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Abstract: With the goal of meeting the stringent throughput and delay requirements
of classified network flows, we propose a Deep Q-learning Network (DQN) for opti-
mal weight selection in an active queue management system based on Weighted Fair
Queuing (WFQ). Our system schedules flows belonging to different priority classes
(Gold, Silver, and Bronze) into separate queues, and learns how and when to de-
queue from each queue. The neural network implements deep reinforcement learn-
ing tools such as target networks and replay buffers to help learn the best weights
depending on the network state. We show, via simulations, that our algorithm con-
verges to an efficient model capable of adapting to the flow demands, producing thus
lower delays with respect to traditional WFQ.

Keywords: Queue Management, Smart Queuing, Reinforcement Learning, DQN

1 Introduction

Traditional traffic management and network engineering techniques are struggling to keep up
with the ever increasing demand for higher throughput values and lower delays. This necessitates
novel approaches to queuing, load balancing, and any other aspect of network management that
can sustain faster response times and maintain throughput demands. In the domain of queuing
control, Active Queue Management (AQM) has emerged as a smart networking tool to selectively
transmit and receive packets. Initial approaches to queuing and dequeuing packets, such as First-
in-First-out (FIFO), are passive and have been proven to be unstable [B+94]. AQM techniques
use mechanisms such as priority queuing, packet marking, and packet dropping in order to fine
tune the network to avoid congestion and minimize end-to-end delays. To this end, a plethora
of state-of-the-art approaches exist, including Controlled Delay (CoDel) [NJ12], Random Early
Detection (RED) [FJ93], and Proportional Integral controller Enhanced (PIE) [PNP+13] among
many others.

In the case of round-robin schedulers (e.g., WFQ, DRR) [BSS12], the latency experienced by
a flow depends on its arrival curve (burst size, rate, ...), the arrival curves of the flows it interferes
with, and the service rates of queues it traverses. Thanks to network calculus models, worst case
estimations can be derived for the end-to-end latency of each flow. However, these models can
be complex when deriving tight latency bounds and are facing a trade-off between complexity
and tractability for the optimization of queuing parameters.
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In our work, we aim to use Reinforcement Learning (RL), a subclass of machine learning, to
further improve the efficiency of AQM algorithms. Our goal is to improve decision-making when
optimizing Quality of Service (QoS). We design an algorithm, DQN-WFQ, that leverages deep
Q-learning to improve decision-making in a smart queuing approach. We classify the majority
of network flows into three classes: Gold, Silver, and Bronze. Each of these classes represents a
set of throughput and delay requirements, which we aim to meet.

The designed algorithm targets a Weighted Fair Queuing (WFQ)-based scheduler, to which we
apply a Deep Q-Learning Network (DQN) to output the optimal weights in order to meet the SLA
requirements of each flow. At every set time interval, the DQN agent, placed on bottleneck links,
receives an observation of the environment. The latter is made up of the throughput and delay
values experienced by each flow class. Following this observation, the agent takes a decision
on either increasing, decreasing, or not adjusting the class weights. The objective it has is to
maximize the reward that will be issued following its decision depending on the number of flow
class requirements it met or violated. At the start of the training process, the agent’s choices
are random. As the training proceeds, the agent learns how to best react to the environment and
output the optimal weights at each step. Finally, in order to improve the efficiency of the agent,
we implement deep learning tools such as replay buffers and target networks.

The rest of this paper is structured as follows. Section 2 reviews the related works in the
state-of-the-art. Section 3 presents our deep learning approach to smart queuing. It introduces
the WFQ approach, the formulation of the problem at hand, and a detailed description of the
implemented deep learning mechanism. Section 4 shows our simulation results, and finally
Section 5 concludes this paper.

2 Related Works

In what follows, we highlight three main areas where smart queuing and network management
take advantage of machine learning to improve network performance: active queue management,
traffic engineering and Multi-Path TCP (MPTCP), and service management.

In the context of AQM, authors in [KE19] propose an AQM mechanism to reduce queuing de-
lay in fog and edge networks. It relies on deep RL to handle latency and trades-off queuing delay
with throughput values. The proposed algorithm is compared to other AQM approaches, namely
P-FIFO, RED, and Codel. Their proposal outperforms the other schedulers in terms of delay
and jitter, while maintaining above-average throughput. The state in this work is related to the
current queue length in packets, the dequeue rate, and the queuing delay. The action considered
is to either drop or serve the packets. Another interesting approach in the state-of-the-art is that
of [GGC+18] which proposes, as scheduling schemes, a dynamic-weight-earliest-deadline first
(DWEDF) algorithm and a reinforcement learning approach, called DWEDF-RL, to address the
scheduling of heavy tailed and low tail flows while accounting for bursty traffic. They provide
delay-bound-based fairness to flows having similar tail distributions in an intra-queue buffering
process with DWEDF. RL is shown to provide benefits dealing with flows whose behavior is
hard to predict or characterize beforehand. The authors in [BFZ20] use a deep neural network
to dynamically learn the optimal buffer size per network flow. Their proposal assigns the queue
size depending on congestion control, delay and bandwidth. They show that they can reduce
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queue sizes without any loss in throughput performance. Finally, within the same context, an RL
approach for bursty load management is proposed in [BAT+20] to improve average wait times
and manage over-saturation in the queues.

For MPTCP traffic control, in [Ros19] a deep Q-network is used for traffic management,
wherein a DQN agent selects the optimal paths. This work illustrates the benefits of using a
DQN approach to traffic scheduling and path selection problems. The work in [LZDX20] ad-
dresses scheduling of flows in MPTCP, with a focus on short and long MPTCP flows, and uses
RL to improve performance compared with traditional traffic scheduling methods. The proposed
DDPG-based deep reinforcement learning framework determines how to distribute the packets
over multiple paths while decreasing the out-of-order queue size under such paths. The RL
model is solved via an actor-critic framework and transformer encoders are used to process the
states of dynamic sub flows for the neural networks.

Finally, in the domain of service management, [KMRW19] describes a deep reinforcement
learning approach addressing the resource allocation problem in network slicing, accounting for
both highly dynamic traffic arrival characteristics as well as job resource requirements (e.g., com-
pute, memory and bandwidth resources). The authors demonstrate that their solution improves
overall resource utilization and reduces latency in comparison to an equal slicing strategy.

In our work, we seek to assist existing QoS schedulers with a DRL agent and deep reinforce-
ment learning. The proposal in [KE19] is purely an AQM. The proposed DRL algorithm is
only concerned with making decisions on either dropping or serving packets. The algorithms
in [Ros19] and [LZDX20] use deep learning for optimal path selection in networks, and fi-
nally the approach in [BFZ20] is concerned with buffer size optimization. Our objective is to
meet stringent demands for network flows belonging to a set of three classes: Gold, Silver, and
Bronze, by descending priority. This issue has not been addressed in the state-of-the-art using
deep learning tools. We aim to use new tools to address a classic quality of service issue. In
what follows, we present a deep Q-learning weighted fair queuing-based approach to managing
network flows. We want to determine the optimal scheduling weights per flow class depending
on the network and traffic scenarios at hand. Our model adapts to the variation in the traffic
flows, always outputting the optimal weights in order to maintain the respective priority of the
flows.

3 A Deep Reinforcement Learning Approach to Smart Queuing

In this section, we discuss our deep Q-learning approach for optimal weight selection in a WFQ-
based environment. We start by introducing the concept of weighted fair queuing and our imple-
mentation of it, and afterwards discuss our deep RL approach.

3.1 Weighted Fair Queuing Based AQM

Weighted Fair Queuing [BLN99] is a state-of-the-art approach to network scheduling which con-
stitutes a packet-based implementation of the generalized processor sharing algorithm [PG93].
In a classic WFQ approach, each flow i ∈ N would achieve a general data rate equal to:

Ri =
wi

(w1 +w2 + ....+wN)
R, (1)
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where Ri is the rate of flow i, R is the total link rate and wi is the weight associated with flow i.
As such, the greater the weight of the flow, the better it is served.

In our implementation, the classic WFQ approach is installed above classic AQM algorithms.
We chose WFQ, instead of a strict priority scheduler, in order to ensure fairness. Each flow, based
on its priority, is enqueued in a different child queue, separated from the others and following
either the same or different AQM approaches: RED, FIFO, CoDeL, PIE, etc. The algorithm
would then dequeue packets from each queue in order depending on the associated weight. This
means that on top of the packet queuing and dropping mechanisms, as well as the inter-class
bandwidth sharing maintained by AQMs, we have QoS guaranteed by the WFQ algorithm.

In our approach, we assume that all flows in the network can, based on packet priority, be
classified intro three classes, listed by order of importance: Gold, Silver, and Bronze. Each of
these classes has throughput and end-to-end delay targets to meet. Each flow is mapped into a
corresponding queue based on its priority (flow type), and is thus associated with a certain QoS.

3.2 Deep Q-Learning Network For Optimal Weights

In this section, we introduce our DQN-WFQ algorithm. We aim to utilize a deep reinforcement
learning approach, specifically DQNs, to create a model that is able to input the network state
in terms of throughput and delay values and output the weights that would lead to satisfying the
largest amount of flow classes’ throughput and delay requirements. In what follows, we highlight
the main features of this DQN network.

3.2.1 Formulation of the Problem

In order to properly construct our reinforcement learning network, we first need to model the
problem as a Markov Decision Process (MDP) [Bel57]. The latter provides a mathematical
framework to model decision-making in the learning environment. An MDP is represented by
the tuple (S,A,P,r), where S represents the set of states, A is the set of possible actions, P(s1|s0,a0)
is the probability of transitioning from a state s0 to a state s1 after taking an action a0 ∈ A, and
r(a0,s0) is the reward issued for moving from state to another. Our objective is to continuously
find the optimal weights for the WFQ algorithm. We use deep Q-learning which is a value-based
implementation of the Markov process. It consists of taking actions based on eventual values
known as Q-values. In order to use a DQN, we must first define the set of possible states, actions
and rewards in our scenario.

1. Problem States: We define a state in our problem, at a given time t, as a sextuple of the
current throughput and end-to-end delay values achieved by each class of flows: gold,
silver, and bronze: st = {Tg,dg,Ts,ds,Tb,db}, where Tg is the throughput of the gold flows,
dg is the delay of the gold flows i.e., the average delay of all flows classified as gold, and
so on. Since in theory this state space is infinite, we normalize and discretize the set of
possible states. An increased state space would mean the algorithm has more room to
explore for better solutions, but would incur a time penalty for convergence.

2. Possible Actions: The DQN agent is tasked with manipulating the weights of the WFQ
algorithm. As such the set of actions it can take on the weight of each type of queue
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(Gold, Silver, or Bronze) is to either increase it by a preset value (+x), decrease it by
that same value (−x), or leave the weight unchanged (+0). The agent will take an action
on the weights of all the flow classes simultaneously. The weights are then normalized
to ensure their sum is always equal to one. The action on the gold class, for example,
can be expressed as ag ∈ {−x,0,+x}, and as such the action of the agent at each step
can be formulated as: at = (ag,as,ab). Since the agent acts on all three class weights
simultaneously, and since there are three possible options to adjust each weight, there
exists a total of 27 possible actions.

3. Action Reward: The reward is issued for an agent depending on how its action has im-
pacted the throughput and delay thresholds of each flow class. Let ηi be the reward for
meeting the throughput demand of flow class i, and φi the reward for meeting the delay
requirement of class i. The total reward is computed as follows:

rt = ω
t
g ·ηg +ω

d
g ·φg +ω

t
s ·ηs +ω

d
s ·φs +ω

t
b ·ηb +ω

d
b ·φb. (2)

ω t
i is a binary value that equal to -1 if the demand throughput for flow class i is not met

and +1 if it is. Similarly, ωd
i is equal to -1 if the delay requirement is not met for flow

class i and +1 if it is. This means that the reward can be in the negative i.e., a penalty.
Finally, we define the delay reward/penalty in terms of the throughput reward/penalty: φg

= κ·ηg. This enables tuning the reward to put more emphasis on the throughput or vice-
versa. In principle, ηg > ηs > ηb indicating that the agent is rewarded better and penalized
harder for meeting, or failing to meet, the demands of the gold class than it is for the silver
and bronze classes, respectively. These values can be fine-tuned to further improve the
significance of one class over the other, but if the value of ηg, for example is too high, the
agent will be incentivized to meet the demands of the gold flows while disregarding the
others as it attempts to maximize its reward.

3.2.2 Deep Learning Process

Deep Q-learning builds on traditional Q-networks which work as follows. In a Q-network algo-
rithm, the objective of the agent is to output a policy Φ(a|s) which would dictate how the agent
moves from one state to another and which actions to take in order to maximize the long-term
reward [WD92]. Once the Q-values are defined, and when in any given state at a certain time t
st ∈ S, a chosen action to improve the policy can be expressed as:

at = argmax
∀a∈A

Q(st ,at). (3)

In order to find the optimal policy Φ, the Bellman equation can be used to compute the optimal
value function starting from a state s as:

V (st) = max
∀at∈A
{r(st ,at)+ γ · ∑

st+1∈S
Pr{st+1|st ,at} ·V (st+1)}, (4)

where st+1 is the state following s after taking the action at and γ is the discount factor ∈ [0,1].
The discount factor quantifies how much weight we put on future rewards. The value in the
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Figure 1: DQN algorithm structure

Q-table is defined as:

Q(st ,at) = r(st ,at)+ γ · ∑
st+1∈S

Pr{st+1|st ,at} ·max
at+1

Q(st+1,at+1). (5)

As such, the Q-table can be updated following:

Qt+1(st ,at) = Qt(st ,at)+α(r(st ,at)+ γ ·max
at+1

Qt(st+1,at+1)−Qt(st ,at)). (6)

α is the learning rate ∈ [0,1], and at+1 is the action taken when in state st+1 based on the
policy Φ. The learning rate controls the speed with which the algorithm learns: if too low, the
algorithm might never reach its objective, while if too high, the algorithm might oscillate around
the objective.

The problem with classical Q-learning is that it requires a table entry for each possible state-
action combination. Any simple realistic scenario would explode the amount of required memory
to store the Q-table. As such, when using Q-learning with a deep neural network, we change the
Q-values completely, at each training step, instead of updating them with the increments. The
learning rate α is also dropped as it is now accounted for within the back propagating optimizer
as we detail in the following section.

3.2.3 Target Network and Experience Replay

In Q-learning, we are “updating a guess with a guess”. This becomes even harder when the target
value we are chasing i.e., r(st ,at)+ γ ·max

at+1
Qt(st+1,at+1) is moving. The two consecutive states
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Algorithm 1: Training the DQN Agent

1 Initialize the main network Q
2 Initialize the target network Q̂
3 Initialize the experience replay memory D
4 Initialize the Agent to interact with the Environment
5 while not converged do

/* Sample phase for the replay buffer */
6 ε ← set new epsilon via ε-decay
7 Choose an action a from state s using policy ε-greedy(Q)
8 Agent takes action a, gets reward r and next state s′

9 Store transition (s, a, r, s′, done) in the replay memory D
/* done indicates if the DQN agent reached its set target

or not */
10 if enough experiences in D then

/* Learning and training phase */
11 Sample a random minibatch of N transitions from D
12 for Every transition in (si, ai, ri, s′i, donei) in minibatch do
13 if donei then
14 yi = ri

15 else
16 yi = ri + γ·max

a′∈A
Q̂(s′i,a

′)

17 Calculate the Loss L = 1
N ∑

N−1
i=0 (Q(si,ai)− yi)

2

18 Update Q using the SGD algorithm by minimizing the loss L

19 Every C steps, update Q̂ using Q’s weights

Gold

Silver

Bronze

DQN Agent

ObservationNetwork Control

Real-time traffic

Batch traffic

Enqueue Dequeue

Wg   Ws   Wb

Figure 2: Agent placement and decision making
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st and st+1 have one step between them, they could be very similar and the neural network would
not be able to distinguish between them. When the neural network’s parameters are updated to
make Q(s,a) closer to a desired value, the value for Q(st+1,at+1), a different entry in the table,
could be altered. This could make the training unstable.

In order to avoid this situation, we utilize a target network in addition to the main neural
network. This target network is a copy of the main one and we use it to keep the values of
(st+1,at+1) [HS19]. The predicted Q-values of this copy Q-network are then utilized to back-
propagate through and train the main Q-network. The parameters of the target network are not
trained, but regularly updated with the values of the main network. Note that when moving from
classical Q-networks to deep Q-networks, the learning rate is no longer used in the same capac-
ity. It is accounted for within the optimizer used to minimize the loss. We use the default value
of 0.001.

In a deep neural network, we can learn through backpropagating and by using stochastic gra-
dient descent (SGD) optimization. A fundamental requirement to do so is that the data we are
training the model on is independent and identically distributed. If the agent is being trained on
the data as it comes, the sequence of experience could be highly correlated. This can cause action
values to oscillate and diverge. As a solution to this problem, we use a large buffer to store past
experiences. These past experiences are tuples of the form (S,A,R,S′) i.e., they have the current
state, the action taken, the reward issued, and the subsequent state. This experience replay buffer
is then randomly sampled to train the model. This process of sampling batches from the replay
buffer to learn is known as experience replay [ZS17]. The agent learns by minimizing the loss.
The structure of the DQN algorithm can be seen in Figure 1. A pseudo-code of the process is
shown in Algorithm 1. In the referenced code, simplified notations are used with s referencing
the current state, s′ referring the next state following the taken action a, and r being the issued
reward. Our model is trained on a certain network topology as the traffic varies. As long as there
is not a major change in the topology, there would be no need to retrain the model. Finally, in
Figure 2 we illustrate how the DQN agent is pushed on top of the bottleneck queues where it
monitors the environment and calibrates the weights of each class accordingly.

4 Simulation Results

In this section, we benchmark the performance of the proposed DQN-WFQ based smart queuing
algorithm by using the packet-level simulator NS3 [RH10]. The considered topology, illustrated
in Figure 3a, is composed by only one bottleneck link, in order to study the impact of the queue
management proposal. This topology well represents some realistic scenarios such as a satellite
link communication or the link between an access router and a leased line. We consider six
origin-destination (OD) pairs that can send data in only one out of three classes of services, i.e.,
Gold, Silver, and Bronze. Each two OD pairs belong to one traffic class. To mimic diurnal
time-varying traffic patterns, the origins generate traffic with a sinusoidal rate between 0.25 and
1.5 Mbps. The bottleneck link bandwidth is 4 Mbps and its propagation delay is 20 ms. In these
results we consider only small transmission rates to speed up simulation duration. However we
verified that the results remain the same even with larger link bandwidth and transmission data
rates. Our trained agent is place on the bottleneck link. The DQN agent is composed of an input
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layer with six inputs representing the observation, and an output layer with a softmax activation
function with 27 outputs, representing the possible action space (3x3x3). For each class (Gold,
Silver, Bronze), the agent is taking one out of the three possible actions, i.e., increase the weight,
decrease it, or keep it the same. In between the input and output layers, there are two fully
connected dense layers with 128 units each. The rest of the parameters are detailed in Tables 1
and 2. We consider two different types of traffic, UDP and TCP. In order to avoid having UDP
traffic starving out its TCP counterpart, we run the simulations assuming that all the nodes send
the same type of traffic.

Table 1: Scenario Simulation Parameters

Parameter Value

Number of OD Pairs 6
SQ implementation Bottleneck on top of RED
AQM on other links FIFO
Simulation duration / snapshot 10 sec
Transport protocol UDP-TCP
Bottleneck link delay 10 ms
Bottleneck link BW 4 Mbps
Traffic generation per node About 0.25 to 1.5 Mbps
Weights WFQ UDP 0.5/0.33/0.16 & 0.6/0.25/0.15
Weights WFQ TCP 0.58/0.26/0.16 & 0.5/0.33/0.16

Table 2: DQN Simulation Parameters

Parameter Value

Activation function connected layers RELU
Activation function output layer Softmax
No of fully connected layers 2 each with 128 units
Training batch size 32
ε - decay x 0.99955 per episode
Discount factor γ 0.99
No of terminal steps to update target 5
Reward relative to flows G/S/B 3x/2x/x
Delay to throughput relevance κ 0.8
No of training episodes 15,000

4.1 Algorithm Convergence

We first illustrate how the exploration rate varies with each training iteration. ε starts at 1 (i.e.,
always explore a new solution) and is decayed by a factor of 0.99955 each time the model is
trained, as shown in Figure 3b. After 1500 episodes, it is a coin flip whether the algorithm ex-
plores or exploits. The minimum value for ε is set at 0.001 or a 1% chance that the algorithm
decides to explore. This method of decaying ε ensures that the algorithm has enough iterations
to explore the entire state space. If the total number of training iterations is to be reduced, the
decaying could be accelerated by decreasing the value of the decay rate. As illustrated subse-
quently, the algorithm does not need as many iterations to converge (1500 iterations are enough).

We verify that the algorithm is converging by looking at the cumulative rewards for sets of 15
episodes. We do this to smoothen the curve and root out any undesirable fluctuation. In Figure 3
we track both the minimum and average rewards for these aggregated episodes. Note that the
episode’s reward is its total accumulated rewards until it reaches its goal (i.e., done = 1). We set
the goal to be equal to zero for this simulation. This means the DQN agent is trained whenever
the reward is positive. In Figure 3c, we notice that the minimum reward fluctuates severely over
the first 500 episodes. However it quickly starts to stabilize at around the value of 0. Similarly,
the average reward shown in Figure 3d, starts to stabilize at around the mark of 1500 episodes
afterwards reaching a positive reward almost every iteration.

4.2 Case of UDP Traffic

In order to highlight the advantages of using a DQN agent to choose the weights, we simulate
our DQN-WFQ algorithm and compare it against the traditional WFQ. The requested QoS for
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Figure 3: Minimum and average reward as a function of the number of episodes

the classes of flows are: 2.4 Mbps for gold flows, 1 Mbps for silver, and 0.6 Mbps for bronze.
There are two ways to input the weights for the traditional WFQ approach. The first consists of
choosing the weights based on the rewards which we used to train the DQN (section 3.2.1), and
the second following the demanded levels of services we input to the DQN as requested. Note
that in our simulation the traffic generated per flow does not depend on the class it belongs to. As
such, there is no intuitive way to vary the weights on-the-fly for the traditional WFQ approach.
We assume that in the case of congestion on the bottleneck link, a minimum level of service must
be guaranteed to each flow. For the delay, the QoS requirement is to guarantee an average delay
bounds of 0.3, 0.6 and 1 second for gold, silver, and bronze flows, respectively.

We first look at the throughput result when the traffic sources generate UDP traffic. Figure 4a
shows the throughput results for DQN-WFQ compared to traditional WFQ. The weights here
for the traditional WFQ algorithm are chosen based on the rewards used to feed the DQN i.e.,
gold weight is 2x the silver and 3x the bronze (Table 1). The figure has cumulative distribution
plots (CDF) for all types of flows for both algorithms. The dotted lines show the demanded
values to maintain during congestion periods. The areas where the plot is a straight vertical
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Figure 5: Performance in case of TCP Traffic. The dashed lines correspond to the required QoS.

line indicate that congestion has occurred on the bottleneck. At small data rates i.e., around
0.25 Mbps requested by each node, the bottleneck link is not congested, so it can transmit all the
requested traffic. By looking at the congestion areas on the plot, we notice that WFQ meets the
throughput levels requested for both silver and bronze flows while it fails to meet the requirement
for gold flows (2.12 Mbps instead of 2.4). DQN-WFQ, instead, meets the QoS requirements for
all the flows, providing a throughput of 2.405 Mbps for the gold class flows, 1.06 Mbps for
the silver, and 0.615 Mbps for the bronze. The DQN agent continuously learns how to update
weights in order to maximize the reward, which is contingent on meeting all the flow throughput
requirements.

In Figure 4b, we present the results in terms of the average delay experienced by the flow
packets. We note that our algorithm can meet all the set delay values while traditional WFQ,
notorious for causing delay penalties, cannot guarantee any. Furthermore, setting the weights for
traditional WFQ following the delay requirements does not yield any difference in performance
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as the weights effectively remain unchanged from the current case.
Finally, if we run the traditional approach with the weights set proportional to demanded

throughput levels, the traditional WFQ algorithm would be able to meet the gold and bronze flow
requirements while failing to meet the silver class demands (around 0.96 Mbps). No significant
changes can be noted in terms of delay targets.

4.3 Case of TCP Traffic

We now study the performance of our model in case of TCP traffic, a protocol that differs from
UDP because of its innate congestion control mechanism. We lower the throughput requirement
for the gold class flows to 2.2 Mbps to count for the bandwidth taken by TCP ACKs. For
WFQ, we calculate the weights based on the requirements: for instance, as for the gold flows,
we require to guarantee 2.2 Mbps of throughput during congestion, its weight is calculated as
2.2/3.8 ' 0.58. The same approach is taken for the weights of the silver and bronze classes.
Similar to before, there is no benefit in varying this weight as the different classes are generating
traffic with the same data rates. The CDF distribution of the achieved throughput is shown in
Figure 5a. As with the case of UDP traffic, DQN-WFQ is capable of meeting all the throughput
requirements. For traditional WFQ, the gold and silver QoS requirements are met, but the bronze
flow is starved and served at about 0.2 Mbps during congestion, well below the requirement. This
gold class outperforms and has throughput values higher than required. This effect is due to the
congestion control mechanisms of TCP. Because of the relatively high weights of the gold and
silver flows, not a few packets are being sent or acknowledgments received for the bronze flow.
This triggers the congestion control for the bronze flow, further lowering its capability of meeting
the set requirements. The bandwidth is then dominated by the gold flows which get about 65%
of the bandwidth instead of the 58% they were supposedly allotted by WFQ.

In Figure 5b we highlight the performance of DQN-WFQ in terms of delay. As in the case with
UDP traffic, traditional WFQ fails to meet the delay requirements, while DQN-WFQ achieves
delay values well below the delay thresholds for all three flow classes, as the continuous weight
adaptation carried out by DQN-WFQ helps optimize bandwidth utilization. Finally, we note that
calculating the weights for traditional WFQ using the rewards fed to the DQN, or relative to the
delay requirements, results in no difference in which flow requirements are being met.

5 Conclusion

In this article, we proposed a deep reinforcement learning approach to help meet stringent de-
mands of classified network flows. We implemented a DQN-WFQ agent that learns the optimal
weights for dequeuing different classes of network flows: Gold, Silver, and Bronze. The agent
implements DRL tools such as replay buffers and target networks to help in convergence. We
showed via simulation results that our proposal is efficient and helps fulfill flow requirements
in terms of throughput and delay. In our concurrent and future works, we will implement a
multi-agent reinforcement learning approach in a network with multiple bottlenecks.
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