
Electronic Communications of the EASST
Volume 37 (2011)

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Workshops der wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2011

(WowKiVS 2011)

Concurrent Workflow Evolution

Mirko Sonntag and Dimka Karastoyanova

12 Pages

 ECEASST

2 / 13 Volume 37 (2011)

Concurrent Workflow Evolution

Mirko Sonntag and Dimka Karastoyanova

Institute of Architecture of Application Systems
University of Stuttgart
Universitaetsstrasse 38

70569 Stuttgart, Germany
{sonntag, karastoyanova}@iaas.uni-stuttgart.de

Abstract: Workflow evolution is a collective term for concepts that deal with changes of
workflow models. Adapted workflow models are deployed on a workflow engine as new
model version. That means two versions of the same model are deployed on the engine.
Typically, this results in conflicts between the workflow models. For example, how does a
client find and choose the desired workflow version to instantiate? Typically, these
problems are solved by deactivating the old model. New instances can only be created for
the new model. In our work on scientific workflows we recognized that there are cases
where it is desired to keep the old model activated. In this paper we investigate what it
means to have several model versions active. We develop a general concept for this
“concurrent workflow evolution” that solves emerging problems. Moreover, we show how
this concept can be realized with BPEL.

Keywords: Workflow evolution, scientific workflows, Model-as-you-go, BPEL.

1 Introduction
Most existing tools in the area of scientific workflow management do not rely on workflow
concepts as known from the conventional workflow technology [1], e.g. distinction of process
models and instances, workflow auditing and monitoring, or flexibility. Instead many scientific
workflow systems are developed from scratch based on proprietary workflow languages. One
of the reasons for this fact is that scientists and scientific applications impose requirements on
workflow systems for scientific simulations and computations that are not satisfied by
conventional workflow management systems, e.g. data orientation or steering workflow
execution from within the workflow modeling tool [2].
We argue that the workflow technology can be of high value for scientists because of the
aforementioned features. Especially flexibility and the adaptation of running workflows are
interesting for scientists because it can support them in creating experiments in a trial-and-
error manner. In our former work we proposed the model-as-you-go approach that facilitates
modeling, execution, adaptation, and monitoring of scientific workflows based on the
conventional workflow technology [3]. An important aspect of model-as-you-go is the
modification of running workflow instances. Scientists may adapt computations to enforce
convergence of results, to repair failures, or to modify or complete the logic of an experiment.
That means model-as-you-go requires workflow evolution and instance migration techniques.
Workflow evolution and instance migration in the area of business workflows are extensively
discussed in existing work [4, 5, 6]. In a nutshell, a workflow model is modified during
workflow evolution. The old and the new workflow models are then available to clients.

Concurrent Workflow Evolution

Proc. WowKiVS 2011 3 / 13

Usually, the new model is active (i.e. can be instantiated), while the old model works as
schema for running instances. Selected workflow instances can be transferred (i.e. migrated) to
the new model if compliance rules are satisfied [7].
In our work with scientific workflows we recognized that deactivation of the old model
introduces a restriction, which hampers the fulfillment of an actual requirement in scientific
workflows. There are cases where it is required to keep both the old and new model active, e.g.
to be able to re-execute a former configuration of an experiment. A few existing business
workflow systems already provide this kind of feature [8, 9], which shows that it is also a
relevant requirement in business scenarios. However, a general and implementation-
independent concept for workflow evolution with more than one active model versions in
combination with instance migration techniques is missing so far.
In this paper we contribute a concept for workflow evolution with two or more active process
models. We denote this approach concurrent workflow evolution. We show which problems
arise when having several active versions of a model and how they can be addressed. Where
possible we adopt existing concepts for instance migration, change operations and compliance
checks. The devised concept is independent of concrete workflow languages. As an example
we show its implementation with BPEL.
The remainder of the paper is structured as follows. Section 2 outlines related work in the area
of workflow evolution and adaptation as well as a classification for workflow changes derived
from existing work. Section 3 shows a scenario for scientific workflows that implement a
simulation for the mutation of bacteria. Section 4 presents the concept of concurrent workflow
evolution; Section 5 its implementation. The paper concludes in Section 6.

2 Related Work and Workflow Change Classification
Much work has already been done in the area of ad hoc changes in workflows and workflow
evolution. Casati et al. (1996) [4] invented a workflow modification language to adapt
workflow schemata while keeping structural and behavioral consistency. The language
foresees a set of primitives/change operations, e.g. for adding activities. Additionally, the
authors present a taxonomy of workflow evolution policies. Van der Aalst et al. (2000) [5]
discuss dynamic changes of workflows based on workflow nets. Techniques for dealing with
running instances are shown (restart, proceed, transfer) and the importance of syntactic and
semantic correctness as well as management of modified workflows is emphasized. Reichert
and Rinderle (2006) [10] developed a formal semantics for BPEL that enables the modification
of running BPEL process instances. BPEL schemas are adapted with the help of change
operations and these changes are propagated to running instances. Prior to migration of an
instance its compliance to the new schema is checked based on the instance’s execution history
and activity/link markings. Weber et al. (2007) [11] present process change patterns for the
modification of workflows. Two types of patterns are described: adaptation patterns (for
structural changes of process models) and patterns for predefined changes (for changes in
particular regions of processes). Weber et al. (2008) [12] discuss change support features like
schema evolution, version control, or instance migration. Schonenberg et al. (2008) [6]
propose a taxonomy for flexibility strategies. The strategy “flexibility by change” with
evolutionary changes is similar to workflow evolution: New process instances follow the new
model; the old model cannot be instantiated.
In order to clarify the relation of our approach to the state-of-the-art we outline the
classification of workflow changes based on a subset of existing work (see Table 1). In our

 ECEASST

4 / 13 Volume 37 (2011)

previous work we presented a classification of possible adaptation types for service
compositions in the context of the workflow life cycle and workflow dimensions [13]. The
focus in this work is on the comparison of which of the models (old, new, ad-hoc) is active, i.e.
can be instantiated, after a change has been performed. Ad-hoc changes are applied to single
workflow instances. In order to change a single workflow instance an adapted ad-hoc
workflow model is needed that is used as the schema exclusively for this instance [5, 6] (note
that ad-hoc models do not have to be represented in terms of an explicit artifact). New
instances are created according to the old, unchanged workflow model. Workflow evolution
denotes changes of an existing workflow model [4, 5, 6] during the modeling phase of the
process model, while there are running instances of the process. Usually, a new version of the
model is deployed. Different policies can be used to manage the running instances [4]. All
running instances can be aborted (1) or the system waits until they terminate (2). After that
instances of the new model can be created. The progressive policy (3) is the most common
approach for workflow evolution. Running instances may proceed according to the old model
(concurrent to completion policy), may be migrated to the new model (migration to final
workflow policy), may be aborted (abort policy), or may be migrated to ad-hoc models
(migration to ad-hoc workflow policy). In the latter case, the ad-hoc model is active only for
one or more selected instances. In all cases of the progressive policy the new model is active
immediately and is therefore the schema for all newly created instances. The existing ad-hoc
changes and workflow evolution approaches have in common that they keep only one version
of a process model active at a particular point in time. Existing workflow evolution techniques
discard the old model once all its instances are completed. The classification reveals that an
additional type of workflow evolution is missing where the old model remains active (shaded
row at the bottom of Table 1). This missing approach is subject of this paper.

Table 1: Classification of existing approaches for workflow changes. An approach for a workflow
evolution mechanism where the old model remains active is missing. We therefore introduce the
concurrent workflow evolution (the shaded row at the bottom) which is currently not accounted
for by existing concepts.

Strategy Applies
to

Model
Old New Ad-hoc

Ad-hoc [5], momentary
change [6]

Single
instance

Active n/a Active for
selected instances

Workflow
evolution
[4], evolu-
tionary
change
[6],
structural
change [5]

(1) Abort [4] Model Inactive Active (after abort of
running instances)

n/a

(2) Flush [4] Model Inactive Active (after termination
of running instances)

n/a

(3) Progressive
[4], on-the-fly
[6]

Model Inactive Active (immediately) Active for 1
instance
(migration to ad-
hoc workflow
[4])

(4) Concurrent Model Active Active n/a

3 Scenario
As a sample scenario we take the computer simulation of the reproduction of bacteria in a
biological system with certain environment parameters. Imagine a scientist named Jim that

Concurrent Workflow Evolution

Proc. WowKiVS 2011 5 / 13

models the behavior and metabolism of bacteria with the help of a workflow. Each workflow
instance then represents a single bacterium. The simplified bacteria model is shown in
Figure 1a (as BPEL process). A while loop contains the recurring behavior of the bacteria
type such as ingesting minerals or synthesizing enzymes. An onAlarm event implements the
reproduction of bacteria after 40 minutes. Reproduction is in fact the creation of a new
instance of the bacteria process model. An external (onMessage) event represents the case
when the bacterium gets in contact with an antibiotic. The process instance is then terminated
which models the dead of the bacterium. Environment conditions (e.g. concentration of
minerals) and other domain specific knowledge (e.g. synthesizing and behavior of enzymes)
are taken into account by the respective executables that are invoked. In case of BPEL these
would be (stateful) Web services (WSs) that themselves can be realized using BPEL.

In
ge

st
 m

in
er

al
s

Bacteria Model

While true 40 min.
reprod.

Apply
Antibiotics

Sy
nt

he
si

ze
 e

nz
ym

es

Bacterium (ID 1)

While true 40 min.
reprod.

Apply
Antibiotics

Bacterium (ID 2)

While true 40 min.
reprod.

Apply
Antibiotics

Process Instances Process ModelWeb Services

Reproduction

Legend: instance of one-way operation

request-response operation structured activity

basic activity

event handler

Mutated Bacteria Model

While true 30 min.
reprod.

a) b)

Changed aspect of a workflow model
Figure 1: Workflow-based simulation of bacteria reproduction in a biological system (a). The

original workflow model is adapted to simulate a mutation of a bacterium (b).

Now imagine Jim runs and monitors the simulation. He then wants to simulate a mutation of a
single bacterium. Mutation of bacteria is a quite normal process and can usually be initiated by
a faulted reproduction of bacteria or due to external influences such as UV radiation. While the
reason for a mutation could be modeled in a computer system with occurrence probabilities,
the effects of a bacteria mutation in a computer simulation have to be introduced by human
intelligence. An intervention of Jim is needed to model the changed behavior of the mutated
bacterium. He has to create a new version of the bacteria workflow model and migrate a single
workflow instance (the mutated bacterium) to the new model. Note that the instance migration
is needed because Jim deals with a mutation due to external influences (e.g. UV radiation)
where a living bacterium mutates. Now two bacteria types exist in the simulated system.
The modified bacteria model (i.e. the mutation) is illustrated in Figure 1b. It differs from the
old model in three main points (marked with numbered arrows): (1) Reproduction happens
after 30 minutes (modified onAlarm); (2) the new bacteria type is resistant against the

 ECEASST

6 / 13 Volume 37 (2011)

antibiotics (deleted onMessage for antibiotics event); and (3) O2 (oxygen) is now produced as
result of the bacterium’s metabolism (insertion of a new activity).
Note that the example of bacteria simulation would probably not perform well for a realistic
amount of bacteria. This example intends to present a real world scenario that covers all
aspects of the concept. Performance and scalability issues are not considered and are not
important to understand the conceptual problems this paper deals with.

4 Concurrent Workflow Evolution Policy
Applying the existing approaches of the workflow change classification to our scenario has the
following consequences: (1) Ad-hoc: a single bacterium can incur a mutation (e.g. because of
UV radiation) but this bacterium cannot conduct cell division/reproduction (its ad-hoc
workflow model cannot be instantiated); (2) Evolution (abort): all existing bacteria have to be
killed immediately before the mutated bacterium strain can emerge; (3) Evolution (flush): the
system has to wait until the existing bacteria strain has died out before the mutated bacterium
can emerge; (4) Evolution (progressive): existing and mutated bacteria can co-exist but only
mutated bacteria can reproduce. None of these approaches realizes the expected behavior of
the described system completely.
An approach is needed that allows modifying a workflow model such that new instances can
be created according to the old and the new model. The approach will support the requirements
of the example of bacteria modeling as shown in Figure 2. Note that details of the running
instances are not important here and are therefore omitted. The bacteria model is modified
towards a mutated bacteria model. The workflow instance with ID=2 follows the old model.
The workflow instance with ID=1 represents the bacterium that is mutated due to external
influences. It therefore needs to be migrated to the new model. Both model versions are active:
new instances of both models can be created, i.e. bacteria from both strains can reproduce.

Bacteria Model

While true 40 min.
reprod.

Apply
Antibiotics

Pr
od

uc
e

O
2

Bacterium (ID 2)
Mutated Bacteria Model

While true 30 min.
reprod.

Modifi-
cation

MigrationBacterium (ID 1)

Bacterium (ID 3)

Bacterium (ID 4)

Bacterium (ID 5)

Mutated
Bacterium (ID 6)

Mutated
Bacterium (ID 1)

Mutated
Bacterium (ID 7)

Legend extension: New workflow instance
Figure 2: Workflows model of bacterium with the required behavior and required adaptation

mechanisms.

We call the needed approach concurrent workflow evolution. It is a mix of ad-hoc changes and
progressive workflow evolution: A process model is deployed; several instances of that model
are running. A new version of that model is created and deployed on the workflow engine that
also contains the old model. One or more selected instances can be migrated to the new model
version. Not selected instances follow the old model. Both model versions can be instantiated
in the following, i.e. are active. Beyond the bacteria scenario, the approach enables scientists

Concurrent Workflow Evolution

Proc. WowKiVS 2011 7 / 13

to develop workflows iteratively. The current state of an experiment can be preserved by
migrating a particular workflow instance to the new model version. Former
versions/configurations of experiments can be executed anytime (because they remain active),
which may be needed to compare results, throughput, run-time, or utilization of resources.
A workflow engine has to provide a specific operation in order to offer concurrent workflow
evolution to its users. The actual implementation of the operation is affected by the workflow
language used and the adaptation mechanisms that can be realized by that language. We define
the interface for this operation in Listing 1. It is invoked with the modified process model
(modifiedPM), which is in fact a bundle of several files. The concrete content of the bundle is
dependent on the chosen workflow language and engine. The redeployment first suspends all
running instances whose identifiers are handed over (instanceIDs). Note that ID is used
here as generic term that helps to uniquely identify a running process instance. Every instance
is checked for compliance to the target model. Concepts for compliance checks can be
borrowed from previous work (e.g. [10] and [14]). All selected and compliant instances are
then migrated from the old model to the new one. After resuming the instances their jobs are
scheduled according to the new model version. The main challenges here are the version
management, the migration of running instances to the new model version and the
identification of process model versions by workflow clients for subsequent workflow
instantiation. The latter two are considered in more detail in the following sections.
In theory, concurrent workflow evolution could be emulated if a new workflow model version
is deployed as separated workflow model. But this workaround would not automatically solve
the problems of instance migration and addressing the desired workflow model. In fact, it
would introduce a new problem: scientists would have to manually deal with the version
management by renaming of process models.

1 public boolean deployNewVersion(PMBundle modifiedPM,
2 List changeOperations,
3 Identifier[] instanceIDs);

Listing 1: Operation to conduct concurrent workflow evolution (in Java-like notation)

Linking Instances to the New Model Version
Migration of workflow instances from one model to another is extensively addressed in
existing work. However, practical issues are still open for discussion. Most existing
approaches utilize change operations for instance migration [4, 5, 10], but it is not clear how
these operations are realized. E.g. does an operation addActivity mean that a new model
version is created? Or is the old model replaced? We need to clarify how exactly these
operations are applied and if they are affected by the workflow language used.
As mentioned in the previous section, the deployNewVersion operation installs a new
process model version and one or more instances of former versions are linked to it, while the
original model version is still active. The difficulty when migrating process instances is to
handle existing and newly added activities/links in the wave-front correctly. The wave-front
consists of all workflow elements (e.g. activities, links) that are scheduled for execution or that
are currently executed. For already completed elements (i.e. the past) and not scheduled ones
(i.e. the future) no problem is imposed because completed activities/links cannot be modified
and inactive ones have not been instantiated yet (i.e. every modification is allowed). The actual
migration of a process instance from one model to a new one consists of three main steps:

 ECEASST

8 / 13 Volume 37 (2011)

1. Release elements in the wave-front from their respective original model elements
2. Connect elements in the wave-front to the new model elements
3. Conduct change operations for existing or new wave-front elements

Step 1 is straight-forward. It can be done by iterating all wave-front elements and setting the
model reference to null. In step 2, the difficulty is how to find the correct model element in
the new process model. It is not feasible to rely on model element names because they may not
be unique (e.g. in BPEL) or the names may be changed in the new model. We therefore
propose to store an expression that uniquely identifies the old model element before releasing
the connection. This expression can be used to find the correct model element in the new
model version. For XML-based workflow languages XPath can be used as expression
language. The expression process[1]/sequence[1]/receive[2], e.g., would reference
the second receive activity in the first sequence activity of a BPEL process. For non-XML
languages other identification mechanisms have to be utilized. The connection to the new
element may be done manually by a human user, which would not require finding the new
element to connect to; however this can be considered a special case of the approach above.
After re-connecting the instance elements of the wave-front to the new model version, the
migration process is not finished yet. Change operations are needed for two purposes (step 3).
First, instance elements of the wave-front may need to be reconciled with the respective model
element if it was changed, e.g. an attribute was modified. Second, change operations are
needed to create new instance elements in the wave-front if the new model version contains
new elements that belong to the wave-front of the considered workflow instance. For example,
an outgoing link was added to an already completed activity. The link’s target has to be an
activity in the instance’s future (otherwise the link would belong to the instance’s past). Hence
the link belongs to the wave-front. In this case the appropriate change operation would
explicitly trigger the execution of the link. This case was already recognized in [10]. The
authors do not discuss the problem that arises when evaluating the transition condition of the
link. It may not be semantically correct to evaluate the link based on the workflow instance’s
current data. This imposes the requirements on the execution infrastructure to keep data
needed for link evaluation. Typically, this can be realized with the help of the audit trail [1].
The auditing component may have to be extended to explicitly store the needed information.

Table 2: Design of the change list with two examples for BPEL

Change Operation Subject Type Model Element
Add Activity process[1]/sequence[1]/invoke[3]

Modify Link process[1]/flow[1]/links[1]/link[2]

An important issue we need to address is related to the question how the engine knows which
change operations on a process instance to execute automatically (manual instance migration is
not considered here because scientists should not notice such technical details at all). The
engine just has the old and new process models at hand and needs to derive the needed change
operations. Both process models could be intersected to get the difference between them. After
that it can be derived which activities/links were added/deleted/modified. From these
differences and the current wave-front of the instance the needed change operations can be
inferred. The problem here is that the semantics of changes could get lost. For example, if
activity A was renamed to B, an intersection would state that activity A was deleted and B was

Concurrent Workflow Evolution

Proc. WowKiVS 2011 9 / 13

added. That would enormously influence the compliance of workflow instances to a changed
model (renaming of an activity in the wave-front is possible; deletion is not possible). We
therefore foresee an additional parameter for the deployNewVersion operation that is a list
of all changes that are conducted to transform the old to the new model. If a modeling tool is
used to adapt the process model, such a list can be easily created. The modeling tool then
needs to be extended by a component that tracks the conducted changes [3]. The change list
can also be part of the provenance record [15] that is very important in the field of scientific
workflows to show the origin of data to scientists.
Table 2 shows an example for a change list. Note that the list contains elements with
dependencies and therefore some of the elements impose an ordering on the respective change
operations. Change operations can be add, delete, and modify. Note that the move
operation can be represented by the two operations delete and add. Subject types are
dependent on the workflow language. For graph-based languages at least activities and links
must be supported. The model element uniquely identifies the element the change operation
applies to. In XML-based workflow languages this could be realized with XPath expressions.

a) b)

d)

Workflow Engine
V01

V02

V03

Cl
ie

nt?routing

Cl
ie

nt
Workflow Engine

V01

routing

match
attach
meta inf

meta-infV02

meta-infV03

meta-inf

Workflow Engine
V01

V02

V03

routing

inactive

active

inactive

Cl
ie

nt

c)

Cl
ie

nt

Workflow Engine
V01

routingV02

V03
Version:

V03
match

Figure 3: Routing requests to workflow model versions

Addressing Process Model Versions
The second problem, unique identification of different process model versions, is typically
circumvented by unique, engine-dependent version numbers that are attached to the process
model name. However, existing engines use these proprietary version numbers for engine-
internal purposes. They are not used to route messages to different process model versions.
This simple solution works as long as only one of the model versions is active. The number of
the model version is not needed to create a new instance of a workflow model version because
only one version can be instantiated (see Figure 3a). If several versions are active at the same
point in time, the engine cannot route an instantiation request to the correct model version
(Figure 3b). The client could rely on the version number to address the desired process model
version (Figure 3c). This would increase the coupling between client and engine because
different engines could make use of different formats for versions (e.g. integer values, strings,
complex types). Another solution is based on meta-information to find the correct process
model (Figure 3d). Meta-information has to be specified by the workflow modeller (or can be
generated automatically) and is then part of a process model bundle. Key-value pairs are an
appropriate implementation for meta-data. In our example of bacteria, meta-data could be

 ECEASST

10 / 13 Volume 37 (2011)

bacterium: E. coli; resistence: bla. That means the process model describes an
Escherichia coli bacterium with a resistance against beta-lactam antibiotic (bla). Such
functionality is also applicable to business workflows, such as a loan approval process for
private customers: product: loan; customer-type: private. The engine has to
guarantee uniqueness of meta-information for every workflow model. Workflow clients can
use this meta-data to address the desired workflow model. It is required that clients are enabled
to query and—with administrator rights—change meta-information of process models.
Appropriate operations have to be provided by the engine.
That means clients need to specify an additional parameter (the version number) or meta-
information to create a new workflow instance. The specification of this parameter should be
optional. New policies for workflow invocation can be invented (e.g. newest/default version
wins, specified version wins). Note that subsequent communication between a client and a
workflow instance can be carried out without having to specify the version number/meta-data
because common correlation mechanisms can be used for message routing.

Application to Business Scenarios
The concept of concurrent workflow evolution is not restricted to scenarios in scientific
workflow management. An application in business workflow management also makes sense.
Imagine a company that produces cars. There are different types of cars—each is built
according to a process model. It may happen that a customer has special requirements that are
not reflected in the original process model of that car, e.g. tinted window panes or an
additional cup holder. These needs have to be accounted for during car production, i.e. at
runtime of the process model. Maybe the customer’s request is so useful that the company
decides to provide it to other customers, too. A new product variation is born. The concept of
concurrent workflow evolution enables both to change the customer’s car on-the-fly and to
produce more of these changed cars in future while production of the standard car is continued.

Scope

Partner Link

Input Variable

Output Variable

Partner WSDL

Process WSDL

Partner Link Type

Correlation Set

Deployment
Descriptor

Property

Property Alias

Invoke

Source

Target

Correlation Set

Target

Source

Property

Property Alias

WS PolicyWS Policy

XSDXSDMessageMessage

LinkLink
Figure 4: Dependencies of an invoke activity in the deployment bundle

5 Implementation with BPEL
Concurrent workflow evolution is an abstract concept that can be implemented with different
concrete workflow languages. In this section we discuss a realization with BPEL as it is
broadly accepted in industry and research. When modifying BPEL processes, it is important to
have in mind that change operations on nodes and edges (e.g. insert edge, delete node) are not
sufficient to satisfy the complexity of the language. Many activities (e.g. receive) have

Concurrent Workflow Evolution

Proc. WowKiVS 2011 11 / 13

dependencies to partner links, variables, correlation sets, or message exchanges. Moreover,
interaction activities (message sending/receiving activities) can have semantic dependencies
(e.g. invoke-receive pairs). Finally, there are several kinds of handlers that are triggered by
different kinds of events (e.g. exceptions).
Especially, interaction activities (indirectly) depend on several documents of the deployment
bundle. Figure 4 illustrates how an invoke activity can be linked in the bundle. Due to these
complex dependencies the change operations needed to change running BPEL process
instances are more complex than in simple graphs with nodes and edges. Especially, it is
needed to provide different change operations for different activity types. E.g. inserting a pick
seriously distinguishes from inserting an empty activity.

Change Operations for BPEL Processes
Concurrent workflow evolution foresees the deployment of a new model version. Particular
workflow instances are bent to the new model version (usually, exchanging IDs in the
workflow engine’s DB is sufficient, depending on the engine). The navigator then schedules
the instance events according to the new version. Change operations are needed to modify
activities in the wave-front. In the following we present the most important change operations.
Scope activities are initialized when they are activated. This initialization encompasses
initializing partner links, variables and correlation sets as well as the installation of fault
handlers (FH), event handlers (EH) and termination handlers (TH). If the mentioned elements
are changed in a currently running scope, the scope has to be re-initialized.
Adding onAlarms in installed EHs or running pick activities needs special attention. New
timers have to be installed that observe whether an onAlarm has to be triggered. There is a
timing problem when adding onAlarms with duration expression the timer is started at
workflow instance resume time and not when entering the pick/EH. In order to balance the
time difference the activation time of picks/EHs has to be stored so that the remaining duration
of new onAlarms can be inferred. When deleting an onAlarm its timer has to be deregistered.
Adding onMessages to an activated pick or onEvents to an installed EH means that the
workflow instance accepts additional messages when it is resumed after migration. Change
operations are needed to register these message receivers with the engine. This is again engine-
specific (e.g. in the open source engine Apache ODE [16] new message routes have to be
registered). Deletion of an onMessage/onEvent requires deregistering its message receiver.
When the expression of a running wait activity is modified, the timer has to be updated by the
change operation. In case of a duration expression the activation time of the wait is needed to
derive the correct residual duration (similar to a changed onAlarm with duration).
BPEL implements WSDL 1.1 request-response operations with activity pairs consisting of an
incoming message activity (IMA) and a reply activity. If an IMA is already executed in a
process instance, deleting the corresponding reply activity has implications on the WSDL
interface of the process and eventually on the workflow client.

Activation of Several Process Model Versions
In BPEL, process models are exposed/made available as WS. Hence sending a message to a
BPEL process is in fact the invocation of a WS. Existing workflow engines make all process
model versions available via the same WS endpoint, i.e. there are two or more WS

 ECEASST

12 / 13 Volume 37 (2011)

implementation behind the same WS endpoint, which works fine if only one model version is
active. If several versions are active, it is unclear which of the models processes a message.
The problem can be solved by applying the two concepts for addressing model versions.
Note that in [17] a versioning extension for BPEL was already proposed that deals with
version management. As opposed to this, we focus on how an engine can route a message to a
particular BPEL process model version. A BPEL extension is not needed for this purpose.

Routing by version number. The message types of the operations provided by the process
model could be extended by an additional field for the version number. Clients can then
specify the desired version. Another possibility is to provide the process version under a
unique endpoint address by attaching the engine-internal version number, e.g.
http://.../bacteria/V02.

Routing by meta information. This can be realized with the help of WS-Addressing [18].
The reference parameter section of an EPR can be used as container for meta information that
help routing a message to a particular process model version. As described above, the meta
information are key-value-pairs. We realize this with a cwe:property element with attributes
key and value. Since a process model version can have several of these key-value-pairs, we
foresee a cwe:modelVersionRef wrapper that aggregates all of these pairs. Listing 2 shows
how this meta information is inserted as header into a SOAP message. The process model
version is identified by the two properties bacterium type and antibiotics resistance. The BPEL
engine must be able to process this header and route the message to the correct process model.

1 <soap:Header xmlns:cwe=”http://concurrent/workflow/evolution”>
2 <wsa:To>http://.../bacteria</wsa:To>
3 <cwe:modelVersionRef wsa:isReferenceParameter=”true”>
4 <cwe:property key=”bacterium” value=”E. coli”>
5 <cwe:property key=”resistance” value=”bla”>
6 </cwe:modelVersionRef>
7 </soap:Header>

Listing 2: WS-Addressing reference parameter header in SOAP messages

6 Conclusions and Outlook
In this paper we presented the concept of concurrent workflow evolution. It is a new flexibility
mechanism that can be seen as a mixture of ad-hoc changes and progressive workflow
evolution. A new, adapted version of a workflow model is deployed on a workflow engine.
One or more running instances of the old model are migrated to the new one. Unlike existing
approaches, both the old and the new model can be instantiated. To the best of our knowledge,
none of the existing approaches allows two or more model versions to be active concurrently
(even after all instances that are running at the time of the change have been completed). A
scientific and a business scenario point up the usability and need of the concept in practice. We
have proposed solutions for the two major problems that emerge. The first problem, how to
address the correct workflow model version for instantiation, can be solved by a unique name
or by meta-information that must be provided by the client. The second problem, how to know
the concrete change operations needed for migrating running instances, can be addressed with
a list of changes that were conducted to create the new model version from the old one. The

Concurrent Workflow Evolution

Proc. WowKiVS 2011 13 / 13

needed change operations can be derived from that list. This list can be easily created in an
appropriate modeling tool. The concept can be implemented with arbitrary workflow
languages. As an example we showed a realization based on BPEL. We are currently working
on a prototype for concurrent workflow evolution of BPEL processes based on the open source
workflow machine Apache Orchestration Director Engine (ODE).
Our future work will focus on the concrete compliance rules that have to hold when migrating
the workflow instances from one model version to another. We want to allow instance
migration for as many instances as possible. Additionally, we have to think about concepts for
workflow model version management, especially in the used workflow modeling tool.

Acknowledgements. The authors would like to thank the German Research Foundation (DFG)
for financial support of the project within the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart.

References
[1] F. Leymann and D. Roller, Production Workflow: Concepts and Techniques, Prentice Hall, 2000.
[2] M. Sonntag et al., The missing features of workflow systems for scientific computations, in:

Proc. of the 21st IASTED Int. Conf. on Modelling and Simulation, 2010.
[3] M. Sonntag and D. Karastoyanova, Next generation interactive scientific experimenting based on

the workflow technology, in: Proc. of the 3rd Grid Workflow Workshop (GWW), Software
Engineering Conference, GI-Edition LNI, P-160, 2010.

[4] F. Casati et al., Workflow evolution, in: Proc. of Int. Conf. on Conceptual Modeling, pp. 438-
455, 1996.

[5] W. v. d. Aalst et al., Adaptive Workflow – On the interplay between flexibility and support, in: J.
Filipe, editor, Enterprise Information Systems, pp. 63-70, Kluwer Academic Publishers, 2000.

[6] H. Schonenberg et al., Process flexibility: a survey of contemporary approaches, in: Proc. of 4th
Int. Workshop CIAO! and 4th Int. Workshop EOMAS, Springer, 2008.

[7] S. Rinderle et al., Correctness criteria for dynamic changes in workflow systems – a survey, in:
Data and Knowledge Engineering, 50, 9-34, 2004.

[8] Oracle BPEL Process Manager, http://www.oracle.com/us/products/middleware/
application-server/bpel-home-066588.html

[9] Bonita Open Solution
http://www.bonitasoft.com/products/BPM__workflow_overview.php

[10] M. Reichert and S. Rinderle, On design principles for realizing adaptive service flows with
BPEL. Proc. of EMISA 2006, GI Lecture Nots in Informatics, LNI P-95, 2006.

[11] Weber et al., Change patterns and change support features in process-aware information systems,
in: Proc. 19th Int. Conf. on Advanced Information Systems Engineering (CAiSE 2007), 2007.

[12] Weber et al., Aktuelles Schlagwort: Process Change Patterns, EMISA, 27 (2). pp. 45-51. 2008.
[13] D. Karastoyanova et al., Parameterized BPEL processes: concepts and implementation, in: Proc.

of the Int. Conf. on Business Process Management, 2006.
[14] Rinderle et al., Flexible support of team processes by adaptive workflow systems, Springer,

Distributed and Parallel Databases , Vol. 16, No. 1, pp. 91-116, 2004.
[15] L. Moreau et al., The open provenance model core specification (v1.1), Future Generation

Computer Systems. (In press)
[16] Apache Orchestration Director Engine (ODE), http://ode.apache.org
[17] M. Juric et al., WS-BPEL Extensions for Versioning, in: Information and Software Technology

51 (2009), pp. 1261-1274.
[18] W3C, Web services addressing 1.0 – core, W3C Recommendation, 2006,

http://www.w3.org/TR/ws-addr-core/

