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Abstract: IoT devices rely on data exchange with gateways and cloud servers.
However, the performance of today’s serialization formats and libraries on embed-
ded systems with energy and memory constraints is not well-documented and hard
to predict. We evaluate (de)serialization and transmission cost of mqtt.eclipse.org
payloads on 8- to 32-bit microcontrollers and find that Protocol Buffers (as imple-
mented by NanoPB) and the XDR format, dating back to 1987, are most efficient.
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1 Introduction

By definition, an IoT device does not come alone: It is connected to the Internet of Things and
thrives by exchanging data with other IoT devices or cloud servers. On the application layer, this
requires a data exchange format suitable for resource-constrained embedded systems.

Several standardized data formats and accompanying implementations are available for this
task, and preferable to custom implementations due to lower time investment and improved
interoperability. However, the cost of data (de)serialization and transmission with these libraries
is largely undocumented. Previous studies are often bound to specific use cases and evaluated on
powerful Android smartphones or even x86 computers, not IoT devices.

We aim to fill this gap by giving a quick overview of the transmission and (de)serialization
cost of currently available libraries on 8- to 32-bit embedded microcontrollers.

2 Evaluation Setup

We evaluate implementations of four data formats: ArduinoJSON 6.18 (JSON), MPack 1.0
(MessagePack), NanoPB 0.4.5 (Protocol Buffers v3), and XDR (eXternal Data Representation).
See https://ess.cs.uos.de/git/software/netsys21-artifacts for source code and compiler options.
We also take a quick look at six data formats without suitable embedded implementations: UB-
JSON, BSON, CBOR, Cap’n’Proto, Avro, and Thrift. We leave out XML and EXI, which have
been shown to perform no better than JSON and Protocol Buffers [GT11, ZWW+18].

On the hardware side, we examine 8-bit ATmega328P, 16-bit MSP430FR5994, 32-bit ESP-
8266, and 32-bit STM32F446RE microcontrollers. As MSP430FR5994 FRAM access is limited
to 8 MHz, we set its clock speed to 8 MHz to avoid FRAM wait states.

We use JSON payloads obtained from public mqtt.eclipse.org messages as well as data from
two smartphone-centric studies for our measurements [Mae12, SM12]. Message objects have
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Figure 1: Serialized data size of encoded benchmark objects. Star marker (?) indicates schema-
enabled data formats; schema size is not included. Bar elements represent 25th, 50th, and 75th
percentile. Mean values are denoted by the diamond symbol and also printed on the left.

one to 13 key-value pairs, including lists and sub-objects. The smartphone study datasets are
our largest and most text-heavy samples. In some cases, we made minor adjustments to ensure
message compatibility with all evaluated data formats.

Given the payloads, data formats, and implementations, our evaluation program generates and
executes (de)serialization code on the target MCUs and measures clock cycles, serialized data
size, text segment size, and memory usage (i.e., data + bss + stack). We use C++ and Python3
libraries to measure serialized data size for data formats without embedded implementations.

3 Observations

Fig. 1 shows observed serialized data sizes for each format. We see that Avro, XDR, and Protocol
Buffers provide the most efficient encoding and are thus cheapest to transmit, and JSON is least
compact. This is in line with findings reported in earlier studies [SM12, GT11].

As Fig. 2 shows, XDR (de)serialization is also by far the fastest operation, followed by MPack,
NanoPB, and ArduinoJSON. On ESP8266, ArduinoJSON performs even better than NanoPB.
MPack appears to be a good choice for serialization-only applications. The NanoPB outlier is
caused by a benchmark object using lists with nested objects.

In real-world use, a message is typically received and then deserialized, or serialized and
then transmitted. Depending on the relationship between per-cycle MCU energy consumption
and per-byte radio transmission cost, fast (de)serialization may be more or less important than
compact message objects. Combined with different requirements for the data format in ques-
tion, which may limit the set of available formats and implementations, this leads to a simple
conclusion: there is no single best data format.

Nevertheless, we can make some observations. When combining an ultra-low-power MCU
with a slow, high-power radio, the transmission cost per byte is most relevant. For instance, given
an MSP430FR5994 MCU and a TI CC1200 radio, datasheets indicate that the computation cost
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Figure 2: Clock cycles for serialization (blue, top) and deserialization (red, bottom) on
STM32F446RE (boxplots, left) and other architectures (table entries, right).
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Figure 3: Relative text segment (blue, top) and data+bss+stack (red, bottom) usage for
(de)serialization on STM32F446RE (boxplots, left) and other architectures (table entries, right).

of about 0.5 nJ per clock cycle is four orders of magnitude lower than the transmission cost of
5 to 10 µJ per Byte. From an energy perspective, spending an additional 9,000 CPU cycles to
save a single byte of data is already worth it. It follows from Fig. 1 and 2 that the difference in
(de)serialization speed is negligible in this case and NanoPB is the most energy-efficient choice.

With faster radios, the situation is less extreme. For instance, an ESP8266 datasheet also gives
about 0.5 nJ per clock cycle, but just 5 nJ per Byte for a 65 Mbit/s Wi-Fi connection. Here, XDR
is slightly more energy-efficient. However, unless data is transmitted non-stop, the differences
between data formats are small compared to an ESP8266’s overall energy requirements.

Finally, memory requirements are also an important aspect. In Fig. 3, we see that XDR is
extremely light-weight, and the other three implementations vary significantly between archi-
tectures. Notably, NanoPB uses more than half of the ATMega’s RAM, likely because it is not
optimized for 8-bit architectures. We do not report ESP8266 memory usage, as we were unable
to determine its stack growth.
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4 Conclusion

We find that NanoPB and XDR are most energy-efficient. On low-power MCUs with radios
in the sub-1 Mbit/s range, NanoPB is slightly better; for devices with fast radios, XDR wins.
Assuming it can be implemented efficiently, Avro is also an interesting candidate for IoT usage.

When it comes to ROM and RAM requirements, XDR has by far the lowest footprint. How-
ever, its messages lack schema and type information, and it has limited code generator and library
support in modern programming languages. Protocol Buffers, on the other hand, provide type
information and are better supported.

Taking this into account, we consider NanoPB (and Protocol Buffers in general) to be a good
choice for energy-efficient data serialization on today’s relatively powerful IoT devices. When
devices are required to interact with many different nodes and quickly evolving message formats,
and have a sufficient amount of space and energy to spare, we also recommend the schema-less
JSON and MessagePack formats due to their ease of use.

However, on extremely resource-constrained devices such as AVR microcontrollers, which do
not have much ROM and RAM to spare, the decades-old XDR format is still more efficient than
any other serialization library we are aware of.
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