
Electronic Communications of the EASST
Volume 080 (2021)

Guest Editors: Andreas Blenk, Mathias Fischer, Stefan Fischer, Horst Hellbrück, Oliver
Hohlfeld, Andreas Kassler, Koojana Kuladinithi, Winfried Lamersdorf, Olaf Landsiedel,
Andreas Timm-Giel, Alexey Vinel

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Internal

Conference on Networked Systems 2021

(NetSys 2021)

Discrete event simulation for the purpose of real-time

performance evaluation of distributed hardware-in-the-loop

simulators for autonomous driving vehicle validation

Christoph Fundaa, Reinhard Germanb, Kai-Steffen Hielscherb

5 Pages

 ECEASST

2 / 6 Volume 080 (2021)

Internal

Discrete event simulation for the purpose of real-time performance

evaluation of distributed hardware-in-the-loop simulators for

autonomous driving vehicle validation

Christoph Fundaa, Reinhard Germanb, Kai-Steffen Hielscherb

a Zukunft Mobility GmbH (a company of ZF Group), Marie-Curie-Str. 5 /5a,

85055 Ingolstadt, Germany
b University Erlangen-Nuremberg, Department Computer Science, Martensstr. 3,

91058 Erlangen, Germany

Abstract: Hardware-in-the-loop test benches are distributed computer systems including

software, hardware and networking devices, which require strict real-time guarantees. To

guarantee strict real-time of the simulator the performance needs to be evaluated. To

evaluate the timing performance a discrete event simulation model is built up. The input

modeling is based on measurements from the real system in a prototype phase. The results

of the simulation model are validated with measurements from a prototype of the real

system. The workload is increased until the streaming source becomes unstable, by either

exceeding a certain limit of bytes or exceeding the number of parallel software processes

running on the cores of the central processing unit. To evaluate the performance beyond

these limits, the discrete event simulation model needs to be enriched by a scheduler and a

hardware model. To provide real-time guarantees an analytical model needs to be built up.

Keywords: distributed system, networks, hardware-in-the-loop simulation, HIL, real-time

performance evaluation, discrete event simulation, DES, OMNeT++

1 Introduction

Autonomous driving functions are safety-critical and have to be tested thoroughly. The

hardware-in-the-loop (HIL)-based testing approach is an enabler for this and has been

established in the automotive industry for years as an effective and efficient method of

validating control units, interfaces, and functions. Since the system under test works under

hard real-time (RT) conditions, the HIL test bench needs to be RT capable to enable the testing

and be able to check the RT properties of the system under test. The focus here is on the use-

case of the so-called open-loop reinjection [1], as streaming of measurement data to the device

under test (DUT) under strict RT constraints. The HIL test system needs to be assessed

regarding the RT capability of the whole streaming chain. Although streaming tones down the

RT requirements within the chain to soft RT and with the help of over-provisioning and pre-

buffering the design process can be eased, there are a lot of dimensioning issues for buffers

and throughput left, for that purpose we have to analyze the system more deeply.

2 Approach

A HIL is a distributed computer system, for which common methods from computer system

performance evaluation can be applied to evaluate the RT performance. At first, a very

simplified conceptual model has been developed to understand the system, set up requirements

and be able to develop a model from it.

Short Article Title

NetSys 2021 3 / 6

Internal

The HIL system under analysis consists of two distributed computer systems as depicted in

Figure 1 connected via network interface cards (NIC) and an Ethernet connection using the

TCP-IP protocol. Each computer has an application layer, a Linux operating system (OS) and a

hardware layer (HW). Additionally, the left PC has the Robot Operating System (ROS) [2] as a

middle layer between the application layer and the Linux OS with RT preempt patch [3]. The

streaming application is running as a multi-threaded multi-processing ROS application and it is

instrumented at the user-code level in C++ to gain timing information when a process starts

and when it is finished. The measurements from the system will be used for input modeling in

the simulation model.

Figure 1: Detailed Conceptual Model and Software (SW) Instrumentation.

The streaming process starts at the far-left SW process, the ROS replayer, that grabs the data

from the RAM disk and sends it, according to its timestamps, to the next node. The

interprocess-communication is done via TCP/IP and the data is sent to a queue in the ROS

middle layer. This is done by every process until the data reaches the last node. Then the data

is sent over the TCP socket to the network stack of Linux depicted in the kernel layer to the

network interface card (NIC). On the right PC, the process is similar, but starting from the NIC

to receive the TCP segments via interrupts over the kernel to the first application process in

LabVIEW. Within this first process, the segments are collected and reassembled or segmented

to the original frame size, depending on the original frame size in relation to the maximum

segment size (MSS). When the original frame is restored, it will be sent to the next process

until the last queue, before sending it out to the device under test (DUT). This last queue has a

very important function, which is the compensation of the delay and jitter introduced by the

whole processing and queuing chain.

To evaluate the performance of a computer system, according to [4] at least two of the

following three methods are needed to validate each other: measurements, simulation and

analytical modeling. If the system is physically available, measurements should be performed

to understand the actual system behavior, and for practical purposes to recognize and correct

malfunctions. In addition, a simulation or an analytical model should be generated to

extrapolate the results to unavailable systems. The generated model should be validated with

measurements.

In the next step, a discrete-event simulation (DES) model [7] must be built to gain a better

understanding of the system. Discrete event simulation is particularly suitable for evaluating

the stochastic behavior of processes in computer and communication systems. [8]

 ECEASST

4 / 6 Volume 080 (2021)

Internal

3 Discrete Event Simulation Model

The model is build up according to the conceptual model of Figure 1 in OMNeT++ with

standard servers, queues and delay elements and with the INET framework for the networking

unit using the TCP/IP protocol implementation.

For validation purposes, the model is fed with measurements, called trace-driven simulation

[4]. Then the simulation output is compared to the measurements. Latency measurements are

taken as service times of the servers in the model, and we compare these service times of the

simulation output of the model and the measurements as depicted in Figure 2.

Figure 2: Example of process service times; from left to right:

upper figures: scatter plot of simulation and measurement data,

lower figures: Boxplot of Simulation and Measurements, Difference between Simulation and

Measurements at each point over time.

As can be seen from Figure 2, the simulated and the measured data are highly comparable.

From the boxplots, we can see that they are distributed equally. The last right plot shows the

calculated differences between the simulation and measurement latency. This is in the range of

10-15 s for processing latency and 10-7 s in case of end-to-end latency. The conclusion is that

the conceptual model of one data stream is representing the actual system in a very exact way.

As the simulation results of the model are satisfying, a mapping of the stochastic process

behavior with theoretical distribution functions can be started. This will bring independence of

a specific trace and simulate the behavior over a longer period and with random state

combinations.

For distribution fitting from the measurement data, MATLAB is used to fit the data into

different statistical distributions, which are supported by OMNeT++. In a further step, the

distribution is truncated to the minimum and maximum measured values. Then a goodness of

fit analysis as described in [5] is performed. The distribution with the highest mean p-value is

taken and feed into the model. As can be seen exemplarily in Figure 3, the process latencies

are lognormal distributed with a mean p-value of 37%, which met the requirement to be at

least at 5%.

Short Article Title

NetSys 2021 5 / 6

Internal

Figure 3: from left to right: Histogram and Distribution Fit of ROS Process Latencies,

Comparison between Theoretical & Empirical Cumulative Distribution Function (CDF).

The limits of the model can be seen in Figure 4 compared to a nearly singular distributed

stream on the right as a baseline. The influence of increasing the byte size of the workload can

be seen in the left diagram. In the middle graph, we see the influence on the distribution when

performing many streams in parallel, so that there are more processes than CPU cores

available.

Figure 4: Histogram plots of 40ms cycle-time measured stream; from left to right:

40MB single stream; 5MB stream with 16 other streams in parallel, 5MB single stream.

4 Conclusions

The simulation model is representing the real-world prototype in a good way, and it is valid

until we reach the HW bottlenecks of the system with our workload. Enrichment of the model

with an OS scheduler and a CPU model, a so-called SW&HW co-simulation as described in

[10][10][12] will overcome these model limits including the coupling of network simulation as

described in [13][14]. With this approach we can give at least soft RT guarantees within a

given statistical confidence. The final goal is to make predictions about holding RT limits of

our SW&HW System for multi-streaming purposes. The predictions will be based on a certain

set of sensors with a payload and cycle times as SW parameters in combination with various

HW parameters like CPU frequency and the number of cores as an optimization parameter. To

give guarantees and a full proof of hard RT capability, an analytical model must be used.

Analytical models that are worthwhile to explore in more detail are the most used techniques

under the hood of many performance engineering tools like layered queueing networks,

process algebra, Petri nets and scheduling theories of real-time systems like rate monotonic

analysis.[15][16][17]

 ECEASST

6 / 6 Volume 080 (2021)

Internal

5 References

[1] N. Brayanov and A. Stoynova, “Review of hardware-in-the-loop -a hundred years progress
in the pseudoreal testing”, 2019

[2] M. Quigley et al., „ROS: an open-source Robot Operating System“, 2009

[3] F. Reghenzani, G. Massari and W. Fornaciari, „The real-time linux kernel: A survey on
Preempt_RT“,2019

[4] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”, 1. Edition. New York:
Wiley, 1991.

[5] D. Nurmi, J. Brevik, and R. Wolski: “Modeling Machine Availability in Enterprise and
Wide-area Distributed Computing Environments”, 2005

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and
A. Ng, “ROS: an open-source Robot Operating System,”, 2009

[7] J. Banks, J. S. Carson, B. L. Nelson, D.M. Nicol. “Discrete-Event System Simulation”,
2000

[8] A. M. Law, W. D. Kelton. “Simulation Modeling & Analysis”, 2000

[9] A. Varga; R. Hornig. “An overview of the OMNeT++ simulation environment”, 2008

[10] P. Razaghi, A. Gerstlauer, „Host-compiled multicore RTOS simulator for embedded
real-time software development“, 2011

[11] P. Razaghi, A. Gerstlauer, „Host-Compiled Multicore System Simulation for Early
Real-Time Performance Evaluation“, 2014

[12] O. Bringmann et al. „The Next Generation of Virtual Prototyping: Ultra-Fast Yet
Accurate Simulation of HW/SW Systems“, 2015

[13] Z. Zhao, V. Tsoutsouras, D. Soudris, A. Gerstlauer, „Network/system co-simulation
for design space exploration of IoT applications“, 2017

[14] G. Amarasinghe, M. D. de Assunção, A. Harwood, S. Karunasekera, „ECSNeT++ : A
simulator for distributed stream processing on edge and cloud environments“, 2020

[15] U. Herzog, “Formal Methods for Performance Evaluation”, 2001

[16] A. Purhonen, “Performance Evaluation Approaches for Software Architects“, 2005

[17] L. Etxeberria “Method for analysis-aided design decision making and quality attribute
prediction”, 2010

