
Electronic Communications of the EASST
Volume 080 (2021)

Conference on Networked Systems 2021
(NetSys 2021)

Data Serialization Formats for the Internet of Things

Daniel Friesel and Olaf Spinczyk

4 pages

Guest Editors: Andreas Blenk, Mathias Fischer, Stefan Fischer, Horst Hellbrueck, Oliver
Hohlfeld, Andreas Kassler, Koojana Kuladinithi, Winfried Lamersdorf, Olaf Landsiedel, Andreas
Timm-Giel, Alexey Vinel

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Data Serialization Formats for the Internet of Things

Daniel Friesel1 and Olaf Spinczyk2

1 daniel.friesel@uos.de
2 olaf@uos.de

Institut für Informatik
Universität Osnabrück, Germany

Abstract: IoT devices rely on data exchange with gateways and cloud servers.
However, the performance of today’s serialization formats and libraries on embed-
ded systems with energy and memory constraints is not well-documented and hard
to predict. We evaluate (de)serialization and transmission cost of mqtt.eclipse.org
payloads on 8- to 32-bit microcontrollers and find that Protocol Buffers (as imple-
mented by NanoPB) and the XDR format, dating back to 1987, are most efficient.

Keywords: iot, energy, data serialization

1 Introduction

By definition, an IoT device does not come alone: It is connected to the Internet of Things and
thrives by exchanging data with other IoT devices or cloud servers. On the application layer, this
requires a data exchange format suitable for resource-constrained embedded systems.

Several standardized data formats and accompanying implementations are available for this
task, and preferable to custom implementations due to lower time investment and improved
interoperability. However, the cost of data (de)serialization and transmission with these libraries
is largely undocumented. Previous studies are often bound to specific use cases and evaluated on
powerful Android smartphones or even x86 computers, not IoT devices.

We aim to fill this gap by giving a quick overview of the transmission and (de)serialization
cost of currently available libraries on 8- to 32-bit embedded microcontrollers.

2 Evaluation Setup

We evaluate implementations of four data formats: ArduinoJSON 6.18 (JSON), MPack 1.0
(MessagePack), NanoPB 0.4.5 (Protocol Buffers v3), and XDR (eXternal Data Representation).
See https://ess.cs.uos.de/git/software/netsys21-artifacts for source code and compiler options.
We also take a quick look at six data formats without suitable embedded implementations: UB-
JSON, BSON, CBOR, Cap’n’Proto, Avro, and Thrift. We leave out XML and EXI, which have
been shown to perform no better than JSON and Protocol Buffers [GT11, ZWW+18].

On the hardware side, we examine 8-bit ATmega328P, 16-bit MSP430FR5994, 32-bit ESP-
8266, and 32-bit STM32F446RE microcontrollers. As MSP430FR5994 FRAM access is limited
to 8 MHz, we set its clock speed to 8 MHz to avoid FRAM wait states.

We use JSON payloads obtained from public mqtt.eclipse.org messages as well as data from
two smartphone-centric studies for our measurements [Mae12, SM12]. Message objects have

1 / 4 Volume 080 (2021)

mailto:daniel.friesel@uos.de
mailto:olaf@uos.de
https://ess.cs.uos.de/git/software/netsys21-artifacts


Data Serialization Formats for the Internet of Things

0 20 40 60 80 100 120 140 160 180 200 220

XDR?
Thrift?
Avro?

CapnProto?
Protocol Buffers?

MessagePack
CBOR
BSON

UBJSON
JSON

46
72
36
50
40
85
85

105
96

111

Data Size [B]

D
at

a
Fo

rm
at

Figure 1: Serialized data size of encoded benchmark objects. Star marker (?) indicates schema-
enabled data formats; schema size is not included. Bar elements represent 25th, 50th, and 75th
percentile. Mean values are denoted by the diamond symbol and also printed on the left.

one to 13 key-value pairs, including lists and sub-objects. The smartphone study datasets are
our largest and most text-heavy samples. In some cases, we made minor adjustments to ensure
message compatibility with all evaluated data formats.

Given the payloads, data formats, and implementations, our evaluation program generates and
executes (de)serialization code on the target MCUs and measures clock cycles, serialized data
size, text segment size, and memory usage (i.e., data + bss + stack). We use C++ and Python3
libraries to measure serialized data size for data formats without embedded implementations.

3 Observations

Fig. 1 shows observed serialized data sizes for each format. We see that Avro, XDR, and Protocol
Buffers provide the most efficient encoding and are thus cheapest to transmit, and JSON is least
compact. This is in line with findings reported in earlier studies [SM12, GT11].

As Fig. 2 shows, XDR (de)serialization is also by far the fastest operation, followed by MPack,
NanoPB, and ArduinoJSON. On ESP8266, ArduinoJSON performs even better than NanoPB.
MPack appears to be a good choice for serialization-only applications. The NanoPB outlier is
caused by a benchmark object using lists with nested objects.

In real-world use, a message is typically received and then deserialized, or serialized and
then transmitted. Depending on the relationship between per-cycle MCU energy consumption
and per-byte radio transmission cost, fast (de)serialization may be more or less important than
compact message objects. Combined with different requirements for the data format in ques-
tion, which may limit the set of available formats and implementations, this leads to a simple
conclusion: there is no single best data format.

Nevertheless, we can make some observations. When combining an ultra-low-power MCU
with a slow, high-power radio, the transmission cost per byte is most relevant. For instance, given
an MSP430FR5994 MCU and a TI CC1200 radio, datasheets indicate that the computation cost

NetSys 2021 2 / 4



ECEASST

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

XDR

NanoPB

MPack

ArduinoJSON

316
404

3,937
3,126
3,082
1,138
5,926
5,331

Cycles

L
ib

ra
ry

STM32F446RE ESP8266 MSP430 ATMega
2,931
1,849

2,100
6,125
4,587
5,511

616
463

58,207
21,566

3,692
11,049
18,246
19,424
3,305
2,581

33,646
16,310

2,192
10,149
15,172
18,330
1,476
1,332

Figure 2: Clock cycles for serialization (blue, top) and deserialization (red, bottom) on
STM32F446RE (boxplots, left) and other architectures (table entries, right).

0 0.2 0.4 0.6 0.8

·104

XDR

NanoPB

MPack

ArduinoJSON

215
704
466

7,016
240

5,002
215

6,842

Bytes

L
ib

ra
ry

STM32F446RE ESP8266 MSP430 ATMega
4,960

11,899

7,756

1,037

7,280

290

18,089

179
9,937

381
2,292

148

7,060

266

6,871

266
13,770
1,169
2,238

355

Figure 3: Relative text segment (blue, top) and data+bss+stack (red, bottom) usage for
(de)serialization on STM32F446RE (boxplots, left) and other architectures (table entries, right).

of about 0.5 nJ per clock cycle is four orders of magnitude lower than the transmission cost of
5 to 10 µJ per Byte. From an energy perspective, spending an additional 9,000 CPU cycles to
save a single byte of data is already worth it. It follows from Fig. 1 and 2 that the difference in
(de)serialization speed is negligible in this case and NanoPB is the most energy-efficient choice.

With faster radios, the situation is less extreme. For instance, an ESP8266 datasheet also gives
about 0.5 nJ per clock cycle, but just 5 nJ per Byte for a 65 Mbit/s Wi-Fi connection. Here, XDR
is slightly more energy-efficient. However, unless data is transmitted non-stop, the differences
between data formats are small compared to an ESP8266’s overall energy requirements.

Finally, memory requirements are also an important aspect. In Fig. 3, we see that XDR is
extremely light-weight, and the other three implementations vary significantly between archi-
tectures. Notably, NanoPB uses more than half of the ATMega’s RAM, likely because it is not
optimized for 8-bit architectures. We do not report ESP8266 memory usage, as we were unable
to determine its stack growth.

3 / 4 Volume 080 (2021)



Data Serialization Formats for the Internet of Things

4 Conclusion

We find that NanoPB and XDR are most energy-efficient. On low-power MCUs with radios
in the sub-1 Mbit/s range, NanoPB is slightly better; for devices with fast radios, XDR wins.
Assuming it can be implemented efficiently, Avro is also an interesting candidate for IoT usage.

When it comes to ROM and RAM requirements, XDR has by far the lowest footprint. How-
ever, its messages lack schema and type information, and it has limited code generator and library
support in modern programming languages. Protocol Buffers, on the other hand, provide type
information and are better supported.

Taking this into account, we consider NanoPB (and Protocol Buffers in general) to be a good
choice for energy-efficient data serialization on today’s relatively powerful IoT devices. When
devices are required to interact with many different nodes and quickly evolving message formats,
and have a sufficient amount of space and energy to spare, we also recommend the schema-less
JSON and MessagePack formats due to their ease of use.

However, on extremely resource-constrained devices such as AVR microcontrollers, which do
not have much ROM and RAM to spare, the decades-old XDR format is still more efficient than
any other serialization library we are aware of.

Bibliography

[GT11] B. Gil, P. Trezentos. Impacts of Data Interchange Formats on Energy Consumption
and Performance in Smartphones. In Proceedings of the 2011 Workshop on Open
Source and Design of Communication. OSDOC ’11, pp. 1–6. ACM, New York, NY,
USA, 2011.
doi:10.1145/2016716.2016718

[Mae12] K. Maeda. Performance evaluation of object serialization libraries in XML, JSON
and binary formats. In 2012 Second International Conference on Digital Informa-
tion and Communication Technology and it’s Applications (DICTAP). Pp. 177–182.
May 2012.
doi:10.1109/DICTAP.2012.6215346

[SM12] A. Sumaray, S. K. Makki. A Comparison of Data Serialization Formats for Optimal
Efficiency on a Mobile Platform. In Proceedings of the 6th International Confer-
ence on Ubiquitous Information Management and Communication. ICUIMC ’12,
pp. 48:1–48:6. ACM, New York, NY, USA, 2012.
doi:10.1145/2184751.2184810

[ZWW+18] C. Zhang, X. Wen, L. Wang, Z. Lu, L. Ma. Performance Evaluation of Candidate
Protocol Stack for Service-Based Interfaces in 5G Core Network. In 2018 IEEE
International Conference on Communications Workshops (ICC Workshops). Pp. 1–
6. May 2018.
doi:10.1109/ICCW.2018.8403675

NetSys 2021 4 / 4

http://dx.doi.org/10.1145/2016716.2016718
http://dx.doi.org/10.1109/DICTAP.2012.6215346
http://dx.doi.org/10.1145/2184751.2184810
http://dx.doi.org/10.1109/ICCW.2018.8403675

	Introduction
	Evaluation Setup
	Observations
	Conclusion

