
Electronic Communications of the EASST
Volume 078 (2019)

8th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium and Industry Day, 2018

Workflow Discovery with Semantic Constraints:
The SAT-Based Implementation of APE

Vedran Kasalica, Anna-Lena Lamprecht

25 pages

Guest Editors: Falk Howar, Anna-Lena Lamprecht
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Workflow Discovery with Semantic Constraints:
The SAT-Based Implementation of APE

Vedran Kasalica, Anna-Lena Lamprecht

Department of Information and Computing Sciences
Utrecht University, 3584 CC Utrecht, Netherlands

Abstract: Science today is increasingly computational, and many researchers regu-
larly face the need of creating purpose-specific computational pipelines for their spe-
cific data analysis problems. The manual composition and implementation of such
workflows regularly costs valuable research time. Hence, many scientists wish for a
system that would only require an abstract description of their intended data analysis
process, and from there automatically compose and implement suitable workflows.

In this paper we describe APE (the Automated Pipeline Explorer), a new imple-
mentation of a synthesis-based workflow discovery framework that aims to accom-
plish such automated composition. The framework captures the required technical
domain knowledge in the form of tool and type taxonomies and functional tool an-
notations. Based on this semantic domain model, the framework allows users to
specify their intents about workflows at an abstract, conceptual level in the form
of natural-language templates. Internally, APE maps them to a temporal logic and
translates them into a propositional logic instance of the problem that can be solved
by an off-the-shelf SAT solver. From the solutions provided by the solver, APE then
constructs executable workflow implementations.

First applications of APE on realistic scientific workflow scenarios have shown that
it is able to efficiently synthesize meaningful workflows. We use an example from
the geospatial application domain as a running example in this paper.

Keywords: scientific workflows, computational pipelines, automated workflow com-
position, program synthesis, workflow synthesis, semantic domain modeling, tem-
poral logics, SAT solving

1 Introduction

Contemporary science across all disciplines is increasingly computational, and many scientists
regularly face the need of producing software themselves to become able to solve their specific
data analysis problems. Many of these programs are essentially computational pipelines, that
is, sequences of calls to existing computational components, where the new program is mainly
responsible for the coordination of the flow of data between them. Scientific workflow man-
agement systems (popular examples include Apache Taverna [WHF+13], Kepler [I+04] and
Pegasus [DSS+05], but several more exist and are being developed [LPV+15, AGMT17, SWS])
support researchers in assembling computational components into complex scientific workflows,
and facilitate their execution and monitoring directly within the same framework. However, they

1 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

Figure 1: Synthesis-based discovery and composition of a geospatial analysis workflow.

typically require the users to know which components to use and connect to solve the specific
problems, which connections are possible with regard to the compatibility of input and output
data types and formats, and other kinds of technicalities.

Semantics-based automated workflow composition techniques strive to assist users in the dis-
covery and composition of purpose-specific workflows [CSG+03, MPM+05, KBBG08, LMS09].
Ideally, users would only need to state their intents about the workflow at an abstract, concep-
tual level (e.g. by providing information about the available inputs and intended output data, or
particular kinds of operations to use or avoid), and the workflow environment would automati-
cally translate the specification into a concrete executable workflow (as illustrated in Figure 1).
This is essentially a case of program synthesis (considered to be one of the central problems
in theory of programming [PR89]), which, in the general formulation, aims to find a program
that meets a given specification. In fact, with the PROPHETS framework for loose program-
ming [NLS12, LNMS10] previous work has already demonstrated how program synthesis tech-
niques, concretely the process synthesis approach of Steffen et al. [SMF93, FSMZ95, SMB97,
MS07], can be used for semantics-based, constraint-driven automated composition of scientific
workflows [PLIS18, ALM16, Lam13].

PROPHETS is a plugin to the jABC modeling framework for eXtreme model-driven devel-
opment (XMDD) [SMN+07, MS12]. It allows workflow developers to mark connections be-
tween workflow building blocks as “loosely specified” and run the synthesizer to turn the loose
specification into a fully specified and executable workflow part. Users can formulate addi-
tional constraints for the loose specifications that the synthesizer takes into account. Therefore
PROPHETS provides a constraint editor with natural-language constraint templates, which the

ISoLA DS+IS 2018 2 / 25

ECEASST

users can easily fill with terms from a domain-specific controlled vocabulary. This allows users
to very flexibly influence the synthesis results on a domain-specific, semantic level of abstraction.

As the development of jABC has been discontinued and superseded by the work on the Cinco
SCCE Meta-Tooling Suite [NLKS17, NNMS16], we needed a replacement for PROPHETS to
continue our work on synthesis-based automated discovery and composition of scientific work-
flows. Inspired by PROPHETS and based on the lessons learned with its application to scientific
workflows, we started to develop APE1 (the Automated Pipeline Explorer) as a workflow syn-
thesizer tailored to scientific applications. Two observations were central: 1) PROPHETS’ loose
programming approach supports the development of workflows with complex control-flows.
However, the computational workflows created in scientific applications are typically pipelines
that do not require these complex dependencies. In addition, the pipelines generally do not in-
volve concepts such as branching or loops. Therefore the ability to synthesize linear workflows
is sufficient in most cases, and we decided to focus on that. As we will discuss further below,
this simplifies specification and is advantageous for the runtime performance of the synthesizer.
2) The close integration with the full jABC framework made it difficult to connect PROPHETS
to the software ecosystem of the eScience community. Thus, in order to facilitate uptake by prac-
titioners, the new implementation aims to simplify import of semantic domain knowledge and
export of synthesized workflows in formats that are commonly used in the eScience community,
and provides its functionality as both and API and command line interface.

In this paper, we describe the SAT-based implementation of workflow synthesis in APE. We
provide background information and survey related work about program synthesis and automated
composition of scientific workflows in Section 2. Then Section 3 describes the modeling of
domain knowledge and user intent in APE, which together form the workflow specifications.
Section 4 explains how the specification is encoded as a SAT problem that can be given to
an off-the-shelf solver. Section 5 describes and discusses a realistic application in the field of
geovisualization [KL18, KL19], before Section 6 concludes the paper.

We use the geovisualization application as a running example throughout the paper. The goal
in that application is to create a topographic map depicting bird movement patterns in the Nether-
lands, by combining existing geovisualization tools that perform the required operations. We use
the tools from the popular GMT (Generic Mapping Tools) [WS91] collection of command line
tools, which perform various geospatial operations. With a semantic description of the available
input data, the desired output and additional workflow constraints, APE discovers and composes
workflows from the tools that perform the given task. Figure 1 shows an example of a possible
workflow automatically created by the synthesizer.

2 Background and Related Work

Unlike typical compilers that translate well-defined high-level languages to machine code, using
sets of syntactical rules, program synthesis is typically accomplished by performing some type
of search over the search space of programs consistent with the specification, usually resulting
in more than one possible solution. Two major challenges in program synthesis are the state
explosion of the search space [Val98, LV13], caused by the combinatorial nature of the problem,

1 https://github.com/sanctuuary/APE

3 / 25 Volume 078 (2019)

https://github.com/sanctuuary/APE

Workflow Discovery with Semantic Constraints

and the correct interpretation of the user intent. Both are non-trivial problems that were tackled
from different angles throughout the years. This resulted in development of various synthesis
techniques [BJ13a, GPS17], as well as application to many different domains. According to
Gulwani [Gul10], each synthesis approach can be characterized by three essential dimensions:
1) the way the user intent is being provided, 2) the search space of the candidate programs that
it searches and 3) the algorithm used to perform the search.

User intent is an obvious choice for a key characteristic of synthesis approaches. It defines the
interaction between the user and the synthesis framework, essential for the applicability of the
approach. The main goals of modeling the user intent are to have an intuitive way of providing
the specification (what is considered intuitive typically depends on the targeted users) and to
remove ambiguities in the specification.

Early synthesis approaches relied on the existence of a complete and formal specification of
the program. Some approaches used theorem provers to construct a proof of the user specifica-
tion, and the logical program itself [Gre69, MW71], while others used program transformations
over abstract program specifications to produce the desired low-level programs [MW75]. How-
ever, providing the initial specification proved to be as complex as writing the program itself.
This led to a focus shift [Smi75, SSG75, Sum86] from deductive program specification to induc-
tive specifications, such as input-output examples, partial specification, etc. It has also become
common practice to have an interactive loop between the user and the synthesis algorithm, where
the user, based on the provided candidate solutions in the previous step, can provide additional
examples or specification constraints in order to resolve ambiguities.

Many current approaches use formal logic descriptions to provide the user intent [SGF10].
It is used to describe the logical relation between the program input and the program output.
However, these types of specifications are usually quite hard to construct, as they require the
user to be familiar with the underlying logic. Although the work presented in this paper falls
under this category, similarly to PROPHETS, it uses natural-language templates for providing
the specification, and so accounts for users not trained in logics or formal specification. This
type of user intent would, according to [Gul10], be categorized between logical and natural
language specification.

Although the formal specification allows for a quite accurate description of the user intent, end
users might not find it intuitive and straightforward. To solve this issue, some approaches focus
on an example-based specification format [Gul16, Gul11] to model the user intent. This type of
problem specification allows users to provide examples of desired outputs based on given inputs.

Some approaches allow for a partial description of the program as part of the specification
of the user intent. This approach is also called sketching [SL08]. Loose programming as in
PROPHETS is another example of the same underlying idea. As an example from the eScience
community, the WINGS (Workflow Instance Generation and Selection) framework [GRKo11]
employs the idea of providing a workflow template, where individual steps can be left out and
are automatically included based on the context when the template is instantiated.

Finally, programmers might sometimes consider a programming language as the best means
for specifying their intent. This is applied in superoptimization of code [PTBo16, GJTV11]
and in the synthesis of program inverses [Dij79], such as compression/decompression, encryp-
tion/decryption, etc.

ISoLA DS+IS 2018 4 / 25

ECEASST

The search space is defined by the structures that can be provided as synthesis output, as well as
by the restrictions made on the problem implementation. Furthermore, its size and complexity is
crucial for the computational complexity of the synthesis problem. The search space should keep
balance between the expressiveness of the framework and efficiency of a search over it. In other
words, it should be comprehensive enough to support a large set of candidate programs, and at the
same time restrictive enough to support efficient search mechanisms. Thus, synthesis approaches
tend to limit the search space in some way in order to improve their runtime performance.

In practice, the search space can vary from programs in general programming languages to
such in domain-specific formalisms. It is defined by the supported operators and control struc-
tures. Our approach targets programs that restrict control structure to linear/sequential programs,
also referred as loop-free programs. Another such approach is the previously mentioned super-
optimization approach [GJTV11], implemented using SMT solvers. Loop-free programs can
express a wide range of computations, such as text-editing programs [MW92, LDW00], API call
sequences [MXBK05], and unbounded data type manipulations [KMP+10].

Other approaches allow the user to provide a skeleton (grammar) of the space of possible
programs in addition to the specification [ABJ+13]. As the grammar provides structure for the
hypothesis space, these approaches can yield more efficient search procedures. Additionally, a
strict grammar ensures better interpretability of the candidate solutions. Examples of such ap-
proaches include the aforementioned Sketch [SL08] and WINGS systems, the looping templates
described in [SGF10], etc.

The search technique can be based on enumerative search, deduction, constraint solving, sta-
tistical techniques, or a combination of these. Our approach uses constraint solving techniques,
also categorized as logical reasoning based techniques. The main idea is to reduce the synthe-
sis problem to a SAT problem, and then use an off-the-shelf SAT solver to explore the search
space. The reduction typically involves two steps: constraint generation and constraint solv-
ing. The constraint generation procedure involves the generation of the logical constraints, such
as the logical relation between inputs and outputs, whereas resolving of the constraints yields
the desired program. The latter involves the translation of the generated logical constraints into
the corresponding SAT constraints and the usage of the SAT solver as the synthesis reasoner.
Counterexample-guided inductive synthesis (CEGIS), as used in the Sketch system [SL08], is
another popular constraint solving method.

3 Domain Knowledge and User Intent

As discussed in the previous section, one of the two main challenges in program synthesis is
accurately capturing the user intent, that is, the specification of the desired program. We follow
the modeling framework introduced by Steffen et al. [SMF93, FSMZ95, SMB97, MS07] for this
purpose, as it has proven to be suitable and effective in practice for similar applications [PLIS18,
Lam13, ALM16]. It comprises two main parts:

• Domain Knowledge: Taxonomies of types and tools as controlled domain vocabulary, and
the semantic annotation of tools with them (see Sections 3.1 and 3.2).

5 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

• User Intent: Logical constraints that describe intended workflow(s) using terms from the
domain model (see Section 3.3).

The idea is that experts from the application domain are in charge of modeling the domain
knowledge, and that this modelling allows the end users (workflow developers) to simply use the
domain knowledge as vocabulary to express their intents.

3.1 Modeling Domain Knowledge: Taxonomies

To properly capture user intent, it is essential to use clear and precise terminology. It should
be abstract enough not to require users to be familiar with the actual tools used in the domain,
and still concrete enough to accurately capture the desired goal. In order to support different
levels of abstraction, terms for domain tools and data types are organized in taxonomies, tree-
like structures composed of semantic tools and data types, respectively.

A taxonomy T = (C,A,→) is an acyclic directed graph, where C represents a set of concrete
elements from the domain (a concrete tool, a concrete data format, etc.), A represents a set of
conceptual elements, or classes, used to provide abstraction over the concrete elements, and→
is a relation is a over the two sets, specifically, over concrete and conceptual elements c→ a,
where c ∈C,a ∈ A, or pairs of conceptual elements a1→ a2, where a1,a2 ∈ A.

Figure 2: Tool Taxonomy for the Geovisualization Use Case Scenario

ISoLA DS+IS 2018 6 / 25

ECEASST

The tool taxonomy TM = (CM,AM,→M) shown in Figure 2 shows a tool classification from
the geovisualization case study, where CM is a set of concrete tool implementations from the
domain (rectangles) and AM is a set of abstract/conceptual tools from the domain (ellipses) that
represent groups of concrete tools that share common properties. Edges in the figure represent
the →M (is a) relations. The concrete tools (leaves in the presented taxonomy) correspond to
the most specific operations, technically the executable units in the domain. For example, the
tool pscoast s in the lower right corner of the tool taxonomy is a command line operation used
to automatically color water surfaces on a map. The is a relation abstracts from the actual tool
and allows the user to refer to it as a conceptual tool that Draws water mass (we also say that
pscoast s is a subtool of Draws water mass). Note that there is not necessarily a one-to-one cor-
respondence between concrete tools in the taxonomy and real-world tools that implement them.
In some cases, several tools in the taxonomy refer to the same executable tool (polymorphism).
For example pscoast B, pscoast Bt, pscoast U and pscoast Td all call the pscoast command line
tool, but with different parameters, causing it to perform different operations.

Figure 3: Type Taxonomy for the Geovisualization Use Case Scenario

The type Taxonomy TT = (CT ,AT ,→T) shown in Figure 3 is defined in the same way, describ-
ing the data types in the geovisualization case study. CT is a set of concrete types that directly
correspond to data instances that are used by domain tools. AT is a set of abstract types that
represent groups of concrete types. The term subtype corresponds to the definition of subtool.

Note that in some domains, data are classified according to multiple disjoint criteria. We refer
to them as dimensions. For example, in an application from the bioinformatics domain [PLIS18],
inputs and outputs are described by two dimensions of data, namely types and formats. The data
type describes semantic properties of a data instance, while the data format is about the syntactic
representation. APE supports annotation of such domains using disjoint dimension taxonomies,
but for simplicity we focus on a simple, one-dimensional type taxonomy in this paper.

Technically, we use a subset of the W3C Web Ontology Language (OWL) [AH04] to represent
the taxonomies. OWL is a well-known Semantic Web language designed to represent ontologies,
which has become the de facto standard for ontologies in many domains. Major domain ontolo-
gies, such as the EDAM data and methods ontology in bioinformatics [IKJ+13], are provided in
OWL and can thus directly be used in our framework. OWL can be used to describe complex

7 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

relations between classes, but our framework only uses the concepts and concept inclusions (i.e.,
only the taxonomy part of the OWL file) to define and classify the taxonomy elements.

3.2 Modeling Domain Knowledge: Tool Annotations

In order to be able to combine concrete tools, the synthesizer needs to know how these tools
operate over data types. In practice, tools can perform complex operations over data types and
implement various transformations on them. However, at the semantic level, we abstract these
relations into two basic functions, known from data-flow analysis:

• use(·) : CM → P(CT) – in order for a tool x to be executed, elements of the set of types
use(x) must be available

• gen(·) : CM → P(CT) – after execution of a tool x, elements of the set of type gen(x) are
available

The two functions can also be referred to as input(·) and out put(·) respectively, which is more
natural terminology for computational tools. Table 1 lists a selection of concrete tools from the
geovisualization case study, each with its name, function description and its (possibly empty) sets
of input and output types. In practice it has proven to be reasonable to only use the “payload”
inputs/outputs in the annotation, and not all parameters that a tool might have. The latter tends
to blow up the search space without actually being helpful to find new meaningful solutions.

Name Description Type in (uses) Type out (gen)
add grd Provide a grid file NetCDF
grdgradient Compute directional gradient NetCDF Intensfile
makecpt Make color palette tables cpt file cpt file

...
grdview 3-D imaging of 2-D gridded data NetCDF, cpt file PostScript
pscoast W Draw water borders PostScript PostScript
initGMT Setup the GMT map environment PostScript
gs Tool used to display graphical files Plots

Table 1: Annotation of concrete tools in Geovisualization Use Case Scenario

Technically, we use a JSON representation for the tool annotations that follows the JSON
representation of tool function applied in the bio.tools registry [IRMo16]. For each tool function
we annotate its name and ID, the operation(s) that it performs, a set of inputs, a set of outputs and
a command that corresponds to the tool execution. The last information is crucial for automated
implementation of the workflow. The current version of APE supports simple shell commands
only, resulting in a shell script workflow implementation. However, we plan to extend it to
support other commonly used languages, such as CWL [ACT+16], NextFlow [DCFo17], etc.

3.3 Modeling User Intent: Temporal Constraints

We use Semantic Linear Time Logic (SLTL) [SMF93, FSMZ95], an extension of the well-known
Linear Time Logic (LTL), as a flexible and intuitive language for modeling the user intent.

ISoLA DS+IS 2018 8 / 25

ECEASST

However, in order to allow non-experts to proficiently use the formalism, we provide a natural-
language templates to complement the formal representation.

Definition 1 The syntax of SLTL can be described by the following BNF:

Φ ::= true | type(tc) | ¬Φ | Φ∧Φ | 〈mc〉Φ | GΦ | ΦUΦ

where tc and mc represent constraints over types and tools, respectively.

In our implementation, type and tool constraints are limited to using propositions that corre-
spond to concepts from the type and tool taxonomies. SLTL formulas are interpreted over all
legal paths, that is, as we explain further in Section 4, in our case type-correct alternating se-
quences of types and tools. The sequences start and end with types. A formal definition of SLTL
is available in [SMF93, FSMZ95]. Intuitively, the constructs mean the following:

• true is satisfied by every path.

• type(tc) is satisfied by every path whose first element (a type) satisfies the tc type con-
straint.

• ¬ (negation) and ∧ (conjunction) are interpreted in the usual fashion.

• 〈mc〉Φ is satisfied by paths whose second element (i.e., the first tool in the sequence)
satisfies the tool constraint mc and whose first suffix subpath2 satisfies Φ. This modal
operator represents a parameterized version of the next-time operator of LTL. Thus, we
use XΦ to denote 〈true〉Φ, i.e. paths whose first suffix path satisfies Φ, disregarding the
initial tool in the sequence.

• GΦ is satisfied if Φ is satisfied globally, i.e. for every suffix subpath of the path.

• ΦUΩ is satisfied if property Φ holds in the first n suffix subpaths, where n ∈ N, until a
suffix subpath is reached, that satisfies the property Ω. The until operator is interpreted as
strong until, thus it guarantees that the property Ω holds eventually. The operator finally
(FΩ) is used to simplify a commonly used notion trueUΩ.

The language is quite expressive and can accurately capture the user intent. However, to be
used proficiently, it requires the user to be familiar with the underlying temporal logic. Consider-
ing that we do not expect that from our users, the framework provides natural-language templates
that correspond to SLTL formulas. The user works with natural-language cloze texts, combined
with the terms from the taxonomies, that will be automatically transformed into the underlying
logic. Based on our previous experience with PROPHETS and its practical use cases, we have
defined a set of most commonly used templates for describing the user intent (see Table 2). A
simple example of such a constraint would be “Use tool gs in the solution.” (see T5 in Table 2)
where gs is a tool defined in the tool taxonomy (see Figure 2).

2 A suffix subpath is the part of the original path that is obtained by removing the first n pairs of types and tools (2n
elements) from it, where n ∈ N. First suffix subpath is a suffix subpath where n = 1.

9 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

ID Constraints in natural-language Constraints in SLTL

T1 If tool Tool 1 is used, tool Tool 2
has to be used subsequently

G(¬ 〈Tool 1〉 true |
X F 〈Tool 2〉 true

T2 If tool Tool 1 is used, tool Tool 2
cannot be used subsequently

G(¬ 〈Tool 1〉 true |
X G ¬ 〈Tool 2〉 true

T3 If tool Tool 1 is used, tool Tool 2 must have
been its direct predecessor in the sequence

Not expressible in SLTL

T4 If tool Tool 1 is used, tool Tool 2
has to be used next in the sequence

G(¬ 〈Tool 1〉 true |
X 〈Tool 2〉 true

T5 Use tool Tool 1 in the solution F 〈Tool 1〉 true
T6 Do not use tool Tool 1 in the solution G ¬ 〈Tool 1〉 true

T7 Use Tool 1 as last tool in the solution.
F 〈Tool 1〉 true &
G(¬ 〈Tool 1〉 true | ¬XX true)

T8 Use type Type 1 in the solution F Type 1
T9 Do not use type Type 1 in the solution G ¬Type 1

Table 2: User Intent: Natural-language templates for SLTL formulas

We are aware of the limitations that the predefined templates present, and thus one of our future
goals is to provide support for arbitrary SLTL formulas. The main target for this extension are
not the end users, but rather the domain experts in charge of modeling the domain knowledge.
This would allow them to define further, possibly domain specific natural-language templates
and map them to the respective SLTL formulas, as also possible in PROPHETS. This way the
framework would not be limited by a predefined and fixed set of constraint templates, while
keeping the abstraction layer over the underlying logic for the end users.

4 Encoding as SAT Problem

This section relates to the second challenge in program synthesis, the state explosion of the
search space. As it is sufficient for our workflow discovery to produce sequential computational
pipelines, we reduce the search space to loop-free programs, with predefined control flow struc-
ture. Regarding the search technique dimension of the program synthesis [Gul10], the approach
uses logical reasoning-based techniques. The motivation behind this type of approach is to re-
duce the problem to a SAT instance and benefit from state-of-the-art solving technologies.

To encode the synthesis problem as SAT instance we incorporate some well known ideas from
planning as satisfiability [KS92, KS96]. Our main idea is to provide an encoding of the general
workflow structure, which is further enhanced with propositional constraints that correspond to
the domain model and user intent. Then, an off-the-self SAT solver can be used as a reasoning
engine. This section covers each of the mentioned steps. First, we describe the encoding of
the general workflow structure in propositional logic. Second, we discuss the encoding of the
domain model, i.e. the encoding of the taxonomy structure and input and output dependencies.
Third, we explain the propositional encoding of the temporal constraints that correspond to the
user intent. Finally, we present the constraint solving and the output format of our approach.

ISoLA DS+IS 2018 10 / 25

ECEASST

4.1 Encoding the Workflow Structure

Bounded Model Checking [BCC+03] has proven to be very successful in practice and to make
verification problems tractable. We use a similar approach and reduce Bounded Workflow Syn-
thesis to a SAT problem. To encode our problem in propositional logic and use techniques
presented in [BCC+03], our search space has to be bounded and well-structured. In other words,
we need to find a propositional encoding that would be flexible enough to capture different work-
flow scenarios, and still structured enough to provide unambiguous solutions when mapped back
to the workflow structure. Although bounding the length of the solution limits the solutions that
can be found to a specific length, iteratively increasing the bound and creating an encoding for
each of them allows for the exploration of workflows of any length.

Figure 4: Message passing design

Figure 5: Shared memory design

Our focus are computational pipelines, that is, linear workflows that represent the sequential
execution of tools with no explicit branching on the control-flow level. We distinguish two
main workflow structure designs: 1) The message passing design, where data can be transferred
exclusively between consecutive tools in the workflow. 2) The other structure supports the more
commonly used shared memory design, where each tool can access the data created by any of the
preceding tools. The designs follow the structure presented in Figs. 4 and 5, respectively3. In the
rest of the paper, the encoding and examples will use the shared memory design (see Figure 5).
The transition from one design to the other is straightforward.

As mentioned before, APE does not support loops, rather we assume that each loop can be
flattened into a repetitive sequence of tools. Therefore, we restrict the framework to finite se-
quences of states and do not support infinite behaviour of the system. Particularly, three main
points justify this decision. First, based on our experience with computational pipelines in differ-
ent scientific application domains, in practice loops tend to be trivial enough to be flattened into

3 Note that the presented structures of the program differs from the mentioned SLTL definition of the path, which
consisted of alternating single type and tool elements. However, if we abstract each set of types that is created in
single step (e.g. the initial k inputs) into an element, we can obtain the mentioned path structure.

11 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

sequential executions. Second, as suggested in [BCC+03], infinite behaviour could be supported
through implementation of loops in our system. However, this would require a more complex en-
coding and ultimately increase the reasoning time. Third, trivially allowing loops in the structure
would create redundant solutions for the user, such as looping over tools with no output. Solving
this problem would require to properly capture the related user intent. In addition, heuristics
would need to be introduced for ranking looping sequences. These are not trivial tasks.

For our initial encoding, we need a formula that captures all workflows of length n (n ∈ N),
where n is a bound of our workflow. Let k be the biggest output type index among the domain
tools, that is, the biggest number of outputs per tool, Next and Outx the transition relations of our
system as a propositional formula, Memx a predicate over the type variables defining existence
of an instance in the memory and Init a predicate over the module variables defining the initial
state of the workflow. A workflow of length n is encoded by the formula:

[[W]]n := Init(m1)∧
n∧

i=2

Next(mk−1,mk)∧
n∧

i=1

k∧
j=1

Out j(mi, t
j
i)∧

n−1∧
i=0

k∧
j=1

Memi(t
j
i) (1)

The tool states are represented as m1, ...,mn, where Init(m1) defines m1 as a first tool in a se-
quence and Next(mk−1,mk) defines mk−1 and mk as consecutive tools in execution. The type
states are represented as t1

0 , ..., t
k
n , where Out j(mi, t

j
i) encodes type state t j

i as output state of the
tool in tool state mi. In addition, Memi(t

j
i) labels the type used in type state t j

i as available in
memory to be used by the tools in states mx, where x > i. Furthermore, type states t1

0 , ..., t
k
0 rep-

resent the input provided to the workflow, while type states t1
n , t

k
n represent outputs from the last

tool, hence the desired final output of the workflow. We refer to it as final output, considering
that the intermediate tools can still produce outputs that are available to the user, as long as we
adhere to the shared memory design.

Example 1 Our goal is to synthesize a workflow whose length is bounded to n = 2 and the
biggest domain output type index is k = 2. The first step of the encoding is the workflow struc-
ture, which is as follows:

[[W]]2 := Init(m1)∧Next(m1,m2)∧Out1(m1, t1
1)∧Out2(m1, t2

1)∧
Out1(m2, t1

2)∧Out2(m2, t2
2)∧Mem0(t1

0)∧Mem0(t2
0)∧

Mem1(t1
1)∧Mem1(t2

1)∧Mem2(t1
2)∧Mem2(t2

2)

4.2 Encoding the Domain model

Once the initial structure has been encoded, we define the rules that translate our domain knowl-
edge into a set of propositional formulas. This includes preserving input and output types for
each tool, preserving the classifications defined by the taxonomy and ensuring that none of the
states in our encoded transition system violates the intended structure, that is, ensure that each
state that corresponds to a tool (or type) is represented by exactly one tool (or type) predicate.
These constraints ensure that our structure can be unambiguously mapped to exactly one work-
flow representation. The rest of this section presents the encoding of the domain model.

ISoLA DS+IS 2018 12 / 25

ECEASST

Preserving tool inputs. Let n be the workflow bound and k the biggest output type index. In
order for our (shared memory) structure to preserve tool input relation, for each tool X and for
each type Y ∈ in(X) we define the formula:

[[In(X)]]n :=
n∧

i=1

(
X(mi) =⇒

i−1∨
p=0

k∨
q=0

Y (tq
p)

)
(2)

The formula encodes a condition where the usage of the tool X in a certain tool state mi re-
quires the type Y to be provided in a type state tq

p prior to it, i.e. Memp(t
q
p) where p < i). Notice

that for the first tool (tool state m1), the only prior type states are the workflow inputs encoded as
Mem0(t1

0)−Mem0(tk
0) in (1).

Example 2 We extend Example 1 with the encoding of tool inputs. To simplify the example we
present the encoding of a single tool input, using the tool makecpt (see Table 1), which makes a
‘color palette tables’ and the input type it requires is a ‘cpt file’. The encoding is as follows:

[[In(makecpt)]]2 :=
(

makecpt(m1) =⇒ cpt f ile(t1
0)∨ cpt f ile(t2

0)

)
∧(

makecpt(m2) =⇒ cpt f ile(t1
0)∨ cpt f ile(t2

0)∨

cpt f ile(t1
1)∨ cpt f ile(t2

1)

)
Preserving tool outputs. The following set of formulas encodes the preservation of the tool
output relations. Let n be the workflow bound and k the biggest output type index. For each tool
X and list of types Y1, ..,Yp, where p≤ k and Yi ∈ out(X), ∀i ∈ [1, p] we define the formula:

[[Out(X)]]n :=
n∧

i=1

(
X(mi) =⇒

p∧
j=0

Yj(t
j
i)

k∧
j=p+1

empty(t j
i)

)
(3)

The formula encodes a condition where the usage of the tool X in a tool state mi, requires
the types Y1, ..,Yp to be used in the type states that follow t0

i − tk
i , i.e. type states encoded as

Out j(mi, t
j
i), for j ∈ [0,k] in (1). In case that p is smaller than the possible number of outputs,

the rest of the type states are empty.

Example 3 We extend Example 2 with the encoding of tool outputs. In order to simplify the ex-
ample we show the encoding of a single tool input for the mentioned tool makecpt (see Table 1).
The tool has one output type, which is cpt file. The encoding is as follows:

[[Out(makecpt)]]2 :=
(

makecpt(m1) =⇒ cpt f ile(t1
1)∧ empty(t2

1)

)
∧(

makecpt(m2) =⇒ cpt f ile(t1
2)∧ empty(t2

2)

)
13 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

Preserving taxonomy classification. In order to preserve a classification provided by the tax-
onomy, we introduce a set of formulas that encode the dependency between tools and types and
their subclasses. In other words, the encoding implies that once a conceptual tool/type has been
used in a state, at least one of its subtools/subtypes needs to be used as well, and vice versa.
For each conceptual element X in the tool taxonomy and list of its subtools Y1, ..Yp, such that
Yi→M X ,∀i ∈ [1, p] we define the following formula:

[[Tax(X)]]n :=
n∧

i=1

((
X(mi) =⇒

p∨
j=1

Yj(mi)
)
∧
(p∨

j=1

Yj(mi) =⇒ X(mi)
))

(4)

The first part of the formula enforces usage of at least one of the subtools of X in a certain state,
providing that X was used in that state as well. The second part of the formula enforces usage of
the tool X , providing that at least one of its subtools is used in the same state. The type taxonomy
classification (not shown) is encoded in exactly the same manner.

Example 4 We extend Example 3 with the encoding of tool and type taxonomies. To keep the
example simple we show the encoding of a subtaxonomy that consists of an abstract tool Write
title and its two subtools pscoast Bt and psbasemap Bt (see the right-hand side of Figure 2).
For simplicity of the notion the tools are abbreviated as WT, C Bt and B Bt, respectively. The
encoding is as follows:

[[Tax(WT)]]2 :=
(

WT (m1) =⇒ C Bt(m1)∨B Bt(m1)

)
∧(

C Bt(m1)∨B Bt(m1) =⇒ WT (m1)

)
∧(

WT (m2) =⇒ C Bt(m2)∨B Bt(m2)

)
∧(

C Bt(m2)∨B Bt(m2) =⇒ WT (m2)

)
Enforcing state correctness. In order to ensure that each solution provided by the solver cor-
responds to exactly one workflow structure, we need to encode two types of rules. Let n be the
workflow bound and k the biggest output type index. First, we ensure that for each state in the
transition system, the correct kind of element (tool or type) is being used:

[[Exist]]n :=
k∧

j=1

type(t j
0)∧

n∧
i=1

(
tool(mi)∧

k∧
j=1

type(t j
i)

)
(5)

The formula enforces that a type needs to be used in each type state t j
i , labeled as Memi(t

j
i) in (1)

and a tool in each tool state mi, labeled as Init(mi) or Next(mi−1,mi) in (1). In this scenario it is
enough to require usage of the root elements of the taxonomies, due to the previous encoding of
the taxonomy. Second, we have to avoid conflicts of using two different concrete tools or types

ISoLA DS+IS 2018 14 / 25

ECEASST

in the same state of the structure. Let n be the workflow bound. For each pair of concrete tools
X1 and X2, we introduce the formula

[[Con f (X1,X2)]]n :=
n∧

i=1

¬X1(mi)∨¬X2(mi) (6)

to eliminate conflicts regarding the usage of multiple concrete tools simultaneously. The formula
forbids usage of two different concrete tools in a single tool state. A similar encoding is used to
eliminate overlapping usage of concrete types.

Example 5 We extend Example 4 with the encoding of state correctness. To simplify the ex-
ample we show the encoding of mutual exclusion of just two concrete tools, makecpt and gs (see
Figure 2), but omitting the mutual exclusion of data types. The encoding is as follows:

[[Exist]]2 := type(t1
0)∧ type(t2

0)∧ tool(m1)∧ type(t1
1)∧ type(t2

1)∧
tool(m2)∧ type(t1

2)∧ type(t2
2)

[[Con f (makecpt,gs)]]2 :=
(
¬makecpt(m1)∨¬gs(m1)

)
∧
(
¬makecpt(m2)∨¬gs(m2)

)

4.3 Encoding the Temporal Constraints

The encoding of the workflow and the domain model is already sufficient to provide valid work-
flow solutions to being reasoned over. However, we do not only want to be able to generate any
executable workflow, but specific workflows based on a specification of a concrete user intent.
Thus, the next step is to enhance the encoding with user intent, provided as SLTL formulas.

In order to accomplish that, we need to provide a mechanism for transforming SLTL formulas
into propositional logic. The transformation used in the implementation is based on the frame-
work introduced in [BCC+03], which provides a mechanism for transforming arbitrary LTL
formulas into propositional formulas. The paper distinguishes between transformations of LTL
formulas that include loops in their path, and those that do not. As we are dealing with loop-free
computational workflows here, we focus on the latter.

As mentioned earlier, currently our implementation is limited to the transformation of the
most commonly used SLTL formulas into propositional logic, i.e. those that we also turned into
constraint templates (see Section 3.3). We plan to develop a framework for the transformation
of arbitrary SLTL formulas in the future, based on the framework of Biere et al. [BCC+03] for
transformation of arbitrary LTL formulas.

Definition 2 Let n be the workflow bound and k the biggest output type index. The notion [[f]]in
refers to the interpretation of the SLTL formula f in the i-th state of the path of length n, where
each state is a pair of type and tool elements. Translation of SLTL formulas into propositional

15 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

format is as follows:

[[p]]in := p(t1
i)∨ ...∨ p(tk

i) [[G f]]in := [[f]]in∧ [[G f]]i+1
n

[[〈q〉true]]in := q(mi+1) [[F f]]in := [[f]]in∨ [[G f]]i+1
n

[[¬p]]in := ¬p(t1
i)∧ ...∧¬p(tk

i) [[X f]]in := [[f]]i+1
n

[[¬〈q〉true]]in := ¬q(mi+1)

[[f ∨g]]in := [[f]]in∨ [[g]]in
[[f ∧g]]in := [[f]]in∧ [[g]]in

Base case:

[[f]]nn := 0

The translation rules are used to transform the user specification from the natural-language
templates into propositional logic, based on their SLTL representation (see Table 1). The follow-
ing example illustrates an SLTL transformation.

Example 6 We extend Example 5 with the encoding of the SLTL formula φ =G¬〈grdview〉true
(“Do not use tool grdview in the solution.”, see T6 in Table 2). The translation of φ to a proposi-
tional formula is as follows:

[[G¬〈grdview〉true]]02 := ¬grdview(m1)∧ [[G¬〈grdview〉true]]12, where

[[G¬〈grdview〉true]]12 := ¬grdview(m2)∧ [[G¬〈grdview〉true]]22, where

[[G¬〈grdview〉true]]22 := 0

This framework defines straightforward translations of the SLTL formulas. However, some-
times the encoding of commonly used formulas can be unnecessarily complex. One such ex-
ample is the SLTL constraint that specifies the last tool in the solution program (see T7 from
Table 2). To express such a constraint in SLTL, e.g. “Use tool Y as the last tool in the solution”,
we would have to use few different modal operators, as follows:

[[T7]]n := [[F〈tool Y 〉true ∧ G(X X true∨〈tool Y 〉 true∨¬X true)]]0n

or

[[T7]]n := [[G F〈tool Y 〉true]]0n

However, considering that the workflow has a fixed bound, this type of constraints can be directly
encoded in the structure, optimizing the encoding. Thus, APE rewrites the encoding into a
simpler formula, where n is the bound of the workflow:

[[T7]]n := tool Y (mn)

Thus, an additional advantage of our current encoding is that the natural-language templates
can be extended with some formulations that are not directly supported under SLTL, without

ISoLA DS+IS 2018 16 / 25

ECEASST

extending the formal language specification. Another such example is constraint T3 from Table 2
that uses the temporal modal operator previous (inverse of next).

Finally, once the complete encoding is provided, it is sent to the MiniSAT solver [EEN05]
to actually perform the synthesis. Based on the solutions provided by the solver, candidate
workflows and their executable implementations are provided to the user. In this study, we
perform the search for possible workflows until the first depths where solutions are found (the
search depth is the same as the length of the solutions). Usually, the shortest solutions are also
the most relevant with respect to the workflow specification, as they present the smallest number
of steps necessary to satisfy it. In order to illustrate, if we look at our running example (see
Examples 1 - 6) and assume that there is no initial input provided to the workflow, some of the
proposed solutions would be:

• initGMT→ gs

• initGMT→ pscoast W

• add grd→ makecpt

where the arrows denote the order in which the tools are being executed, i.e. the first solution
suggests using tools initGMT and gs in a sequence. For the current specification, each solution is
of length 2 and none of the solutions includes the tool grdview, due to the user intent constraint
that excludes this tool (see Example 6). Additionally, each tool that is suggested as first in the
sequence does not require any input, considering that we did not provide any initial workflow
input. Similarly, the second tool is limited to the tools that require no input or the input that
was provided as the output of the first tool. To illustrate, we will elaborate the first proposed
solution. It represents a workflow that uses initGMT command to instantiate a GMT program
and to generate an empty map, while the second command - gs, displays the generated map
to the user. Although the workflow does not perform any notable computations, it is one of
the smallest programs that satisfy the constraints presented in Examples 1 - 6. That is why an
accurate specification of the program is as important as the program synthesis algorithm itself.

5 Geovisualization Application Example

In this section we describe the aforementioned geovisualization application in some more de-
tail4. We discuss the quality of the provided candidate solutions and the runtime performance
of the synthesis algorithm, which are key aspects for the applicability of synthesis frameworks
in practice. A complete description of the scenario, where we elaborate on the context of the
application and the steps taken to implement it, can be found in [KL19].

The geovisualization workflow use case is about creating a computational pipeline that pro-
duces a topographic map depicting waterbird movement patterns in the Netherlands (see E4 in
Figure 6). Wildlife tracking is an important method for biologists and scientists around the world
to improve their understanding of animal behavior. The use case combines tools from the GMT

4 https://github.com/sanctuuary/APE UseCases/tree/master/GeoGMT

17 / 25 Volume 078 (2019)

https://github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT

Workflow Discovery with Semantic Constraints

(Generic Mapping Tools) [WS91] collection with data from the Movebank [KCW+11] online
database of animal tracking data.

The domain model consists of the two taxonomies described earlier (see Figs. 2 and 3) and
the tool annotations as shown in Table 1). The example required five iterations of workflow
specification and interactive refinement in order to produce the completely annotated topographic
map depicting waterbird movement patterns in the Netherlands. The first synthesis run for the use
case is performed over the waterbird movement data file as input and four simple constraints (see
E0.1 - E0.4 in Table 3), describing the intent of plotting water mass, land, political borders and
displaying the PostScript file (commonly used in the geospatial domain to generate raw maps).
The synthesis tool finds first 32 candidate solutions of length 6. Evaluation of the first 3 candidate
solutions resulted in choosing the output presented under label E0 in Figure 6. Although the
resulting map is not completely annotated, it provides a good base for further refinement of the
specification towards the actually intended solution.

In the presented example, labels E1.1 - E4.4 in Table 3 describe four refinement steps and
labels E1 - E4 in Figure 6 show the outcomes of the corresponding synthesized workflows.
These refinement steps are part of the interactive loop between the user and the algorithm, which
is, as mentioned before, quite common practice in program synthesis.

The quality of the results obtained by the workflow discovery framework essentially depends
on the quality of the domain model. Only an accurate and detailed formalization of the relevant
technical domain knowledge enables the process developer to specify the intended workflow in
a simple and precise manner, and the discovery framework to provide accurate and satisfying
solutions. Even if we look at the initial synthesis, the domain model provides a vocabulary
capable of capturing abstract concepts such as “Use tool Draw land” and implementing them
using appropriate GMT operations. As we have shown in the previous section, workflows can be
specified using only abstract terms from the domain model, with no knowledge about the GMT
being required for that step. In principle, the concrete tools could be replaced with corresponding
ones from a different tool set, and without changing the specification the synthesis would return
different, but semantically equivalent workflows.

Regarding the required time for executing the synthesis and the impact of state explosion
effects, the performance of our new implementation on the geovisualization application example
was very promising: It needed about 0.08 sec to detect an unsatisfiable specification, and about 1

Figure 6: Output of each synthesis iteration (E0 - E4)

ISoLA DS+IS 2018 18 / 25

ECEASST

ID Constraints in natural-language Constraints in SLTL
E0.1 Use tool Draw water F 〈Draw water〉 true
E0.2 Use tool Draw land F 〈Draw land〉 true
E0.3 Use tool Draw political borders F 〈Draw political borders〉 true

E0.4 Use Display PostScript as last
module in the solution

F(〈Display PostScript〉 true
G(¬〈Display PostScript〉 true |
¬X X true))

E1.1 Use tool Draw boundary frame F 〈Draw boundary frame〉 true
E1.2 Use tool Write title F 〈Write title〉 true
E1.3 Use tool Draw time stamp logo F 〈Draw time stamp logo〉 true
E1.4 Use tool Draw lines F 〈Draw lines〉 true
E1.5 Use tool Draw points F 〈Draw points〉 true
E2 Use tool Add table F 〈Add table〉 true
E3 Use tool 2D surfaces F 〈2D surfaces〉 true
E4.1 Use tool 2D surfaces F 〈2D surfaces〉 true
4.2 Use tool Gradient generation F 〈Gradient generation〉 true
E4.3 Use tool Modules with cp output F 〈Modules with cp output〉 true
E4.4 Use tool Draw color range F 〈Draw color range〉 true

Table 3: Synthesis constraints used in each iteration (E0 - E4)

sec to find the first 200 solutions in case of a satisfiable specification, which is hardly noticeable
for a user of the system. A more systematic evaluation of APE’s runtime performance is planned
for the near future, when further workflow discovery scenarios will be operational. Currently we
are working together with partners from the bioinformatics and geospatial domains on two new
real-life applications with greater complexity.

6 Conclusion

Program synthesis techniques have been shown to be applicable to realize the idea of workflow
discovery through semantics-based automated component identification and composition accord-
ing to high-level specifications of intended computational pipelines. In this paper we describe
APE (the Automatic Pipeline Explorer), a new implementation of a constraint-driven workflow
discovery approach that allows for a formulation of user intentions on an abstract, conceptual
level. This is not only useful to prune the search space in order to filter out irrelevant results. A
decrease of the size of the search space usually also means a speedup of the synthesis process. It
lies in the nature of synthesis problems that they suffer from state explosion effects, that is, the
combinatorial blowup of the search space causing exponential runtime complexity of the algo-
rithms. APE limits the synthesis problem to the creation of finite sequential workflows, and relies
on the efficiency of SAT solving techniques for the implementation of the synthesis algorithm.

The comparison and ranking of the synthesis solutions is an open issue. The current imple-
mentation uses a simple heuristic of ranking the candidate workflows by their length. Although
this is a workable approach in most cases, quite often it is not sufficient on its own to filter out

19 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

less desired options. The synthesis research community regards in particular domain-specific
search heuristics (exploiting e.g. non-functional properties or additional knowledge about, for
example, the preferred ordering of tools) as crucial towards efficient workflow synthesis in prac-
tice [STW+12, BJ13b]. We are therefore going to develop and include search heuristics for
APE’s specific use cases.

Another quite important steps towards a fully automated workflow composition and execution
is data tracing. The solution workflow should provide traces of each data instance from its source
to its utilization, as well as distinguish multiple instances of the same data type. Temporal logic
is not well suited for handling cases of multiple instances of the same data. Thus, one of our next
steps is to extend the formalism underlying APE to be able to handle such cases better.

Future research also needs to address the challenges of large-scale semantic domain modeling,
and, to be adopted by the scientific community, the workflow synthesis frameworks need to be
integrated with the scientists’ accustomed software ecosystems. Ultimately, they should not only
support the construction of computational pipelines, but also their systematic benchmarking with
real input data. These are some of the problems that we are going to address with the future
development of APE, our synthesis-based workflow discovery framework.

Bibliography

[ABJ+13] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, A. Udupa. Syntax-guided synthesis. In 2013
Formal Methods in Computer-Aided Design. Pp. 1–8. Oct. 2013.

[ACT+16] P. Amstutz, M. R. Crusoe, N. Tijani et al. Common Workflow Language, v1.0. July
2016.

[AGMT17] M. Atkinson, S. Gesing, J. Montagnat, I. Taylor. Scientific workflows: Past, present
and future. Future Generation Computer Systems 75:216 – 227, 2017.

[AH04] G. Antoniou, F. van Harmelen. Web Ontology Language: OWL. In Staab and Studer
(eds.), Handbook on Ontologies. International Handbooks on Information Systems,
pp. 67–92. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[ALM16] S. Al-Areqi, A. Lamprecht, T. Margaria. Constraints-Driven Automatic Geospatial
Service Composition: Workflows for the Analysis of Sea-Level Rise Impacts. In
Gervasi et al. (eds.), Computational Science and Its Applications - ICCSA 2016 -
16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part III.
Lecture Notes in Computer Science 9788, pp. 134–150. Springer, 2016.

[BCC+03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded model checking.
Advances in Computers 58:117–148, 2003.

[BJ13a] R. Bodik, B. Jobstmann. Algorithmic program synthesis: introduction. International
Journal on Software Tools for Technology Transfer 15(5):397–411, Oct. 2013.

ISoLA DS+IS 2018 20 / 25

ECEASST

[BJ13b] R. Bodik, B. Jobstmann. Algorithmic Program Synthesis: Introduction. Interna-
tional Journal on Software Tools for Technology Transfer 15(5):397–411, 2013.

[CSG+03] L. Chen, N. Shadbolt, C. Goble et al. Towards a Knowledge-Based Approach to
Semantic Service Composition. In The SemanticWeb - ISWC 2003. P. 319334. 2003.

[DCFo17] P. Di Tommaso, M. Chatzou, E. W. Floden, others. Nextflow enables reproducible
computational workflows. Nature Biotechnology 35:316–319, Apr. 2017.

[Dij79] E. W. Dijkstra. Program Inversion. In Program Construction, International Summer
School. Pp. 54–57. Springer-Verlag, London, UK, UK, 1979.

[DSS+05] E. Deelman, G. Singh, M. hui Su et al. Pegasus: a framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Programming Journal
13:219–237, 2005.

[EEN05] N. EEN. MiniSat : A SAT solver with conflict-clause minimization. Proc. SAT-05:
8th Int. Conf. on Theory and Applications of Satisfiability Testing, pp. 502–518,
2005.

[FSMZ95] B. Freitag, B. Steffen, T. Margaria, U. Zukowski. An Approach to Intelligent Soft-
ware Library Management. In Proceedings of the 4th International Conference on
Database Systems for Advanced Applications (DASFAA). P. 7178. World Scientific
Press, 1995.

[GJTV11] S. Gulwani, S. Jha, A. Tiwari, R. Venkatesan. Synthesis of Loop-free Programs. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’11, pp. 62–73. ACM, New York, NY, USA,
2011. event-place: San Jose, California, USA.

[GPS17] S. Gulwani, O. Polozov, R. Singh. Program Synthesis. Foundations and Trends in
Programming Languages 4(1-2):1–119, July 2017.

[Gre69] C. Green. Application of Theorem Proving to Problem Solving. In Proceedings of the
1st International Joint Conference on Artificial Intelligence. IJCAI’69, pp. 219–239.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1969. event-place:
Washington, DC.

[GRKo11] Y. Gil, V. Ratnakar, J. Kim, others. Wings: Intelligent Workflow-Based Design of
Computational Experiments. IEEE Intelligent Systems 26(1):62–72, Jan. 2011.

[Gul10] S. Gulwani. Dimensions in Program Synthesis. In Proceedings of the 12th Interna-
tional ACM SIGPLAN Symposium on Principles and Practice of Declarative Pro-
gramming. PPDP ’10, pp. 13–24. ACM, New York, NY, USA, 2010. event-place:
Hagenberg, Austria.

[Gul11] S. Gulwani. Automating String Processing in Spreadsheets Using Input-output Ex-
amples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on

21 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

Principles of Programming Languages. POPL ’11, pp. 317–330. ACM, New York,
NY, USA, 2011. event-place: Austin, Texas, USA.

[Gul16] S. Gulwani. Programming by examples (and its applications in data wrangling).
Pp. 137–158. Apr. 2016.

[I+04] E. J. Ilkay Altintas, Chad Berkley et al. Kepler: An Extensible System for Design
and Execution of Scientific Workflows. In Proceedings of SSDBM 2004. P. 2123.
IEEE Computer Society, June 2004.

[IKJ+13] J. Ison, M. Kala, I. Jonassen et al. EDAM: an ontology of bioinformatics operations,
types of data and identifiers, topics and formats. Bioinformatics, 2013.

[IRMo16] J. Ison, K. Rapacki, H. Mnager, others. Tools and data services registry: a community
effort to document bioinformatics resources. Nucleic Acids Research 44(D1):D38–
47, Jan. 2016.

[KBBG08] S. Kona, A. Bansal, M. Blake, G. Gupta. Generalized Semantics-Based Service
Composition. In ICWS 2008. Pp. 219–227. IEEE Computer Society, Sept. 2008.

[KCW+11] B. Kranstauber, A. Cameron, R. Weinzerl, T. Fountain, S. Tilak, M. Wikelski,
R. Kays. The Movebank data model for animal tracking. Environmental Modelling
& Software 26(6):834–835, June 2011.

[KL18] V. Kasalica, A.-L. Lamprecht. Automated Composition of Scientific Workflows: A
Case Study on Geographic Data Manipulation. Pp. 362–363. 10 2018.

[KL19] V. Kasalica, A.-L. Lamprecht. Workflow Discovery Through Semantic Constraints:
A Geovisualization Case Study. In Misra et al. (eds.), Computational Science and
Its Applications ICCSA 2019. Lecture Notes in Computer Science, pp. 473–488.
Springer International Publishing, Cham, 2019.

[KMP+10] V. Kuncak, M. Mayer, R. Piskac, P. Suter, V. Kuncak, M. Mayer, R. Piskac, P. Suter.
Complete functional synthesis. ACM SIGPLAN Notices 45(6):316–329, June 2010.

[KS92] H. Kautz, B. Selman. Planning as satisfiability. In Proceedings of the 10th European
conference on Artificial intelligence. ECAI ’92, pp. 359–363. John Wiley & Sons,
Inc., Vienna, Austria, Aug. 1992.

[KS96] H. Kautz, B. Selman. Pushing the envelope: planning, propositional logic, and
stochastic search. In Proceedings of the thirteenth national conference on Artificial
intelligence - Volume 2. AAAI’96, pp. 1194–1201. AAAI Press, Portland, Oregon,
Aug. 1996.

[Lam13] A.-L. Lamprecht. User-Level Workflow Design - A Bioinformatics Perspective. Lec-
ture Notes in Computer Science 8311. Springer, 2013.

ISoLA DS+IS 2018 22 / 25

ECEASST

[LDW00] T. A. Lau, P. Domingos, D. S. Weld. Version Space Algebra and Its Application
to Programming by Demonstration. In Proceedings of the Seventeenth International
Conference on Machine Learning. ICML ’00, pp. 527–534. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2000.

[LMS09] A.-L. Lamprecht, T. Margaria, B. Steffen. Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10 Suppl 10:S8, 2009.

[LNMS10] A.-L. Lamprecht, S. Naujokat, T. Margaria, B. Steffen. Synthesis-Based Loose Pro-
gramming. In Proc. of the 7th Int. Conf. on the Quality of Information and Com-
munications Technology (QUATIC 2010), Porto, Portugal. Pp. 262–267. IEEE, Sept.
2010.

[LPV+15] J. Liu, E. Pacitti, P. Valduriez et al. A Survey of Data-Intensive Scientific Workflow
Management. Journal of Grid Computing 13(4):457–493, Dec 2015.

[LV13] Y. Lustig, M. Y. Vardi. Synthesis from Component Libraries. International Journal
on Software Tools for Technology Transfer 15(5):603–618, 2013.

[MPM+05] D. Martin, M. Paolucci, S. McIlraith et al. Bringing Semantics to Web Services: The
OWL-S Approach. Lecture Notes in Computer Science 3387, pp. 26–42. Springer
Berlin / Heidelberg, 2005.

[MS07] T. Margaria, B. Steffen. LTL-Guided Planning: Revisiting Automatic Tool Compo-
sition in ETI. In Proc. of the 31st Annual IEEE / NASA SEW 2007, Columbia, MD,
USA. Pp. 214–226. IEEE Computer Society, 2007.

[MS12] T. Margaria, B. Steffen. Service-Orientation: Conquering Complexity with XMDD.
In Hinchey and Coyle (eds.), Conquering Complexity. Pp. 217–236. Springer Lon-
don, 2012.

[MW71] Z. Manna, R. J. Waldinger. Toward Automatic Program Synthesis. Commun. ACM
14(3):151–165, Mar. 1971.

[MW75] Z. Manna, R. Waldinger. Knowledge and reasoning in program synthesis. Artificial
Intelligence 6(2):175–208, June 1975.

[MW92] D. H. MO, I. H. WITTEN. Learning text editing tasks from examples: a procedural
approach. Behaviour & Information Technology 11(1):32–45, Jan. 1992.

[MXBK05] D. Mandelin, L. Xu, R. Bodk, D. Kimelman. Jungloid Mining: Helping to Navigate
the API Jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’05, pp. 48–61. ACM, New York,
NY, USA, 2005. event-place: Chicago, IL, USA.

[NLKS17] S. Naujokat, M. Lybecait, D. Kopetzki, B. Steffen. CINCO: A Simplicity-Driven Ap-
proach to Full Generation of Domain-Specific Graphical Modeling Tools. Software
Tools for Technology Transfer, 2017.

23 / 25 Volume 078 (2019)

Workflow Discovery with Semantic Constraints

[NLS12] S. Naujokat, A.-L. Lamprecht, B. Steffen. Loose Programming with PROPHETS. In
Lara and Zisman (eds.), Proc. of FASE 2012, Tallinn, Estonia. LNCS 7212, pp. 94–
98. Springer Heidelberg, 2012.

[NNMS16] S. Naujokat, J. Neubauer, T. Margaria, B. Steffen. Meta-Level Reuse for Mastering
Domain Specialization. In Proc. of the 7th Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation, Part II (ISoLA 2016). LNCS 9953,
pp. 218–237. Springer, 2016.

[PLIS18] M. Palmblad, A.-L. Lamprecht, J. Ison, V. Schwmmle. Automated workflow com-
position in mass spectrometry-based proteomics. 2018.

[PR89] A. Pnueli, R. Rosner. On the Synthesis of a Reactive Module. In Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’89, pp. 179–190. ACM, New York, NY, USA, 1989.

[PTBo16] P. M. Phothilimthana, A. Thakur, R. Bodik, others. Scaling up Superoptimization.
ACM SIGOPS Operating Systems Review 50(2):297–310, June 2016.

[SGF10] S. Srivastava, S. Gulwani, J. S. Foster. From program verification to program synthe-
sis. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2010). Pp. 313–326. ACM, Madrid, Spain, 2010.

[SMB97] B. Steffen, T. Margaria, V. Braun. The Electronic Tool Integration platform: con-
cepts and design. International Journal on Software Tools for Technology Transfer
(STTT) 1(1-2):9–30, 1997.

[SMF93] B. Steffen, T. Margaria, B. Freitag. Module Configuration by Minimal Model Con-
struction. Technical report, Fakultt fr Mathematik und Informatik, Universitt Passau,
1993.

[Smi75] D. C. Smith. Pygmalion: A Creative Programming Environment. Computer Science
Department, Stanford University, 1975. Google-Books-ID: mihHAAAAIAAJ.

[SMN+07] B. Steffen, T. Margaria, R. Nagel, S. Jrges, C. Kubczak. Model-Driven Development
with the jABC. In Bin et al. (eds.), Hardware and Software, Verification and Testing.
Lecture Notes in CS 4383, pp. 92–108. Springer Berlin / Heidelberg, 2007.

[SL08] A. Solar-Lezama. Program Synthesis by Sketching. PhD Thesis, University of Cali-
fornia at Berkeley, Berkeley, CA, USA, 2008.

[SSG75] D. E. Shaw, W. R. Swartout, C. C. Green. Inferring LISP Programs from Exam-
ples. Technical report CUCS-001-75, Department of Computer Science, Columbia
University, 1975.

[STW+12] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, P. J. Stuckey. An Introduction to
Search Combinators. In International Symposium on Logic-Based Program Synthe-
sis and Transformation. Pp. 2–16. 2012.

ISoLA DS+IS 2018 24 / 25

ECEASST

[Sum86] P. D. Summers. A Methodology for LISP Program Construction from Examples. In
Rich and Waters (eds.), Readings in Artificial Intelligence and Software Engineering.
Pp. 309–316. Morgan Kaufmann, Jan. 1986.

[SWS] Scientific workflow system. [Online; 14 Feb 2019].
https://en.wikipedia.org/w/index.php?title=Scientific workflow system

[Val98] A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets.
Pp. 429–528. Springer-Verlag, London, UK, 1998.

[WHF+13] K. Wolstencroft, R. Haines, D. Fellows et al. The Taverna workflow suite: design-
ing and executing workflows of Web Services on the desktop, web or in the cloud.
Nucleic Acids Research 41(W1):W557–W561, 2013.

[WS91] P. Wessel, W. H. F. Smith. Free software helps map and display data. EOS Trans.
Amer. Geophys. U. 72(41), 1991.

25 / 25 Volume 078 (2019)

https://en.wikipedia.org/w/index.php?title=Scientific_workflow_system

	Introduction
	Background and Related Work
	Domain Knowledge and User Intent
	Modeling Domain Knowledge: Taxonomies
	Modeling Domain Knowledge: Tool Annotations
	Modeling User Intent: Temporal Constraints

	Encoding as SAT Problem
	Encoding the Workflow Structure
	Encoding the Domain model
	Encoding the Temporal Constraints

	Geovisualization Application Example
	Conclusion

