
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

Low-Code/No-Code Artificial Intelligence Platforms for the Health
Informatics Domain

Colm Brandon,Tiziana Margaria

23 pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Low-Code/No-Code Artificial Intelligence Platforms for the Health
Informatics Domain

Colm Brandon1*,Tiziana Margaria2

1 colm.brandon@ul.ie
University of Limerick, Limerick, Ireland

2 tiziana.margaria@ul.ie
University of Limerick, Limerick, Ireland

Abstract: In the contemporary health informatics space, Artificial Intelligence (AI)
has become a necessity for the extraction of actionable knowledge in a timely man-
ner. Low-code/No-Code (LCNC) AI Platforms enable domain experts to leverage
the value that AI has to offer by lowering the technical skills overhead. We de-
velop domain-specific, service-orientated platforms in the context of two subdo-
mains of health informatics. We address in this work the core principles and the
architectures of these platforms whose functionality we are constantly extending.
Our work conforms to best practices with respect to the integration and interoper-
ability of external services and provides process orchestration in a LCNC model-
driven fashion. We chose the CINCO product DIME and a bespoke tool developed
in CINCO Cloud to serve as the underlying infrastructure for our LCNC platforms
which address the requirements from our two application domains; public health and
biomedical research. In the context of public health, an environment for building AI
driven web applications for the automated evaluation of Web-based Health Informa-
tion (WBHI). With respect to biomedical research, an AI driven workflow environ-
ment for the computational analysis of highly-plexed tissue images. We extended
both underlying application stacks to support the various AI service functionality
needed to address the requirements of the two application domains. The two case
studies presented outline the methodology of developing these platforms through
co-design with experts in the respective domains. Moving forward we anticipate
we will increasingly re-use components which will reduce the development over-
head for extending our existing platforms or developing new applications in similar
domains.

Keywords: Model Driven Development, Domain Specific Languages, AI, ML,
Health Informatics, XMDD

1 Introduction

Health informatics is a highly multidisciplinary field at the intersection between medicine and
information technology. The field seeks to leverage information technology tools to advance all
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aspects of health care, be it in a clinical or research setting. In recent years health informatics
has become more and more data-centric, closely in line with the rapid increase in our ability to
gather and store more and different types of data. This has led to an explosion in the use of AI in
recent times as we are now able to collect and store repositories of data so large, that they have
surpassed our ability to manually extract and develop actionable knowledge from them in an ef-
fective or efficient manner. Fortunately, AI algorithms and computational techniques have been
developed (and are constantly being developed) that can perform tasks previously only possible
by humans to a high degree of accuracy in a small fraction of the time it would take a human,
allowing use to be made of all this data.

AI is already used in a broad array of subdomains within the health informatics space. For in-
stance, when it comes to public health, AI techniques are being used for medical surveillance. An
AI driven approach enabled researchers to identify food-born illnesses using social media data
[HMC+14]. Another study used AI to mine social media data to identify individuals who may
be suffering from depression [MSC+16]. Also with respect to public health, AI is being used to
assist the public to better assess the quality WBHI as seen in [KAK20], where the authors used
AI to automate the evaluation of WBHI with respect to the DISCERN instrument [CSNG99].
In Clinical medicine AI is being used to interpret medical images for diagnosis including; lung
cancer screening [AKB+19], breast cancer screening [WPP+19] [MSG+20] and cardiac func-
tion assessment [GOA+20]. In biomedical research, AI is being used for a plethora of things
such as semantic segmentation of biomedical images [RFB15], the prediction of protein struc-
tures [JEP+21] and DNA fragment Assembly [BCC11]. However this is just a brief overview of
the use being made of AI in health informatics, the current applications are extremely pervasive
and growing rapidly.

The Model-Driven Development (MDD) approach breaks with the code-centric approach to de-
veloping software and places models at the centre. Rather than developers spelling out every
detail of how a software system works in code, models are used to define the functionality that is
needed and the overall requirements for the system’s architecture. In the MDD paradigm, models
are Platform-Independent Models (PIMs) so that the system’s design is not bound to an underly-
ing implementation technology. In essence, it enables the developer to focus on what the system
needs to do rather than how it is implemented in code. Domain-Specific Languages (DSLs) are
programming languages that offer a higher level of abstraction than general-purpose languages
and are optimised for use within a specific problem domain. DSLs encapsulate domain-specific
constructs and rules, which make them more comprehensible to domain experts than those in
general-purpose languages. The idea of DSLs is not a new one (for example SQL, is a DSL
for database operations), but as computing is being applied to an increasing amount and more
diverse set of problem domains DSLs provide extensive opportunities for greater productivity
due to facilitating greater participation of domain experts in the development process. LCNC
development environments are based on the principles of MDD. They are typically comprised
of a graphical editor that enables users to develop software in a drag-and-drop fashion to define
what the system does and define the relationships between models (i.e. data flow). In general
LCNC development environments are tailored to a specific domain with the available set of mod-
els and possible relationships being a DSL. Through the use of automatic code generation, the
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graphical abstractions of the system are translated to executable code or even a production-ready
application. Given they require little to no coding experience LCNC development environments
facilitate domain experts to actively participate in the development of production-ready applica-
tions for use within their domain, either by co-design with a software developer or completely
independently.

Whilst AI participation in the health informatics space is growing rapidly, with many research
labs in the various sub-domains having collaborators with knowledge of programming in their
teams actively developing new AI driven solutions in a variety of health informatics research,
there is a hurdle to widespread participation. The vast majority of these tools are being devel-
oped in general-purpose programming languages such as Python, meaning there is the prerequi-
site requirement of programming expertise for domain experts to participate in the benefits of AI
in their field. To address this, developing domain-specific LCNC AI platforms would not only
facilitate domain experts to use existing AI technologies but build upon them by leveraging their
domain knowledge to create new workflows, pipelines and applications. This could ultimately
result in greater productivity as they can focus on advancing their research rather than learning
to code.

Our goal is to develop tailored LCNC AI platforms for a variety of domains within the Health
Informatics space, to ease the technical knowledge burden on those working in those domains.
In essence, democratising the use of AI by making it available to those with no expertise in
coding. In order to address this goal we chose the CINCO [NLKS18] product DIME [BFK+16]
and a bespoke product built in CINCO Cloud [BBK+22] as starting points. Our contribution is
extending them by creating DSLs and integrating AI services for two domains; public health and
biomedical research. The remainder of the paper is comprised of Section 2 which discusses the
related work. Section 3 outlines the principles of the LCNC AI Environments for Health Infor-
matics. Section 4 introduces two case studies that are based on our ongoing projects and finally
in section 5 we offer the conclusion and steps to be taken going forward.

2 Related Work

In recent times, textual and Graphical Domain-Specific Languages (GDSLs) following the model-
driven approach and the LCNC paradigm have become more and more popular for designing
and developing complex systems. According to Gartner’s 2022 report on low-code develop-
ment technologies, the market for low-code technologies is expected to grow by 20% in 2023,
with that trend continuing into the future. They also anticipate that 80% of the user base us-
ing low-code tools for software development to be people outside formal IT departments, i.e.
non-programmers [New22]. This illustrates that LCNC platforms address many of the issues
associated with traditional software development paradigms and by lowering the knowledge bur-
den democratize the development of software by enabling domain experts who have little or no
expertise in coding to actively participate in the development process.

In the health informatics space, a number of LCNC platforms and DSLs have been devel-
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oped in recent times to reduce the complexity of both computational analysis and the use of
AI in the field. Galaxy is a software ecosystem first released in 2005 that consists of several
software systems that can be accessed via a web browser [JAG+20]. The system available at
’UseGalaxy.org’1 is tailored toward data-intensive biomedical research and has two features that
are pertinent to our work, Worflow and Visualise. The Workflow feature is a no-code browser-
based environment that has access to an integrated repository of tools for a wide range of biomed-
ical studies such as sequence and variant analysis, metagenomics, proteomics, and transcrip-
tomics. The Visualise feature is a no-code tool that enables exploratory data analysis via the
web browser. Whilst Galaxy is a vibrant and well-established ecosystem it doesn’t support many
uses cases in the health informatics space, two of which are the target of our research. NextFlow
[DCF+17] is software for data-driven computational pipelines. It consists of a textual DSL that
enables the implementation and deployment of complex parallel and reactive workflows on the
cloud or a cluster of computers. It can be deployed on any POSIX-compatible operating system.
It provides an abstraction layer between a computational pipelines process logic and the execu-
tion layer and therefore is implementation-independent with built-in executors for the likes of
SLURM, Kubernetes and several cloud providers. Toil [VRN+17] is an open-source workflow
software that can be used to deploy and execute scientific computational workflows at a large
scale in the cloud or High Performance Computing (HPC) environments. It is accessed pro-
grammatically through an Application Programming Interface (API) in Python. It also supports
what the authors describe as a Common Workflow Language (CWL) and Workflow Descrip-
tion Language (WDL), which are essentially two DSLs that separate the process logic from the
deployment (similar to NextFlow). While both NextFlow and Toil greatly ease the challenges
of deploying computational pipelines they both require coding knowledge and therefore do not
achieve the goal our work sets out to achieve. PyCaret is a python-based low-code machine
learning library for automating machine learning workflows which can be used for a variety of
machine learning tasks [Ali20]. It abstracts away a lot of the code for creating ML workflows,
however still requires the users to have a working knowledge of Python programming.

There are several commercial LCNC AI tools available. Microsoft Lobe2 is a free desktop ap-
plication that enables users to label data, train a model and then export that model in a variety
of formats such as TensorFlow[ABC+16]. It is restricted to Image classification and there is
no facility to pick the type of model being trained. h20.ai offer driver-less AI3, a no-code tool
whereby users can build AI models for a variety of tasks using automated techniques developed
by h20. Those models can then be deployed via API through their cloud platform or run locally
using generated Java code. Amazon Sagemaker4 has a cloud-based, no-code interface for data
preparation and automated AI model training/tuning. The trained model can then be used to
make predictions through the web browser. This is not an exhaustive list with plenty of other
options available. However, there is a general theme amongst these tools, which is that while in
theory they could be used to solve certain problems in the health informatics domain, none of
them to the best of our knowledge incorporate the functionality required for creating pipelines

1 https://usegalaxy.org/
2 https://www.lobe.ai/
3 https://h2o.ai/platform/ai-cloud/make/h2o-driverless-ai/
4 https://aws.amazon.com/sagemaker/studio/
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to solve difficult problem domains as is the focus of this work. There are also some highly spe-
cialised software systems for AI driven processing biomedical images such as Visiopharm5 and
Halo by Indica Labs6 which do solve many of the problems our work is addressing, however,
these software systems illicit huge license fees which make them inaccessible to the majority of
researchers.

MDD is an approach to software development that enables rapid design of flexible and cost-
effective applications. Placing the model at the centre of the design process, automatic code
generation is leveraged to enable the developer to use drag-n-drop visual interfaces to focus on
’what’ the applications should be doing rather than how they are going to implement it in code.
Using graphical abstractions, the developer models the system and automatic model-to-code gen-
erators are used to transform the models in the form of graphical abstractions to executable code
[MCF03]. Following these principles, the Java Application Building Center (jABC) framework
[SMN+07] based the design and development of applications on Lightweight Process Coordina-
tion and formal models. Leveraging the concept of reusable building blocks, orchestrated into
analysable control structures titled Service Logic Graphs, jABC accelerated the development cy-
cle of applications. Extending the MDD paradigm through incorporating domain-specific rules
and concepts, tailors the modelling environment towards a specific domain of application. The
purpose of this is to increase productivity, reduce development complexity and increase the par-
ticipation of domain experts who likely have little or no coding expertise. An early example of
this in practice for the health informatics domain is Bio-Java Electronic Tool Integration Plat-
form (jETI) [MKS08]. The Bio-jETI Graphical Modelling Environment (GME) enabled domain
experts to graphically combine bioinformatics services to create more complex workflows with-
out worrying about details of their interfaces, type mismatches of the composition and most
importantly without having to write any code.

The Language-Driven Engineering (LDE) approach [SGNM19], addresses the challenge of adapt-
ing the needs of DSLs with the practicalities of minimising the cost, expertise and complexity
of developing their corresponding systems from scratch. The CINCO meta-level framework by
the same authors as the LDE approach supports a meta-model approach to the development of
domain-specific graphical modelling tools that support automatic model-to-code transformation
from meta-model specifications. In the LDE paradigm there are two high-level meta-modelling
languages, the Meta Graph Language (MGL) and the Meta Style Language (MSL). The MGL
describes the language’s syntax and semantics, with the MSL describing the rendering style of
the language in the graphical editor. Following this LDE approach and using the CINCO frame-
work several MDD tools have been developed for use in a variety of different application domains
[ZNS19, ZS21, BFK+16, CKL+16]. With regards to our work we chose to work with two spe-
cific products from the Sustainable Computing for Continuous Engineering (SCCE) eco-system,
DIME and CINCO Cloud [BBK+22].

DIME is an Eclipse-based, low-code Integrated Modelling Environemnt (IME) for developing

5 https://visiopharm.com/
6 https://indicalab.com/halo/
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and deploying complete web applications in a service-oriented manner [MSR05]. It follows the
principles of the One Thing Approach (OTA) [MS09] through its one-click generation and de-
ployment. Dime supports hierarchical modelling which is useful for designing scalable real-life
systems. The modelling language consists of three main model types which are the different
aspects of a web application. The data models facilitate the design of data types and persistency.
The process models facilitate the design of business logic with respect to control and data flow.
Finally, the GUI models facilitate the design of the web applications’ user interface. When devel-
oping an application in DIME the user modelling is validated dynamically from both a syntactic
and static semantics point of view on both a model and project level. This facility supports users
to debug their application at the design stage with warnings and error messages helping to local-
ize the issues. This validation at the design stage eliminates the testing overhead present when
not following the OTA.

CINCO Cloud is a holistic web-based language engineering environment that covers all aspects
of the LDE paradigm. From meta-modelling the DSLs, to modelling an application with those
DSLs to deploying the final product via Continuous Integration/Deployment (CI/CD) pipelines
with Git repository platform integrations. CINCO Cloud is a fully cloud-based application and
therefore does not require the user to install any software locally, with users accessing it via the
web browser. CINCO Cloud facilitates real-time collaboration and user access management ca-
pabilities. There are three layers in CINCO cloud; the meta layer where the graphical DSLs are
designed, the modelling layer where the created DSL is used in the IME to develop an applica-
tion and the product layer where the deployment of the developed application is handled through
the integrations with Git repository platforms. Similar to DIME, both the meta and modelling
layers in CINCO cloud provide syntax validation to aid the user in debugging their application at
design time.

LCNC development environments and DSLs promise to fulfil robust application requirements,
automate the majority of the software development life-cycle and address several challenges that
are associated with conventional software development. As has been shown by many of the de-
velopments in other domains, domain-specific LCNC development environments have massive
potential to democratize the use of AI driven computational analysis in the health informatics
domain. Given this potential they are likely to be an extremely fruitful avenue to increase the
productivity of and ease the technical knowledge burden on domain experts, leaving them to
focus on their actual research.

3 Developing LCNC AI Environments for Health Informatics

Our work endeavours to create a number of AI platforms for a variety of subdomains in health in-
formatics by extending the AI service functionality of the base platforms DIME and CINCO cloud
through integrating existing AI technologies and also ones we have developed to solve problems
in our chosen application domains. The target of the work initially focuses on informatics for
public health and biomedical research. Specifically offering a LCNC AI driven web applica-
tion development environment in DIME, to aid researchers, public organisations and charities to
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build applications that leverage AI to benefit public health interests. With respect to biomedical
research, we offer a platform to model and execute AI driven workflows for the processing and
computational analysis of biomedical images, initially targeted at tissue-based high dimensional
spatial proteomics.

3.1 The DIME platform architecture

The current architecture of the IME for the public health AI web application platform is based
on DIME. DIME is an IME for developing and deploying full-stack web applications. The DIME

IME breaks down the development of a web application into three distinct model types; Graph-
ical User Interface (GUI) models, process models and data models, also supporting hierarchical
modelling. GUI models are used to model the User Interface (UI) for an application and it
follows the principle of What You See Is What You Get (WYSIWYG), this enables rapid proto-
typing of UIs. Data models are used to define the data types and persistence for an application
and the relations between different data types. Process models are used to model the business
logic, both control flow and data flow, for an application, with each process model in essence
being a compartmentalised piece of logic that when pieced together with other process models
defines the overall business logic for an application. DIME has Common DSLs which are native
to the default distribution and support a number of generic web application requirements such as
manipulation of strings, mathematical operations, etc.

In the case of domain-specific requirements not natively supported in DIME it is possible to ex-
tend DIME with new External native DSLs. External Native DSLs are a set of external services
that exist outside the DIME environment that can be accessed at runtime via network protocols,
thereby integrating functionalities that are tailored to a specific domain that can be modelled in
DIME. The Process DSL is the language definition that handles the orchestration of domain-
specific, generic and hierarchical workflows of Common and External Native DSLs. The focus
of our work with respect to DIME is developing new external services in a MDD and service-
orientated fashion, then integrating those services into DIME as External Native DSLs and devel-
oping Process DSLs which handle the orchestration of those services to enable them to be used
easily by domain experts when building their applications.
We found that the majority of the functionality for supporting our target use case was not na-
tively supported in DIME. Therefore DIME needed to be extended with a new set of DSLs which
met the requirements for designing such a web application. Whilst there are Java (the native
language for DIME) libraries available for Natural Language Processing (NLP) and Machine
Learning (ML) such as Apache Spark MLib7, the options are somewhat limited. Python, on
the other hand, has an extremely vibrant ecosystem with NLP and AI libraries [PVG+11, LB02,
WDS+19, PGM+19, ABC+16] and so was the preferred option for implementing the functional-
ity. Given that Python requires a different runtime infrastructure than a native DIME application,
the service integration methodology from prior work [CM21] was followed. Once we had de-
cided on the most suitable programming language for the services to be implemented in and a
means of integrating those services into DIME, all that remained was implementing the services

7 https://spark.apache.org/mllib/
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Figure 1: Overview of the DIME architecture for the LCNC AI Web App development platform

in code and deploying them. Before any service implementation code was written, the first step
was to design the models for the various AI processing pipelines that comprise a system of this
nature. This was done using the blueprinting facility in DIME, with each processing pipeline
being broken down into a set of atomic processing steps and a model of the inputs and outputs
for each processing step being blueprinted. Given that all the domain-specific functions are im-
plemented as external services, this approach greatly aided in choosing the level of abstraction
that becomes a Service-Independent Building Block (SIB) and which becomes a Process DSL,
and therefore how the services were implemented in code. Figure 2 shows the blueprint of a NLP
pipeline for taking raw text in the form of a string, applying a number of pre-processing steps
and inputting it into some classifier to get some label. Following the blueprinting approach aided
in making the decision to be in-keeping with the premise of SIBs, reusability and generability
of operation were central to the decisions. For example, deciding that tokenization was imple-
mented and deployed as a standalone service, then integrated into DIME as a SIB rather than
the entire pipeline seen in Figure 2 being implemented, deployed and integrated as a SIB. The
pipeline would instead form a Process DSL. The set of SIBs for ’tokenization’, ’token cleaning’
and ’stop word removal’ as denoted in Figure 2 collectively would form the basis of a NLP pre-
processing DSL.
The implementation code for the services was then written in Python for the chosen set of models.
The containerised service-orientated approach was chosen due to the heterogeneous landscape of
technologies, platforms and dependencies for the various AI ecosystems. When deploying these
services two avenues were taken; local deployment and cloud deployment. For local deployment
the services and their dependencies were containerised, made accessible via a REST APIs and
deployed in the same host environment as the deployed DIME application. For cloud deploy-
ment, the services and their dependencies were deployed in AWS Lambda and made accessible
through a REST API via API Gateway.

3.2 The CINCO Cloud Architecture Extension

The current architecture of the AI driven computational image processing platform has as its base
CINCO Cloud the web-based language engineering environment. A high-level overview of the

ISoLA DS 2022 8 / 23



ECEASST

Figure 2: A generic raw text to classification NLP pipeline blueprinted in DIME

standard distribution of Cinco Cloud architecture can be seen in Figure. 3. In the typical use case
for CINCO cloud the MSL, MGL and CINCO Product Definition (CPD) are used within meta-
IME (meta layer in Figure. 3) to define an Application Domain Specific Language (A-DSL)
and IME for the target use case. Accompanying this IME, code-generators are written which
will translate the models into executable source code. This is what is referred to as a CIN-
CO product. In the original desktop application of CINCO, the generated CINCO product was
a standalone desktop application (such as DIME), however in CINCO cloud the CINCO product
simply becomes a new project that can be opened in the same interface as the Meta-IME. With-in
the CINCO product, a Modelling Domain Specific Language (M-DSL) can be created through
the creation of SIBs (like the extensions of DIME in 3.1) which then are used to model the
functionality of an application within the structure provided by the A-DSL. Users can then
define their application in the IME and subsequently generate the application code with the
model-to-code transformer. The actual user-developed application referred to as the ”product”
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exists in what the CINCO developers call the product layer and the generated source code is
then pushed to an external repository (such as GitLab) and can subsequently be deployed by the
user where appropriate. The requirements for the target use case deviate from what is supported

Figure 3: Standard Cinco Cloud distribution architecture

by the standard CINCO Cloud distribution. In our use case, the user will not be modelling a
standalone application that is deployed externally, but rather a script that orchestrates a set of
existing services that then needs to be executed somewhere. We are calling this extension to the
standard CINCO Cloud distribution, CINCO de Bio and it consists of four modular components
we refer to as layers; the meta layer, the modelling layer, the execution layer and the service layer.
The modelling, execution and service layers communicate with each other via network protocols.
Like in the standard CINCO Cloud development process, we make use of the Meta Layer to
develop a M-DSL that captures the syntactic and semantic requirements for orchestrating an
AI driven image processing workflow. However, along with creating this CINCO product the
standard CINCO Cloud deployment needed to be extended with an execution layer that would
take the generated workflow code and execute it and the service layer which contains the services
that process the data. The A-DSL is comprised of a collection of SIBs that represent the set of
integrated AI and other computational processing services that have been integrated into the
service layer. We are currently developing a system for automatically passing model definitions
from the service layer to the modelling layer, so as soon a service is integrated into the service
layer, an accompanying SIB will be added to the A-DSL in the modelling layer.
As processing these images is very data-intensive, the design decision was taken to pass symbolic
links of the processed data from the services to the execution environment. The actual data
is stored in an object storage system which exists within the services layer. With respect to
implementing and deploying the AI services, a nearly identical approach was followed as in
3.1, with the services first modelled, manually transformed to code, and made accessible via
Representational State Transfer (REST) APIs and containerised.

4 Case Studies

Integration of AI in the public health domain is extremely important for improving the health
outcomes for society, specifically when it comes to citizens’ ability to access high-quality health
information on the internet. With respect to biomedical research, the integration of AI has the
potential to revolutionise the analysis of the complex processes that occur in the human body.

ISoLA DS 2022 10 / 23
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Figure 4: A high-level overview of the extension to the CINCO Cloud architecture

Furthering our understanding of complex diseases, facilitates the development of highly targeted
medical/pharmaceutical interventions and beyond. We discuss in 4.1 and 4.2 how we imple-
mented the required functionality in the DIME and CINCO Cloud platforms to build AI LCNC
platforms for use in the public health and biomedical research domains.

4.1 Health Information Pipeline for Patients and the Public (HIPPP)

The HIPPP case study aims to enable public health domain experts or physicians to co-develop an
AI driven pipeline for automatically evaluating the quality of WBHI from a user-provided URL
that pertains to colon cancer, using the AI LCNC Platform we created through extending DIME.
This work is being done in collaboration with the UL Cancer Network (ULCan). The evaluation
system is based on the QUality Evaluation Scoring Tool (QUEST) framework [RJLF18], a man-
ual framework developed and validated by physicians for quantitatively assessing the quality of
WBHI. In essence, the goal was to use an ensemble of AI techniques and other computational
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processes to automate the assessment of a piece of WBHI with respect to the framework.

Figure 5: Top-level process model of the HIPPP system

Figure 5 provides the top-level overview of the control and data flow for the HIPPP system. The
control flow process from the Start (blue arrow) with a user-provided URL. The user-provided
URL is passed into the ”websiteRetrieval” SIB, which makes an HTTP request to the provided
URL, parses the response and gets the content which is an HyperText Markup Language (HTML)
document as a String. This HTML passes into the ”webContentExtraction” SIB, which takes the
HTML document (unstructured or semi-structured data) and uses AI models to extract relevant
data (such as article body, author, date of publication, etc.) and store it in a structured format as
a JSON string. This structured data is passed into the ”preProcessing” SIB which applies natural
language pre-processing (tokenisation, coreference resolution, etc.) and network pre-processing
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(conversion to graph representations) to optimally prepare the data for being input to the AI mod-
els used in downstream processes, again the pre-processed data is stored in a structured format as
a Javascript Object Notation (JSON) string. This now cleaned and pre-processed data is passed
into the ”featureExtraction” SIB which uses a variety of AI models to extract features from the
data which facilitates classification with respect to the QUEST framework. We manually de-
signed the set of features to be extracted so as to leverage as many existing AI algorithms as
possible. This step uses the chosen AI models to extract these numerical feature vectors which
are then stored along with their confidence values in a structured format as a JSON string. The
data is now passed into the ”featureTransformation” SIB. Owing to the fact that WBHI can be
of different lengths, heterogeneous formats, etc. the feature vectors extracted in the previous
step are of variable length. Classifiers (both AI and rule-based) require input feature vectors of
a predefined length, the feature transformation process uses statistical methods, dimensionality
reduction and neural networks to create fixed-length representations. As with the previous steps
they are stored in a structured format as a JSON string. The fixed length features then pass into
the classifiers SIB, which is comprised of an ensemble of classifiers with each classifier pertain-
ing to a specific evaluation criterion (authorship, attribution, type of study, conflicts of interest,
currency, complementary, tone) from the QUEST framework. Each classifier assigns a QUEST
score for that criteria based on the relevant set of features. Finally, a confidence analysis is done
based on the confidence of the feature extraction models, if the aggregate confidence across the
entire evaluation exceeds a predefined threshold, then the evaluation results are presented to the
user. In the case, it does not meet the threshold the evaluation is referred to an expert to be man-
ually reviewed.

Figure 6 shows a more granular view of a portion of the overall pipeline shown in Figure 5. It can
be seen that the ”GetWebsite”. and ”WebContentExtraction” SIBs, are both self-contained com-
plex processes made up of a number of atomic SIBs, i.e. URL validation and soft404 [PÁC14]
detection in the case of ”GetWebsite”.

Figure 7 provides an example of how the system for automating the QUEST evaluation frame-
work was modelled (this is for illustrative purposes as in the actual pipeline these functions are
compartmentalised and displaying the hierarchical processes would be unwieldy). To the left of
the Figure, an excerpt of the QUEST framework pertaining to evaluating a piece of WBHI with
respect to authorship is shown. To the right, a simplified blueprint of the DIME process model as
to how that was achieved is shown. The HTML document passes into the ”webContentExtrac-
tion” SIB which outputs the author element in the form of a string. This string then passes into the
’preprocessAuthorElement” SIB, which prepares the data for the AI models. There is a branch
at the output of this SIB, as if there is no text in the author element, that automatically denotes
that there is ’no indication of authorship or username” and so the analysis ends, with a score of
0 being assigned. If the string is not empty. the tokens and part-of-speech tags, are passed into
the ”namedEntityRecognition” SIB, this contains an AI model which performs Named Entity
Recognition (NER) [NS07], which identifies if there are any named entities in the sequence of
text. The named entities are output as a list of Strings and pass into the ’personFound’ SIB.
This is a simple rule-based classifier that checks if there is an entity of type Person in the list of
named entities. There are two branches which can be taken at this point, if no person is found, it
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Figure 6: Hierarchical process SIBs for Website Retrieval and Web Content Extraction.

follows the ’False’ branch and again as this denotes there is no indication of authorship a score
of 0 is assigned. If the ’True’ branch is followed, the list of named entities is passed into the
’professionFound’ SIB, similar to the ’personFound’ SIB, this SIB simply checks in the list of
named entities if there is an entity of type Profession (i.e. job title). Again there are two branches
that can be taken here depending on the outcome, if ’False’ then this corresponds to ’All other
indications of authorship’ as the person has already been found and a score of 1 is assigned. If
’True’ then this denotes that the ’Author’s name and qualification clearly stated’ and therefore a
score of 2 is assigned.
We have recently received ethical approval to run Patient and Public Involvement (PPI) groups
which will be used for validating the data collection techniques we used to train the variety of
AI models developed for the pipeline. Once we have finished that process, we will deploy the
HIPPP web application and make it available to the public and incrementally refine the system
over time. The majority of SIBs, DSLs and processes we have developed to date for this case
study are reusable across other use cases and domains. In essence, we have created a library of
DSLs in DIME which could be used for any form of natural language or network-based analysis
of WBHI including building a similar web application to HIPPP.
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Figure 7: An example in DIME of how the QUEST authorship evaluation criteria were translated
to AI and computational methods in order to automate the evaluation.

4.2 Workflow Environment for Computational Analysis of Highly-plexed Tissue-
Images (WE CAHT)

The WE CAHT case study aims to facilitate biomedical researchers to build, deploy and execute
bespoke image processing workflows using a bespoke tool that extends CINCO Cloud, which is
under development as reported in Figure 4. This is a collaboration with the SCCE groups in TU
Dortmund and University Limerick and the Bernal Institute also in the University of Limerick.
An example of a basic workflow orchestration is seen in Figure 9: the user inputs a highly-plexed
slide image obtained from their experiment with the final output being a Comma Seperated Value
(CSV) file which contains the protein signal and morphological information for each cell in their
sample.

Image Splitting The experimental imaging machines output a slide image in the format of a
stacked Tagged Image File Format (TIFF) file. These images are extremely high resolution
( 20000 x 20000 pixels) and are highly-plexed (have at least 40 colour channels). It also
outputs a text file that contains the list of protein channels imaged by the machine and
their index in the stacked TIFF file. Image splitting takes the original image matrix with
dimensions W x H x N and transforms it to a set of size N, n in N being a grey-scale image
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Figure 8: Overview of a basic highly-plexed image processing workflow.

with dimensions W x H x 1 as this is the required format for subsequent processing steps.

Image Splitting The slide image typically contains several tissue samples (called cores), each
core needs to be analysed separately as they’re either from different people or they’re
from different tissue types. De-Arraying is the process of semantic segmentation on the
slide image, to find the bounding boxes of individual cores, the semantic segmentation is
performed on a single channel image, the nuclear stain channel Image as denoted in the
channel markers file (the most common stain is 4’,6-diamidino-2-phenylindole or DAPI).
Once the semantic segmentation finds the segmentation masks, the bounding boxes for the
respective cores are found. The regions enclosed by those bounding boxes then need to be
cropped out for each protein channel image. This results in a set of sets of images, with
the outer dimension being the number of cores and the inner dimension being the number
of protein channels.

Cell Segmentation For each of the cores, cell segmentation finds the nuclei and membrane
within those tissue samples. Taking the nuclear channel marker and the membrane channel
marker (these are the protein channels, that a biologist knows best denote the nuclei and
membranes of a cell respectively) the cell segmentation predicts the segmentation masks
of the nucleus and membrane in each cell.

Extraction The actual analysis (clustering, statistical tests, etc..) that a biologist will seek to do
is on cellular data in a tabular format. The extraction step takes in the cell segmentation
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masks (nucleus and membrane) for each core and its set of protein channel images. It then
finds the level of signal for each protein (denoted by pixel intensity in a channel image)
within the nucleus and membrane regions for each cell. It also extracts morphological
features for each cell based on the segmentation masks.

Following similar principles to those in the HIPPP case study, the system requirements were
modelled and then transformed to code. Taking as an example the process to de-array a slide-
level image, the nuclear stain image first has to be transformed into a Tensor (the expected format
for the model(s)). The segmentation model then takes the image in tensor format and makes a
prediction, the output is in the format of a probability map (a tensor of floats between 0 and
1). Gating is applied to this probability map using a tuned confidence threshold which yields a
binary Tensor, this is then converted to an Image. A combination of edge detection, bounding
rectangle detection and non-maximum suppression is then applied to find the regions of interest
that contain each of the objects of interest. The image split-er takes in the regions of interest
and uses them as the parameters for cropping every slide-level image for each protein channel.
A high level of abstraction was chosen for the DSL after consultation with domain experts as
users of this DSL would likely find it difficult to build their own de-arraying pipelines as they
would need pre-requisite knowledge of computer vision techniques. We elected to build a set
of de-arraying workflows that incorporate different models and techniques. Domain users can
then choose the de-array SIB that best fits their needs. The same principles were applied to the
other workflow tasks. The services layer is implemented with the required services and their

Figure 9: Overview of the modelled process for Slide Image De-arraying
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respective model definitions, however, we are incrementally adding additional AI models and
other functionalities. With respect to the integration between the services layer and the mod-
elling, work is ongoing from our collaborators in TU Dortmund to develop the system that pulls
the model definitions from the services layer in as SIBs to populate the application DSL in the
IME. Work is also ongoing on the model-to-code transformer which will generate the run-time
code that executes the workflow in the execution layer. An execution layer has been developed
for testing, which facilitates the services layer to be used as a low-code DSL in Python.
Once the work is complete, the services (represented as SIBs) can be used within the CINCO

Cloud-based IME in a no-code drag-and-drop as shown in Figure 10 . Once the user has con-

Figure 10: A simple de-arraying workflow modelled in prototype of the IME for the WE CAHT
platform

nected to components with the correct data flow the workflow can then be executed. Data is
modelled using semantic typing tailored to the domain, i.e. ”Core Segmentation Mask” and
”Nucleus Segmentation Mask”, rather than file extensions or types from the programming lan-
guage to make it more familiar to domain experts. The WE CAHT platform, will, therefore,
enable domain experts the facility to use AI and other computational functionality to process
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these images without any coding knowledge or expertise.

5 Conclusion and Next Steps

What was presented in this paper are the core principles, the architectures and individual com-
ponents of the LCNC AI development platforms for health informatics that we are incrementally
developing. We presented two case studies, one that pertains to developing web applications for
AI driven WBHI evaluation, with the other pertaining to developing and orchestrating AI driven
computational pipelines for processing biomedical images.

Going forward we seek to further refine the current iterations of the architectures to make perfor-
mance improvements. The integration of additional services to both platforms and development
of new AI driven tools to solve a variety of issues brought to our attention by collaborators. We
also seek to extend the platforms further so that domain experts can train, fine-tune and deploy
their own AI models. This is an important feature due to the requirement of approval from many
stakeholders and other constraints, which lead to data sets that contain health or biological data
are not made public or shared with other researchers, resulting in data scarcity issues for AI ex-
perts to create models. For example, when it comes to tissue data, some labs may work with lung
tissue and if for example a publicly available model was trained on tonsil tissue it won’t perform
as well on lung tissue. For the lab with the lung tissue to share its data with an external AI expert
would require many layers of ethical approval making it a slow and unwieldy process. Therefore
adding the capacity for a non-AI expert to label data and use it to fine-tune a model or train a
model from scratch, then subsequently deploying it as a part of their application or workflow
would be of great value to domain researchers.
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