Electronic Communications of the EASST
Volume 080 (2021)

Conference on Networked Systems 2021
(NetSys 2021)

Count Me If You Can:
Enumerating QUIC Servers Behind Load Balancers

Kashyap Thimmaraju and Bjorn Scheuermann

5 pages

Guest Editors: Andreas Blenk, Mathias Fischer, Stefan Fischer, Horst Hellbrueck, Oliver
Hohlfeld, Andreas Kassler, Koojana Kuladinithi, Winfried Lamersdorf, Olaf Landsiedel, Andreas

Timm-Giel, Alexey Vinel
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Count Me If You Can:
Enumerating QUIC Servers Behind Load Balancers

Kashyap Thimmaraju and Bjorn Scheuermann

Department of Computer Science, Humboldt Universitét zu Berlin

Abstract: QUIC is a new transport protocol over UDP which recently became an
IETF RFC. Our security analysis of the Connection ID mechanism in QUIC reveals
that the protocol is underspecified. This allows an attacker to count the number of
server instances behind a middlebox, e.g., a load balancer. We found 4/15 (~25%)
implementations vulnerable to our enumeration attack. We then concretely describe
how an attacker can count the number of instances behind a load balancer that either
uses Round Robin or Hashing.

Keywords: QUIC, Security Analysis, Connection ID, Enumeration

1 Introduction

It appears that the next major step in the evolution and wide-spread adoption of a new transport
protocol since TCP is QUIC [LRW " 17]. QUIC was recently standardized by the IETF [IT21]
and is the underlying transport protocol for HT'TP/3. There are several stake-holders involved in
the standardization: Mozilla, Facebook, Google, CloudFlare, Apple and others.

As we approach the standardization of the protocol (scheduled for 2021), we witness an in-
crease in the number of publicly accessible QUIC servers [QUI20, RPDH18]: Riith et al. mea-
sured an increase in roughly 1 million IPv4 addresses using QUIC in July 2019.

Despite the many benefits QUIC brings to Internet communication and security, e.g., no head-
of-line blocking, multiplexing, authenticated and encryption with associated data, and connec-
tion migration, it also introduces new security and privacy concerns. In 2019, Sy et al. [SBFF19]
pointed out that QUIC servers can identify a user across multiple connections using two features
of the protocol and in 2020, Reen et al. [RR20] uncovered critical vulnerabilities in 4 QUIC
implementations in addition to describing deep packet inspection elusion strategies.

Motivated by potentially new security and privacy issues introduced by QUIC, in this paper we

make the following contributions: 1) We conduct a security analysis of the Connection ID (CID)
mechanism of the QUIC protocol in 15 different implementations; 2) We uncover unspecified
behaviour in the protocol that fundamentally deals with uniquely identifying the source and
destination within a QUIC connection using the CID. 3) We describe an attack scenario (see
Fig. 1) that exploits the unspecified behaviour and sketch an algorithm against round robin and
hash-based load balancers that enables a malicious client to count the number of server instances
behind the load balancer.
Paper organization: In the following section we describe the necessary background on QUIC
Connection IDs. In Section 3 we describe our threat model followed by our security analysis
and evaluation. Next, we describe our enumeration attack and sketch an attack algorithm in
Section 4, and then conclude in Section 5.

1/5 Volume 080 (2021)

Count Me If You Can: Enumerating QUIC Servers Behind Load Balancers Eﬁ

How many
instances of
example.com
are online? |
want to DDoS
that domain...

J
@ @E

@

glo

Figure 1: A high level illustration of the enumeration attack scenario described in this paper.
Knowing the number of instances helps to estimate the load required to launch a DDOS attack.

2 QUIC Connection IDs

When a client connects to a server for the first time, in addition to using the IP address and ports,
the client generates a (pseudo-random) Connection ID (CID) for itself (source CID) as well as
for the server (destination CID) it wishes to connect to. “The primary function of a connection ID
is to ensure that changes in addressing at lower protocol layers (UDP, IP) don’t cause packets for
a QUIC connection to be delivered to the wrong endpoint” [IT21] . These two CIDs are inserted
into the QUIC (Long) header in plain-text along with the length of each CID and sent to the server
as an Initial packet. Upon receiving the Initial packet, the server can either generate a new CID
for itself or use the CID that the client generated for the server. Regardless of what it chooses, it
then places the CIDs in its response to the client. Once the QUIC handshake is complete, each
end-point (i.e., client or server) then only includes the destination CID in the (Short) header. The
CID has a maximum length of 20 bytes and follows a variable length encoding scheme.

3 Security Analysis of the Connection ID

We begin by outlining the threat model we adopt. Next, we analyze the QUIC CID mechanism
described in the protocol draft [IT21] followed by our evaluation and results of 15 publicly
available (closed source and open source) implementations.

Attacker Model. We assume the attacker can actively establish connections with one or more
QUIC servers routable via the Internet. This means that she can send any type of QUIC packet
which could also be malicious or non-conformant to the protocol. On the server side, we assume
that there is typically a load balancing system in place for scaling and availability reasons. For
example, multiple IP addresses could resolve the same domain name in addition to using an
L3/L4 load balancer to distribute the incoming requests across multiple instances (e.g., virtual
machines, containers or bare-metal) of the QUIC server. We assume the load balancers do not use
the CID to route connections. Finally, we assume that there are other benign clients attempting
to connect to the server.

Analysis. Having set the context for the attacker and server instances, we now describe our
security analysis of the CID aspects of the current draft (version 30) of the QUIC protocol.
The draft specifies and recommends several important points on secure usage of the CID, e.g.,

NetSys 2021 2/5

Eg ECEASST

i) the same CID MUST NOT be used multiple times over the same connection to prevent an
eavesdropper from correlating the end-points; ii) end-points should associate a sequence number
with each CID to detect reuse within the same connection; iii) CIDs should be (pseudo) randomly
generated as they are also used for packet security and; iv) CIDs can be very long (max. 20
bytes). The draft, however, does not specify how servers should handle the case when successive
incoming connections to a server use the same destination CID. Indeed, it can be seen that based
on the assumption that the CIDs are (pseudo) randomly generated with a maximum length of 20
bytes, the probability of such a collision is very low. However, based on our threat model, this
is not the case. Hence, we posit the following: If the server (implementation) does not permit
the use of the same destination CID across successive connections (for a specific timeout), then
an attacker can detect if she has reached the same server instance. Taking it a step further, she
could enumerate the number of server instances behind a domain name, e.g., to prepare for a
distributed denial of service (DDoS) attack. Next, we evaluate 15 of the latest implementations
to verify if such a scenario is feasible.

Evaluation. The primary goal of our evaluation is to identify implementations, if any, that pre-
vent two subsequent QUIC connections from using the same destination CID. To conduct this ex-
periment we adopted the following methodology. First, we created a client that uses determinis-
tic CIDs for the source and destination CIDs (we modified LiteSpeed Technologie’s open-source
QUIC client). Second, we used 15 implementations from those listed on the QUIC Working
Group’s GitHub page': either manually built Docker containers or the public test server’. The
servers tested are listed in the results. To conduct the experiment, we had the client open and
hold a QUIC connection with source CID 1 and destination CID 2 for a maximum of 10s with
the server, and then close it. We then idle for 10s and repeat the steps a second time. We saved
the debug logs of the client, packet traces and session keys. We then repeated the process for
each of the 15 implementations. Finally, to obtain the results of our test, we searched the debug
log of the client or the packet trace to confirm whether the second QUIC connection completed
a successful handshake or not. The absence of a successful handshake indicates a vulnerable
implementation.

Results. We found 4 out of 15 implementations to be vulnerable to our attack scenario, namely,
Apache Traffic Server (ATS), Chromium, LiteSpeed and NGTCP2. Akamai, Aioquic, F5, Neqo,
Nginx, Picoquic, Proxygen, Quant, Quiche, Quicly and Quinn were not vulnerable.

4 Enumerating Server Instances Behind Load Balancers

In this attack, a malicious client can count the number of online server instances behind a mid-
dlebox, e.g., a load balancer that distributes incoming requests across multiple instances. By
counting the number of online instances, the attacker can estimate the load required to bring
down the targeted service. Furthermore, such information is typically meant to remain private
to the service provider. In this paper we focus on two load balancing algorithms: Round Robin
(RR) and Hashing. We designed our enumeration algorithm such that it can be used for both
algorithms so that the attacker does not need apriori information about which algorithm is used.

' https://github.com/quicwg/base-drafts/wiki/Implementations
2 The evaluation was conducted in October 2020.

3/5 Volume 080 (2021)

https://github.com/quicwg/base-drafts/wiki/Implementations

Count Me If You Can: Enumerating QUIC Servers Behind Load Balancers E}

Enumeration Algorithm. We repeatedly issue connection requests with a sequentially in-
creasing source port, the CIDs however remain the same for each request. We then count the
number C of successful connections established. If we do not receive a response from the server,
we have reached an instance that was already counted. If RR is being used, then it could be
that other clients’ requests interleaved ours, hence, resulting in our request reaching a previously
seen instance again instead of an uncounted one. If hashing is being used, then it could be that
our 4-tuple values (source IP and port, and destination IP and port) hashed to the same value,
and hence the same instance. Therefore, we continue to issue further requests until we do not
establish any new connection with the server after a threshold of max_requests attempts. After
which C will be the number of server instances. The advantage of this algorithm is its simplicity.
The disadvantage is that the algorithm might not terminate if old CIDs become enabled while
the algorithm is still running. This requires investigating how the timeouts behave across the
implementations which we consider as future work.

5 Conclusion

In this paper we analyzed the Connection ID mechanism of the current draft (version-30) of
the QUIC protocol and discovered the following: If a server does not permit the use of the
same destination CID across new connections an attacker can use such behaviour to enumerate
the number of server instances behind a load balancer. Our evaluation of 15 implementations
revealed that ~25% of implementations are vulnerable to our enumeration attack. Finally, we
sketched an enumeration algorithm that can be used against RR and hashing load balancers
which can be leveraged by an attacker to extract such private information can be used to estimate
the load necessary to launch a DDOS attack against the server. We view this work as motivation
for the research community to rethink network security when end points use a secure transport
protocol such as QUIC. Defense mechanisms and systems against attacks that exploit the QUIC
protocol are necessary if QUIC is to be deployed in production networks.

Acknowledgements: The authors thank the anonymous reviewers for their valuable feedback
on improving the quality of this paper. The authors also acknowledge the QUIC working group
for their timely response and feedback on the findings reported in this paper.

Bibliography

[IT21] J. Iyengar, M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport.
Internet Engineering Task Force, 2021.

[LRWT17] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar et al. The quic transport protocol: Design and
internet-scale deployment. In Proc. ACM SIGCOMM. Pp. 183-196. 2017.

[QUI20] QUIC in the wild. https://quic.comsys.rwth-aachen.de/stats.html, 2020. Accessed:
15-10-2020.

NetSys 2021 4/5

https://quic.comsys.rwth-aachen.de/stats.html

E

ECEASST

[RPDH18] J. Riith, I. Poese, C. Dietzel, O. Hohlfeld. A First Look at QUIC in the Wild. In

[RR20]

[SBFF19]

Proc. PAM. Pp. 255-268. Springer International Publishing, 2018.

C. Rossow, G. S. Reen. DPIFuzz: A Differential Fuzzing Framework to Detect DPI
Elusion Strategies for QUIC. In Proc. ACSAC. 2020.

E. Sy, C. Burkert, H. Federrath, M. Fischer. A QUIC Look at Web Tracking. In Proc.
PETS. Yolume 2019(3), pp. 255-266. Sciendo, 2019.

5/5

Volume 080 (2021)

	Introduction
	QUIC Connection IDs
	Security Analysis of the Connection ID
	Enumerating Server Instances Behind Load Balancers
	Conclusion

