reduce the code to be written by hand
and having simpler syntax than the original code. It should enable the application developers to

1 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

1 const toggleAction = {type: ’TOGGLE’};
2
3 const initialState = {
4 value: true
5 };
6
7 function reducer(state, action) {
8 if (typeof state === ’undefined’) {
9 return initialState;

10 }
11
12 switch (action.type) {
13 case ’TOGGLE’:
14 return {value: !state.value};
15 }
16 }

Listing 1: Simple Redux example containing store (state), reducer and action

focus on the conceptual design of the software. On first glance, one would say that the problem
of the project is the given architecture and a DSL would only conceal this.

But actually, the underlying architecture, which is built with Redux1, has advantages that
outweigh its disadvantages in our use case. An application based on Redux has three main
components2, a store, a reducer, and multiple actions. The store holds the whole state of the
application in an object tree and is the "one source of truth" [Bac16]. An action is a simple
object that expresses an event and can carry a payload. The reducer takes the current object tree
and an action as input to transform and emit the new object tree. Simple changes of values inside
the store require actions and reducers. This can lead to very verbose projects.

Listing 1 demonstrates the possible verbosity of vanilla Redux projects. The code is narrowed
to the essential Redux components and omits parts that are necessary to execute it (for instance,
in a browser). Subject of this example is the functionality of toggling a simple boolean value.
Therefore, the code includes just one action ’toggleAction’ (c.f. line 1) which describes that a
toggle event was triggered. The action is a simple object and is distinguished from other actions
by the ’type’ attribute. A payload is not necessary nor shown in this example. Lines 3 to 5
declare the initial state of the store. The store is a simple object containing just one attribute of
type boolean called ’value’ initialized with the value ’true’.

Central and most important part of the Redux pattern is the reducer. In most cases this can be a
simple function. Depending on the size of the store and number of actions, the complexity of the
function can grow dramatically. In this example the reducer functions spans from lines 7 to 16.
It takes two parameters ’state’ (the state before emitting the action) and ’action’ (the action that
describes an event). If the state is undefined, e.g. when the reducer function is called for the first
time at the beginning of the program execution, it returns the initial state (line 9). But if the state
is defined, the reducer handles the passed action by using a switch statement (lines 12 to 15). As

1 https://redux.js.org
2 For an introduction of the Redux architecture please refer [Bac16]

ISoLA DS+IS 2018 2 / 16



ECEASST

already noted, an action can be distinguished by its ’type’ attribute. The switch statement makes
use of this identifier to handle the different cases. An action does not know about the way an
event like toggling is handled. This is solely the task of the reducer and is located in the respective
case of the switch statement (line 14). For handling the toggle action, the reducer creates a new
state object, writes the inverted value and returns the new state. In summary, it can be stated that
this pattern of a vanilla Redux project produces a lot of code for simple task like the toggling of a
Boolean value. But by using this pattern, we gained benefits we have not experienced before with
other architectures: Control over the state of the application at any time, maintainability of the
code basis and powerful debugging of the running application. Evolve has the ability to retain
the advantages and balance out the disadvantages. On second glance, introducing a dedicated
DSL for a project that is already in danger of missing the deadline sounds unintuitive. However,
we experienced enormous leverage due to bootstrapping [SGNM18].

In Section 2 we illustrate the vision and concept of Evolve and how we apply the concept of
Language-Driven Engineering (LDE) to industrial practice. Section 3 addresses the realization
by showing key components, like language design and code generation. Languages are exposed
in detail in Section 4. Section 6 concludes the paper.

2 Vision and Concept

Evolve uses a service-oriented architecture to provide the composition, refinement, and evolution
of the DSLs. Following this principle of LDE, we were able to divide "the labor on the basis
of Domain-Specific Languages [. . . ] targeting different stakeholders." [SGNM18] The DSLs
focus on the differences in the code and consider the things that do not change as Archimedean
points [SGNM18, SN16]. Not only can application developers and language developers partic-
ipate in a project as a vertical composition, but different language developers can collaborate
working on complementary DSLs as a horizontal composition. When creating a new tool getting
the users (i.e., application developers) involved is critical. We want to involve all stakeholders
of the project in a fashion of Design Thinking [RS12] to get feedback as soon as possible. With
Evolve, we do not distinguish between DSL and application development which enables us to
introduce new levels of reuse for similar projects [SGNM18].

Application developers requested missing features in the generated code when using Evolve
and "express[ed] their desires in terms of what they want to achieve (WHAT/Requirement level),
without worrying about possible ways of realization (HOW/Implementation level)." [SGNM18]
We were able to add those features to a specific DSL and to provide them with a new version
very fast by using Continuous Practices (CP) [TGS18, SBZ17]. Moreover, even bugs in the gen-
erated code were fixed permanently all by the language developers. The application developers
were able to participate in the evolution of the DSLs [SGNM18]. This creates a Continuous
Improvement Cycle (CIC) [MC03] (refer Figure 1). After an iteration of the CIC and receiving
an improved version of Evolve, application developers were able to regenerate the code without
knowing about the implementation of the new feature.

Based on the CIC, the evolution of the DSL drives the development of the application. This
evolution of the DSL is a central part of LDE and was decisive of naming the project Evolve. The
first DSL generated Data Transfer Objects (DTO) (used as API payloads) and decoder functions

3 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

Figure 1: Continuous Improvement Cycle used to integrate Evolve in the application development

each to ensure type safety. After the first success in production and receiving positive feedback
from the application developers, we decided to go a step further: Applying the idea of developing
a DSL to simplify the development for more parts of the projects. This includes API requests,
user input forms, and Redux stores. A detailed explanation of the languages will be given in
Section 4.

3 Realization

The initial idea was to speed up the overall development process of the target project. We tried
to find cheap and easy solutions that would integrate seamlessly into our already established
workflow. We were worried about over-engineering Evolve and not being efficient enough to
benefit from it. Our focus was on easily accomplishable objectives to start with the CIC and
to use Evolve in production as soon as possible. In this section, we illustrate two different
aspects of the realization. On the one hand, the implementation of the application with its central
components language design and code generation. On the other hand, the operations of the
development with integration into the existing IDE and the set up of our deployment process.

3.1 Language Design

After we used Evolve in production with the first DSL and decided to add more, we determined
some fundamental requirements.

ISoLA DS+IS 2018 4 / 16



ECEASST

Figure 2: Levels of the language design applied to Meta-modeling

1. Languages are based on the same technology to make the introduction of new languages
inexpensive.

2. Creating declarative languages to keep it as simple as possible for the application devel-
opers.

3. Languages are built on top of technology already known by the application developers to
reduce the initial hurdle.

Therefore, we chose the textual JavaScript Object Notation (JSON)3 as our carrier language to
develop our external DSLs [FP11]. JSON is ubiquitous in developing modern web applications,
and our application developers were very familiar with it. It is the most popular data format
for HTTP payloads in APIs and used to configure dependencies and build tools for JavaScript-
based applications. Our models are exclusively based on JSON files. A lot of tools and li-
braries exist to work with JSON; therefore, the cost of developing a DSL are reduced. This
contains deserialization of the files and validation of the models. The "relevant parts of the
modeling language" [KT08] are formalized in the metamodel (Figure 2). As the metamodeling
language [KT08], it was apparent to use JSON schema4 which itself is based on JSON. The
JSON schema of each language holds information about the specific domain. It defines the rules
and constraints of the language and can be used to assist the user while modeling (c.f. Subsec-

3 https://www.json.org
4 https://json-schema.org

5 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

Figure 3: Universal generator pipeline used for all DSLs

tion 3.3). A JSON schema is formalized by the JSON meta-schema and can be validated against
it. The JSON meta-schema is self-descriptive and formalizes itself.

3.2 Code Generation

The delayed project is the front-end part of a sophisticated web application. The front-end is
delivered by a web server and runs as a client inside of the user’s browser. It communicates with
the back-end on the servers by an API. The front-end is written in TypeScript5 and compiled
to JavaScript code to be executable by a standard browser. Therefore Evolve, is focused on the
front-end of web applications and generates TypeScript code.

Evolve provides only code generation for certain parts of the front-end where we saw the most
leverage. It is not possible to generate the whole application, but it supports automated full code
generation from the models [KT08]. Entire files are generated, which is very advantageous. The
files are atomic, disposable and opaque. Atomic means that these files are the smallest entities to
deal with. They are the building blocks for the larger application. Disposable means the files can
be recreated from the models by the generator at any time. The generated code contains not only
static but behavioral structures [KT08]. There is no round-trip-problem where the information is
kept up-to-date between model and code [SVC06, KT08]. Generated files hide the internal code
from the application developer (opaque) and only export their API to the global scope. Like using
a library, the application developers can use the code without knowing the exact implementation.
Thus, an application developer can use the files as black boxes. The files or building blocks must
be linked to the handwritten parts of the application by using the provided API.

Although the generated code should not be relevant to the application developers, we had some
claims on our code generation. The code generator should be deterministic, so that, provided
with the model, it produces the same code. For this reason, we rely mainly on pure functions
and avoid side effects. Because we are committing our generated code to the Version Control
System (VCS), regenerating code would cause dirty working trees. When working with many
models, this could flood the VCS, and manual changes are hard to distinguish. Furthermore, the
code should be humanly readable for later debugging and avoiding the lock-in effect [ZZ12].
This includes proper code styling and meaningful symbol names for variables. Lines of code
where the actual order of appearance is not important for the correctness of the source code (e.g.
interface attributes) is always in alphabetical order to improve readability. In the beginning, we
were not sure how successful Evolve would be. We wanted to have generated code that could be

5 https://www.typescriptlang.org

ISoLA DS+IS 2018 6 / 16



ECEASST

1 <#if interface.export>export </#if>interface ${interface.name} {
2 <#list interface.attributes as attribute>
3 readonly ${attribute.name}: ${attribute.type}
4 </#list>
5 }

Listing 2: Template of a TypeScript interface written in Freemarker

easily extended and maintained in case abandoning Evolve.
Evolve is based on Java6 and built by Gradle7. As template language we use Freemarker8.

After developing the first DSL, we noticed that we should introduce general, reusable and com-
posable code generators. Instead of creating a few large templates (e.g. one template for each
DSL), we decided to compose code generators in order to enable them to work together. E.g.,
a code generator to create interfaces (interfaces are used in TypeScript to create types based on
duck typing [MGN17]). The Freemarker template of this code generator is shown in Listing 2.
The template is based on a DTO called interface. It maintains the name that should be used and
whether the interface should be exported (available in the global scope) or not (line 1). Besides
the meta information, it also provides a list of attributes in alphabetical order. Attributes are
again simple DTOs keeping just the type (like Boolean, number and string) and the name of the
attribute (line 3). The template iterates (line 2) over this list and prints the ’readonly’ modifier,
the name, and the type.

Evolve provides a universal generator pipeline (Figure 3) that makes it easy to add new DSLs.
It starts with the reading (Figure 3: Read) of the models on filesystem-level. The models will
be validated (Figure 3: Validate) against the related JSON schema. The models will be dese-
rialized (Figure 3: Deserialize) into DTOs. On the base of the DTOs Freemarker is used to
render (Figure 3: Render) the source code. The source code is written (Figure 3: Write) back on
filesystem-level.

3.3 Mindset-Supporting Integrated Development Environment

LDE introduces a new development paradigm which is heavily built upon Mindset-Supporting
Integrated Development Environments (mIDE). These are extended Integrated Development En-
vironments (IDE) enriched by the mindset of the stakeholders with native support for the related
DSLs [SGNM18]. How to provide application developers with mIDE was a challenge of us-
ing LDE in industrial practices with Evolve. It was clear that we would not be able to develop
dedicated mIDEs alongside Evolve without jeopardizing the actual project. Modern IDEs, based
on the IntelliJ platform 9, were present on the application developers’ machines for the classical
development work. Our idea was to build upon the existing IDE and integrate Evolve.

The IntelliJ platform already has excellent support for JSON syntax and even JSON schema

6 https://java.com
7 https://gradle.org
8 https://freemarker.apache.org
9 https://www.jetbrains.com/idea

7 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

With the JSON schema support, there were many advantages. The user is guided in the process
of modeling by autocomplete and errors are prevented before the actual code generation [KT08].

With the versatile run configuration of IntelliJ, we were able to integrate the code generator of
Evolve into the project. Once having done so, the code generation was just as easy as pressing
a button. This enhanced an IDE to become a Mindset-Supporting Integrated Development Envi-
ronment (mIDE), without having to deal with "the major hurdle of LDE currently perceived: the
construction of the required mIDEs" [SGNM18].

3.4 Development, Deployment and Distribution

After gaining the first experience with LDE in industrial practice, we noticed two essential re-
quirements. These requirements are even more critical with delayed projects where reaction to
future problems has to be instant. On the one hand, to enable the full potential of LDE, applica-
tion and language developers must collaborate as closely as possible. On the other hand, when
time is valuable, we cannot have a clumsy development, a unreliable deployment or complex
distribution process.

We choose GitLab10 to support the entire application development process of Evolve. It pro-
vides a repository for source control and enables us to establish a CIC (Figure 1) [TGS18]. With
the CIC (Figure 1) we want to get the application developers involved. Application developers
can provide feedback as issues (Figure 1: Feedback phase). After that, we discuss the request
and ideas (Figure 1: Plan phase). Implement their requirements (Figure 1: Develop phase) and
supply them with the next version as comfortable as possible (Figure 1: Deploy phase).

Evolve is based on Test-Driven Development (TDD) to speed up feature integration, find bugs
early and support fearless refactoring [Bec03, Ast03]. The tests yielded by the TDD are inte-
grated with the Continuous Integration (CI) solution of GitLab. Tests will be executed auto-
matically after every change that is pushed to our VCS. After successful tests, we can deploy a
new version of Evolve by Continuous Deployment (CD) strategies. The deployment is triggered
by pushing the master branch to the deployment branch. This will start the compilation of the
code and deployment of the executable. As deployment target and for publishing we use GitLab
pages11. It acts as a managed web server hosted by GitLab and is integrated into the repository.
Alongside the executable, we also deploy the JSON schema files. The executable together with
the JSON schema files can be downloaded from the web server. Every project that depends on
Evolve has a built-in update mechanism in the related mIDE to receive new versions. The update
mechanism is based on the run configuration of IntelliJ.

4 Languages

This section gives an introduction to the DSLs that are currently supported by Evolve. We fo-
cused on four main parts of the project where we observed the most boilerplate code and potential
of applying DSLs. In the following subsections, we are focusing on the DSLs and will not show
the resulting generated code. This would push the boundaries of this paper.

10 https://about.gitlab.com
11 https://about.gitlab.com/product/pages

ISoLA DS+IS 2018 8 / 16



ECEASST

1 {
2 "path": "user",
3 "rest": {
4 "create": {
5 "responseEntity": "UserResponse",
6 "requestEntity": "UserRequest"
7 }
8 }
9 }

Listing 3: Model that describes a create operations of a user

4.1 Request Language

Modern web applications are based on communication with a server by an API. In the related
project, this API was built loosely on the style of Representational State Transfer (REST) [Fie00].
REST is not a standard based on a Request for Comments (RFC) [Dog15], but it is widely used
and accepted. Although it is protocol-independent [Dog15], we are assuming that the HTTP
protocol is used.

We introduce a Request Language to generate the API layer of our web application fully. The
DSL is resource-oriented and uses the proposed actions of REST in a combination of HTTP verbs
to read and alter. A resource is everything that can be named, like a document or user [Fie00].
Not only high-level operations like CRUDL (create, retrieve, update, delete, list) [Dog15] are
supported, but also low-level descriptions of HTTP requests to create custom operations.

Listing 3 shows an example of this Request Language. It describes a create operation of a user
resource. The model is an object and consists of two main parts, the ’path’, and ’rest’ attributes.
The ’path’ attribute is a simple string and is used to describe the endpoint for the resource. Mostly
this will be concatenated with the root path of our API (e.g. ’/api/user’). The ’rest’ attribute is
an object itself. It supports a subset of the attributes ’create’, ’retrieve’, ’update’, ’delete’ and
’list’. However, this example shows only the ’create’ attribute. The ’create’ attribute is again an
object itself. It has only the two attributes ’requestEntity’ and ’responseEntity’ attributes. They
define the TypeScript interfaces that are used for the payload in the body of the HTTP request
and response.

With the Request Language, we were able to refactor our API rapidly during the development
process.

4.2 Entity Language

When data is exchanged via an API, sender and receiver must ensure that the data is valid. As
already mentioned, the front-end is written in TypeScript and strongly based on types. Interfaces
(c.f. Subsection 3.2) are used to define types. JSON is compatible with interfaces and serves as
a data format. However, JSON is independent of any programming language and has no native
support to ensure types. It is in the assignment of the programming language to ensure it. The

9 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

1 {
2 "active": {
3 "type": "boolean"
4 },
5 "age": {
6 "type": "number",
7 "null": true
8 },
9 "firstName": {

10 "type": "string",
11 "origin": "first_name"
12 },
13 "lastName": {
14 "type": "string",
15 "origin": "last_name"
16 }
17 }

Listing 4: Model that describes a user entity

test of the data has to take place during runtime when data is received. We use JSON Bouncer12

to build validators that can ensure that a specific JSON string is of a given type.
The Entity Language generates not only to the entity but to the decoder as well. The basic

structure of an entity model is an object where the metamodel does not define the attributes.
Therefore, however, every attribute has to be an object of a given form itself. The metamodel
requires only the attribute ’type’ as mandatory. It can have the values ’string’, ’number’ or
’boolean’. Beside the mandatory attribute ’type’, two optional attributes ’null’ and ’origin’ are
supported.

Listing 4 is a model of a user entity. Every first level attribute (i.e. ’active’, ’age’, ’firstName’
and ’lastName’) stands for an attribute of the generated interface. The attribute ’active’ is of
the type ’boolean’. The attribute ’age’ is of the type ’number’. The attributes ’firstName’ and
’lastName’ are of the type ’string’. A typical use case for ’origin’ is to adapt between differ-
ent spelling practices of attributes. In this example, camel case [SM10] (e.g., ’firstName’ or
’lastName’) is used for the internal representation, but the origin uses snake_case [SM10] (e.g.
’first_name’ or ’last_name’).

The Entity Language allowed us to scale our entities and rely on the structure of the received
data.

4.3 Form Language

A well understood, but vulnerable domain of web applications are form-based inputs [SP]. Inputs
enable users to interact with the application and enter data. In general, user input cannot be
trusted [SP] and therefore, has to be validated and sanitized. Since our generated code is executed
on the user’s machine and leaves the server API untouched, we have to secure our server as well.

12 https://gitlab.com/MazeChaZer/json-bouncer

ISoLA DS+IS 2018 10 / 16



ECEASST

1 {
2 "page": "Registration",
3 "inputs": {
4 "email": {
5 "type": "email",
6 "mandatory": true
7 },
8 "password": {
9 "type": "string",

10 "mandatory": true
11 },
12 "birthday": {
13 "type": "date"
14 }
15 }
16 }

Listing 5: Model that describes a registration form

However, this is out of the scope of this project. We do not try to defend against malicious attacks
but handle mistaken inputs by using generated code for common problems.

The DSL features four parts related to form based inputs. Storing the raw and potential flawed
data entered by the user. Validation of the input is based on input types. Generating proper
error messaging for invalid data that can be used to guide the user during the input process.
Sanitizing the data for further usages, like sending the data to an API and storing validated and
sanitized data. Supported input types are the basic types of ’string’, ’integer’ and ’boolean’ and
higher-level types like ’date’, ’datetime’, and ’email’.

Listing 5 shows an example model to describe a registration form. The ’page’ attribute is a
simple string and defines on which page the form is used. This is used internally by the generator
to reduce the glue code to connect the generated and handwritten code. The ’inputs’ attribute
is an object itself and stores the input objects. The Name of the input (e.g., ’password’) can be
chosen freely and is not a keyword of Evolve. With the attribute ’mandatory’, which is Boolean,
an input is required to be filled. The ’type’ attribute determines the actual type of the input (c.f.
above).

Through the Form Language, we were able to create standardized forms and recognizable user
experience.

4.4 Store Language

The central part of a Redux based web application is the store where the actual state of the
application is saved in an object tree (please refer to Section 1). In the delayed project, most of
the data in the object tree consist of the simple types like integers for storing the current page of a
paginated list or Booleans to describe if GUI elements are active. For changing a value inside of
the store, an action and a reducer are needed. This results in much handwritten boilerplate code
which led to very verbose projects. Our approach to simplify the usage of Redux is the Store

11 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

1 {
2 "page": "UserList",
3 "states": {
4 "leftMenuIsOpen": {
5 "default": "true",
6 "type": "boolean",
7 "toggle": true
8 },
9 "activePage": {

10 "default": "1",
11 "type": "integer",
12 "setter": true
13 }
14 }
15 }

Listing 6: Model that describes a simple Redux store

Language. It provides modeling and generating of stores to handle simple data types.
In our web application, we preferred an architecture that is not made up of layers. Instead of

having static layers (like in the model-view-controller [LR01] architectural pattern), it is struc-
tured like slices. Every page of our web application defines a slice and has distinct scope. This
DSL supports this approach and generates a store, a reducer, and actions for each.

Listing 6 shows an example model to describe a Redux store for the ’UserList’ page. A model
of a Redux store is divided into the two parts, ’page’ and ’states’. States is a simple object and
can have multiple attributes. The name of a state is the attribute name. It can be of the types
’integer’ or ’boolean’. This is defined in the ’type’ attribute. With the ’default’ attribute, a default
value for the state in the store can be determined. Based on the type different actions and related
reducer-functions can be generated. For the Boolean type, a toggle action can be set. The toggle
method enables the user to change the value of the Boolean to the opposite of the current value.
For the integer type, setter, increment, and decrement actions can be set. The setter method
enables the user to set and overwrite the existing value. The increment and decrement methods
increment respectively decrement the integer value.

The Store language simplified the repetitive work of the Redux pattern and significantly re-
duced the handwritten code.

5 Evaluation

In this section, we evaluate the impact of introducing Evolve to our project.
To get a first impression of the success of Evolve, we look at the proportion of lines of code

(LOC) between model- and generated files in the project after it went into production. Table 1
shows that the project contains 1508 LOC of model files which automatically generates to 6625
LOC. This means an expansion factor of 4.4 which results in a reduction of 77% of LOC in the
parts of the project that are generated and 18% of LOC in the overall project. Table 2 indicates
the overall number of files (418 files) and code (28029 LOC) in the project. Hand written files

ISoLA DS+IS 2018 12 / 16



ECEASST

Model Generated (Factor)
Lines of Code 1508 6625 (4.4x)

Table 1: Proportion of model- and generated LOC in the project

All Handwritten Generated (Percentage)
Number of Files 418 332 86 (21%)
Lines of Code 28029 21404 6625 (24%)

Table 2: Number of generated files and LOC in the project

could be reduced by 21% and the LOC by 24%.
Admittedly, using the number of files and LOC as a metric for source code is vague, especially

when analyzing generated code. Even so, one of our major goals was to reduce the amount
of hand written code. Since Evolve generates humanly readable code that is very close to a
manually implementation, it makes the generated code more comparable (c.f. Subsection 3.2).
A fifth of the handwritten code (6625 LOC) could be replaced by generated code which saved
valuable developing time and reduced error probability not only once, but also in the future. It
is effortless to introduce new functions or fix bugs in that part of the application. To sum up one
could say, that Evolve had a major impact on the codebase of the project and the development.

But not only formal metrics like the amount of code indicated the success of Evolve. During
the adoption of Evolve, we noticed positive effects on intangible indicators like team spirit and
teamwork as well. It increased the overall mood of the team. The application developers experi-
enced an eureka moment comparable to the time of their first successful compiling and running
program. Many of them had never actively generated code before. But this eureka moment hap-
pened on both sides. It was also the first time for the language developers to create and push a
DSL (or more precisely, a family of DSLs) into production and experiencing the success of it at
first hand.

During the first days we were able to quickly remove error-prone handwritten code by gener-
ated code and decrease the pressure on the application developers. They quickly came up with
ideas how to improve Evolve and their DSLs. With the leverage of the CIC, we were able to get
these ideas very fast into production and receive feedback if the introduced alterations worked
or not. Evolve was developed independently from the initial use case of our application and is
compatible with similar frontend projects. Therefore, it was adopted with success by several
other frontend projects in the company on short notice. This led to a very fast evolution of the
DSLs and introduced a new mindset in our overall team that goes beyond Evolve. Instead of
just trying to fix problems by hand, our team tried more and more to find elegant ways to solve
them or prevent them in the first place: using existing tools, building libraries, and improving our
processes. This includes automation for repetitive tasks, stricter code style or introducing more
sophisticated testing techniques.

13 / 16 Volume 078 (2019)



Evolve: Language-Driven Engineering in Industrial Practice

6 Conclusion and Perspective

In this paper, we have featured an approach to LDE in industrial practice. The subject of the
study was a delayed project in the domain of web applications. We introduced Evolve, a toolkit,
and a family of dedicated DSLs. With Evolve, we were able to salvage the project by significantly
reducing the manual effort of the application developers. We illustrated that LDE was easy to
integrate into our established workflow. DSLs became first-class citizens of the development
process. This example shows that LDE can have a significant impact on real-world projects. It
helps to reduce the manual effort and speed up the overall development process. Furthermore,
it contributes to raising the moral and motivation of the team by offering simple solutions for
error-prone tasks. By establishing Evolve, similar projects can build upon the principles of LDE
more easily. They will benefit from this new level of reuse [SGNM18]. We will continue to
apply LDE to upcoming projects in the future.

While developing and using Evolve we faced two related drawbacks for the time being. The
task of generating code has to be triggered manually by the application developer, and the gener-
ated code is checked into our VCS. In future, we want to have this task automated by the mIDE
and integrate the generation in our CI pipeline. After that, we can version only the models and
the generated code can indeed be classed as disposable. In the next step of the development of
Evolve, it would be desirable to revise the syntax of the DSL. Using JSON (together with JSON
schema) as the carrier language turned out to be very cumbersome. Instead of forcing a file
format specialized for data transfer, a custom language should be considered. The syntax can be
precisely tailored to the domain without having syntactic overhead. To follow the principles of
LDE even more, Evolve should support the interaction between the DSLs. At the moment, every
DSL is independent of each other.

In the future, we would like to go a step further by automating the generation even more.
Modern web-based APIs are self-describing, e.g., based on the technology of the OpenAPI Initia-
tive13. They provide human and machine-readable documentation. We want to use this documen-
tation to generate API requests and entities. Considering the generator pipeline (Figure 3), this
can be done by two different approaches. Either by introducing model-to-model-transformation
in front of the reader or by substituting read, validate and deserialize stages or to generate from
API by using documentation.

Considering that Evolve was aimed to speed up other projects, it was built upon basic solution
and developed dedicated to related work. In the future, we intend to revise parts of Evolve and
combine it with already established and successful projects in the area of LDE.

Acknowledgements

We thank Luke Thienemann for assistance with developing the concept of Evolve and his com-
ments that greatly improved the manuscript.

13 https://www.openapis.org/about

ISoLA DS+IS 2018 14 / 16



ECEASST

Bibliography

[Ast03] D. Astels. Test Driven Development: A Practical Guide. Prentice Hall Professional
Technical Reference, 2003.

[Bac16] A. Bachuk. Redux · An Introduction. https://www.smashingmagazine.com/2016/06/
an-introduction-to-redux/, 2016. [Online; accessed 04-March-2019].

[Bec03] K. Beck. Test-driven Development: By Example. Kent Beck signature book.
Addison-Wesley, 2003.

[Dog15] F. Doglio. Pro REST API Development with Node.Js. Apress, Berkely, CA, USA,
1st edition, 2015.

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, 2000. AAI9980887.

[FP11] M. Fowler, R. Parsons. Domain-specific languages. Addison-Wesley / ACM Press,
2011.
http://books.google.de/books?id=ri1muolw_YwC

[KT08] S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, 2008.

[LR01] A. Leff, J. T. Rayfield. Web-application development using the Model/View/Con-
troller design pattern. In Proceedings Fifth IEEE International Enterprise Dis-
tributed Object Computing Conference. 2001.

[MC03] P. Murray, R. Chapman. From continuous improvement to organisational learning:
developmental theory. The Learning Organization 10(5):272–282, 2003.

[MGN17] N. Milojković, M. Ghafari, O. Nierstrasz. It’s Duck (Typing) Season! In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC).
Pp. 312–315. May 2017.
doi:10.1109/ICPC.2017.10

[RS12] R. Razzouk, V. Shute. What Is Design Thinking and Why Is It Important? Review
of Educational Research 82:330–348, 09 2012.
doi:10.3102/0034654312457429

[SBZ17] M. Shahin, M. A. Babar, L. Zhu. Continuous Integration, Delivery and Deployment:
A Systematic Review on Approaches, Tools, Challenges and Practices. CoRR, 2017.

[SGNM18] B. Steffen, F. Gossen, S. Naujokat, T. Margaria. Language-Driven Engineering:
From General Purpose to Purpose-Specific Languages. 2018.

[SM10] B. Sharif, J. I. Maletic. An Eye Tracking Study on camelCase and under_score
Identifier Styles. In 2010 IEEE 18th International Conference on Program Compre-
hension. June 2010.

15 / 16 Volume 078 (2019)

https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
http://books.google.de/books?id=ri1muolw_YwC
http://dx.doi.org/10.1109/ICPC.2017.10
http://dx.doi.org/10.3102/0034654312457429


Evolve: Language-Driven Engineering in Industrial Practice

[SN16] B. Steffen, S. Naujokat. Archimedean Points: The Essence for Mastering Change.
Pp. 22–46. Springer International Publishing, Cham, 2016.

[SP] D. Stuttard, M. Pinto. The Web Application Hacker’s Handbook: Finding And Ex-
ploiting Security Flaws, 2nd Ed. Wiley India Pvt. Limited.

[SVC06] T. Stahl, M. Voelter, K. Czarnecki. Model-Driven Software Development: Technol-
ogy, Engineering, Management. John Wiley & Sons, Inc., USA, 2006.

[TGS18] T. Tegeler, F. Gossen, B. Steffen. A Model-driven Approach to Continuous Practices
for Modern Cloud-based Web Applications. 2018.

[ZZ12] K. Zhu, Z. Z. Zhou. Research Note - Lock-In Strategy in Software Competition:
Open-Source Software vs. Proprietary Software. Information Systems Research
23:536–545, 2012.

ISoLA DS+IS 2018 16 / 16


	Introduction
	Vision and Concept
	Realization
	Language Design
	Code Generation
	Mindset-Supporting Integrated Development Environment
	Development, Deployment and Distribution

	Languages
	Request Language
	Entity Language
	Form Language
	Store Language

	Evaluation
	Conclusion and Perspective

