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Abstract: Hardware-in-the-loop test benches are distributed computer systems including 

software, hardware and networking devices, which require strict real-time guarantees. To 

guarantee strict real-time of the simulator the performance needs to be evaluated. To 

evaluate the timing performance a discrete event simulation model is built up. The input 

modeling is based on measurements from the real system in a prototype phase. The results 

of the simulation model are validated with measurements from a prototype of the real 

system. The workload is increased until the streaming source becomes unstable, by either 

exceeding a certain limit of bytes or exceeding the number of parallel software processes 

running on the cores of the central processing unit. To evaluate the performance beyond 

these limits, the discrete event simulation model needs to be enriched by a scheduler and a 

hardware model. To provide real-time guarantees an analytical model needs to be built up. 
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1 Introduction 

Autonomous driving functions are safety-critical and have to be tested thoroughly. The 

hardware-in-the-loop (HIL)-based testing approach is an enabler for this and has been 

established in the automotive industry for years as an effective and efficient method of 

validating control units, interfaces, and functions. Since the system under test works under 

hard real-time (RT) conditions, the HIL test bench needs to be RT capable to enable the testing 

and be able to check the RT properties of the system under test. The focus here is on the use-

case of the so-called open-loop reinjection [1], as streaming of measurement data to the device 

under test (DUT) under strict RT constraints. The HIL test system needs to be assessed 

regarding the RT capability of the whole streaming chain. Although streaming tones down the 

RT requirements within the chain to soft RT and with the help of over-provisioning and pre-

buffering the design process can be eased, there are a lot of dimensioning issues for buffers 

and throughput left, for that purpose we have to analyze the system more deeply. 

2 Approach 

A HIL is a distributed computer system, for which common methods from computer system 

performance evaluation can be applied to evaluate the RT performance. At first, a very 

simplified conceptual model has been developed to understand the system, set up requirements 

and be able to develop a model from it.  
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The HIL system under analysis consists of two distributed computer systems as depicted in 

Figure 1 connected via network interface cards (NIC) and an Ethernet connection using the 

TCP-IP protocol. Each computer has an application layer, a Linux operating system (OS) and a 

hardware layer (HW). Additionally, the left PC has the Robot Operating System (ROS) [2] as a 

middle layer between the application layer and the Linux OS with RT preempt patch [3]. The 

streaming application is running as a multi-threaded multi-processing ROS application and it is 

instrumented at the user-code level in C++ to gain timing information when a process starts 

and when it is finished. The measurements from the system will be used for input modeling in 

the simulation model. 

 

Figure 1: Detailed Conceptual Model and Software (SW) Instrumentation. 

The streaming process starts at the far-left SW process, the ROS replayer, that grabs the data 

from the RAM disk and sends it, according to its timestamps, to the next node. The 

interprocess-communication is done via TCP/IP and the data is sent to a queue in the ROS 

middle layer. This is done by every process until the data reaches the last node. Then the data 

is sent over the TCP socket to the network stack of Linux depicted in the kernel layer to the 

network interface card (NIC). On the right PC, the process is similar, but starting from the NIC 

to receive the TCP segments via interrupts over the kernel to the first application process in 

LabVIEW. Within this first process, the segments are collected and reassembled or segmented 

to the original frame size, depending on the original frame size in relation to the maximum 

segment size (MSS). When the original frame is restored, it will be sent to the next process 

until the last queue, before sending it out to the device under test (DUT). This last queue has a 

very important function, which is the compensation of the delay and jitter introduced by the 

whole processing and queuing chain. 

To evaluate the performance of a computer system, according to [4] at least two of the 

following three methods are needed to validate each other: measurements, simulation and 

analytical modeling. If the system is physically available, measurements should be performed 

to understand the actual system behavior, and for practical purposes to recognize and correct 

malfunctions. In addition, a simulation or an analytical model should be generated to 

extrapolate the results to unavailable systems. The generated model should be validated with 

measurements.  

In the next step, a discrete-event simulation (DES) model [7] must be built to gain a better 

understanding of the system. Discrete event simulation is particularly suitable for evaluating 

the stochastic behavior of processes in computer and communication systems. [8]  
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3 Discrete Event Simulation Model  

The model is build up according to the conceptual model of Figure 1 in OMNeT++  with 

standard servers, queues and delay elements and with the INET framework for the networking 

unit using the TCP/IP protocol implementation. 

For validation purposes, the model is fed with measurements, called trace-driven simulation 

[4]. Then the simulation output is compared to the measurements. Latency measurements are 

taken as service times of the servers in the model, and we compare these service times of the 

simulation output of the model and the measurements as depicted in  Figure 2. 

 

Figure 2: Example of process service times; from left to right:  

upper figures: scatter plot of simulation and measurement data,  

lower figures: Boxplot of Simulation and Measurements, Difference between Simulation and 

Measurements at each point over time. 

As can be seen from Figure 2, the simulated and the measured data are highly comparable. 

From the boxplots, we can see that they are distributed equally. The last right plot shows the 

calculated differences between the simulation and measurement latency. This is in the range of 

10-15 s for processing latency and 10-7 s in case of end-to-end latency. The conclusion is that 

the conceptual model of one data stream is representing the actual system in a very exact way. 

As the simulation results of the model are satisfying, a mapping of the stochastic process 

behavior with theoretical distribution functions can be started. This will bring independence of 

a specific trace and simulate the behavior over a longer period and with random state 

combinations.  

For distribution fitting from the measurement data, MATLAB is used to fit the data into 

different statistical distributions, which are supported by OMNeT++. In a further step, the 

distribution is truncated to the minimum and maximum measured values. Then a goodness of 

fit analysis as described in [5] is performed. The distribution with the highest mean p-value is 

taken and feed into the model. As can be seen exemplarily in Figure 3, the process latencies 

are lognormal distributed with a mean p-value of 37%, which met the requirement to be at 

least at 5%. 
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Figure 3: from left to right: Histogram and Distribution Fit of ROS Process Latencies, 

Comparison between Theoretical & Empirical Cumulative Distribution Function (CDF). 

The limits of the model can be seen in Figure 4 compared to a nearly singular distributed 

stream on the right as a baseline. The influence of increasing the byte size of the workload can 

be seen in the left diagram. In the middle graph, we see the influence on the distribution when 

performing many streams in parallel, so that there are more processes than CPU cores 

available. 

 

Figure 4: Histogram plots of 40ms cycle-time measured stream; from left to right:  

40MB single stream; 5MB stream with 16 other streams in parallel, 5MB single stream. 

4 Conclusions 

The simulation model is representing the real-world prototype in a good way, and it is valid 

until we reach the HW bottlenecks of the system with our workload. Enrichment of the model 

with an OS scheduler and a CPU model, a so-called SW&HW co-simulation as described in 

[10][10][12] will overcome these model limits including the coupling of network simulation as 

described in [13][14]. With this approach we can give at least soft RT guarantees within a 

given statistical confidence. The final goal is to make predictions about holding RT limits of 

our SW&HW System for multi-streaming purposes. The predictions will be based on a certain 

set of sensors with a payload and cycle times as SW parameters in combination with various 

HW parameters like CPU frequency and the number of cores as an optimization parameter. To 

give guarantees and a full proof of hard RT capability, an analytical model must be used. 

Analytical models that are worthwhile to explore in more detail are the most used techniques 

under the hood of many performance engineering tools like layered queueing networks, 

process algebra, Petri nets and scheduling theories of real-time systems like rate monotonic 

analysis.[15][16][17] 
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