Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2011
(WowKiVS 2011)

Paradigm-Independent Engineering of Complex Self-Organizing
Systems

Michael Zapf

12 pages

Guest Editors: Horst Hellbriick, Norbert Luttenberger, Volker Turau

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122



http://www.easst.org/eceasst/

@ ECEASST

Paradigm-Independent Engineering of Complex Self-Organizing
Systems

Michael Zapf

zapf@vs.uni-kassel.de
Distributed Systems Group
Universitat Kassel, Wilhelmshoher Allee 73,
34121 Kassel, Germany

Abstract: We present EPAC, a novel approach to design and engineemsysif
autonomous components. EPAC is based on the Model-Drivehitécture concept
and subsumes concepts from different design paradigmsaibaelated to the con-
struction of complex systems, like multi-agent systemdtimobot systems, or sen-
sor networks. The design process introduces a generalietahmdel and starts at
a high abstraction level which defines model elements fararhous components,
for structures, relationships, and behavior. We deschbestages of the modeling
process, pointing out the specific differences to existiogreaches.

Keywords: Model-driven software engineering, MDA, autonomous congris,
methodology

1 Introduction

During the last decade, agent system and agent applicatgineering were gradually replaced

by the research on agent system design methodologies. €hebehind such a methodology

is to propose a practical, efficient, and application-ired&fent recipe to design agent software.
We can also find many fields of research with noticeable psalb agent systems: For instance,
sensor networks are running a distributed applicationnamogvhich makes them collect values,

exchange them with neighboring nodes, or reorganize thveonketto maintain connectivityd].

Autonomous cooperative robots have also been a hot topasearch during the last decade.
Many projects are involved in creating teams of robots wisichll solve a task cooperatively,
the most popular one being RoboCup where teams of robotssplager; in other projects they
are part of rescue scenarios.

All of the aforementioned research areas have developedavis and ideas to deliver ade-
guate solutions. These ideas imply specific propertiesedf target environment, mainly driven
by capabilities and constraints of the objects and devitke.way how problems are conceptu-
alized, the models, and practices that are employed arergsgdg@n a general notion what we
call aparadigm

Systems situated in different paradigms have specific ptiegewhich require an appropri-
ate modeling. On the other hand, methodologies for thedeusmareas have become strictly
separated; the application of an agent-related methogdtwgsensor networks does not seem
reasonable in the first place. We found many similaritiebiwiscenarios that have always been

1/12 Volume 37 (2011)


mailto:zapf@vs.uni-kassel.de

Engineering Complex Self-organizing systems @

considered as being located in different paradigms, asas@re get to higher layers of abstrac-
tion:

e The function of the complete system depends on the inteatiparof a certain set of self-
contained components, seen as subsystems of their own.alldigs for the traditional
divide-and-conquer strategy of solving complex problems.

e The subsystems show a high level of autonomy; activitiegirmaite from their own deci-
sions, possibly following an internal plan, and need notesearily be triggered from a
central control.

e The overall system involves so many components or showgddgl of complexity that
self-organization becomes a required feature of the system

We argue that while the specific features can be specificalhdled, there is a need for a
common methodology on an abstract level which offers themi@l to share approaches for
different paradigms.

In this article we present a new approach for engineeringhvhie callEPAC (Engineering
Process for systems of Autonomous Components). It starsvary abstract level, defining
structures and behaviors. Next, the model designer sigxsahe models for a paradigm, then
for a platform.

Section2 provides background information by summarizing featurfesxisting methodolo-
gies. In Sectior8 we describe the general concept of our approach, and indBekctve explain
how to perform the overall process. Sectbsummarizes the basic ideas and expected effects
of applying our approach, and Sectiéprovides conclusions and an outlook on open issues.

2 Redated work

Within the last 15 years, numerous approaches for the dedigomplex systems have been
proposed, of quite different nature. For instance, theeeparadigms like object-oriented pro-
gramming, component-oriented programming, aspect-mieprogramming, or agent-oriented
programming; or there are tools like UML which help to createdels of the systems to be
designed.

Methodologies are commonly understood to support a widgesadthin the development pro-
cess, with some of them focusing on the earlier phases ofsieand design, others supporting
the detailed elaboration and creation of software, andsadsoe of them attempting to guide the
complete process from analysis to implementation. Metlogies are often grounded on a the-
oretical model of the complete process and of the entitidsr@lations that are of interest in the
target environment. Researchers in agent software engigegidely agree (as usually found in
the introduction of the description of their methodologitget the traditional tools and method-
ologies fail to represent agent properties in their thecabmodel and so essentially make the
designer create concepts which are inherently not agésited.

We have a brief look at some well-known AOSE methodologiesrdter to be able to evaluate
the specifics of our approach.

Proc. WowKiVS 2011 2112



@ ECEASST

2.1 Tropos

Tropos [L, 6] is a methodology which targets many phases in the developprecess, spanning
from early requirements analysis to detailed design. Tlopds concept of designing a complex
system emphasizes thetor as a more generalized notion of a contributing party or carepd
within the system which encompasses human or organizatibaleeholders, parts of the envi-
ronment, and certainly also components which eventualtylgnas agents to be implemented.
Diagrams like theactor diagramsand thegoal diagramsallow to intuitively conclude which
activities are required to fulfill some goal.

Despite the general approach, Tropos is essentially a melitgy to design agent-oriented
systems in the first place. The central idea of Tropos liekiwithe concept of goals which
need to be fulfilled by active contributors, the actors. D®@ssumes a target infrastructure
which supports a goal-oriented processing of autonomougpoaents; it does not comment
on realizing the system in system environments that prgbedahnot afford such a high-level
processing.

2.2 PASS

PASSI P, 3] centers the design on roles and tasks to be handled, crea®sety model, and
approaches the implementation by dividing functionalityoag those parts dedicated to single
agents and those for agent groups. The core concept of PAS&uinderstand the agent as a
significant unit in both conceptual and implementation \d@d4]. An agent may play different
roles throughout its lifetime, which determines the agetérnal behavior as well as the inter-
actions within the group, so PASSI explicitly provides miaat support for both views. PASSI
makes strong use of various UML diagrams and concepts leatyping.

Many scenarios discussed for PASSI assume a FIPA-based iaggamentation, and the
proposed metamodeB] includes the FIPA agent within its problem domain. Nevelglss, the
methodology is also applicable for non-FIPA and also na@Janvironmentsd], but it still
targets at the creation of applications with a clear ageented notion.

2.3 Gaia

The Gaia methodology was proposed by Franco Zambonellhdias Jennings, and Michael
Wooldridge in 2000, with some enhancements in 2003.[ It assumes a multi-agent system
to consist of a set of agents playing certain roles in an enaient which is determined by
organizational rules. Each role implies a set of respolits#isi. By repeated refinements, Gaia
produces a set of agent types and service types which reprteseagent functionalities.

Gaia introduces only few formal elements, trying to avoida technical point of view, like
role diagramsandprotocol diagrams It is a comprehensive way of approaching the design of a
complex system using clearly defined phases, howevernstayi a comparably abstract level,
and only providing high-level guidelines for a later implkentation phase. Gaia at its core does
not deliver an adequate support for model-driven softwaggneering, particularly with respect
to model and code transformation.

3/12 Volume 37 (2011)



Engineering Complex Self-organizing systems @

3 An Engineering Processfor Systems of Autonomous Components

The prevalent strategy for encouraging system designerat@ use of the AOSE methodolo-
gies is to advocate an “agent view” on the system, understgritlas a collective of coopera-
tive, autonomous agents. In our approach, we suggest andtred view, by abstracting from
specifics of technologies as far as possible, while stilinitg the capability to create models
from formal metamodels. Ideally, theparadigm-independemhodels (PAIM) can be re-used in
parts or in whole for scenarios within quite different targavironments. The PAIM forms an-
other abstraction layer prepended to the modeling layetiseoivell-known MDA [B] modeling
concept.

3.1 ThePAIM metamodel

The core of our approach is the notion of a generalized cdrafepn autonomous computing
entity which we callACE for short. An ACE is an entity that represents a componenhef t
system with the following properties:

e The ACE is perceived as a subsystem with a clearly define@msybbundary. For each
ACE it makes sense to distinguish the ACE from its environnasrthe rest of the system
where it is embedded.

e The ACE behavior, as perceived during its life cycle, is édeied asts ownbehavior.
ACEs are capable of initiating activities.

e ACEs can interact with each other or with other parts of theeading system.

e An ACE may consist of identifyable autonomous parts (sute8which, by their coop-
eration, constitute the structure and behavior of the ACE.

These properties may sound familiar to agent researchéexeTare three main reasons why
we suggest to use the term ACE at this level, not agent: Kiesexplicitly targetcomputational
artifacts while some other metamodels suggest to include humang iaglnt or actor seman-
tics. Second, the term better reflects thdependencdérom the agent paradigm at this level,
allowing to apply this metamodel not only to software agdmisalso to related areas. Third,
an agent-oriented model eventually suggests the desigmeap the model concept to a single
agent entity. However, it is not always clear what parts efdjzstem are reasonably designed as
having agent properties. There may also be situations whelgave collections of independent
entities which show a single group behavior. For this situatve define the semantics of an
ACE model element as representing a possibly substructaedfecontained, autonomous entity
of the system, following a holonic view. Figufiegives an example how the ACE model ele-
ment may be translated to different paradigms and platfoamd how general concepts map to
different, yet comparable terminology.

TheModel-Driven Architectureor short MDA [8], has been introduced by the Object Manage-
ment Group in 2001 as a special realization of the MDD notitafining four levels of abstrac-
tion: computational-independent models (CIM), platfarmdependent models (PIM), platform-
specific models (PSM), and the platform-specific implem@nta(PSI). The EPAC process that

Proc. WowKiVS 2011 4112



@ ECEASST

Paradigm- Platform- Platform- Implemen-
independent independent specific tation

Software | JADE ||
agent agent |J Java
ACE ...Container

...Messages
...Behaviors

———

Sensor | > TinyOS
node node

...Module
...Radio
...Tasks

nesC

Figure 1: Specializing towards paradigms and platforms

we are about to describe is not intended to introduce andkis®mretical model. Instead, its
primary objectives are three-fold:

e encourage the re-use of structural and behavioral patteras abstract level, separating
them from paradigm-related assumptions;

e explicitly integrate the concept of self-organization as@del element for group behavior
which has been difficult to combine with existing technigeedar, and

e support the designer by the inclusion of model-driven safewdevelopment techniques
for creating complex systems of autonomous components.

As our approach is ignorant about metamodels on the paraldigeh we expect that other
methodologies may be cooperatively used. Concretelyngutie modeling process we may
have collected a set of features and responsibilities &gedcto an agent role; these findings
may serve as input to a special AOSE modeling technique likia.GA complementary usage
would be to switch between the methodologies multiple tim&sequired, while a successive
usage means to start with one methodology and continue witthar one to the end or vice
versa.

3.2 Featuresand Responsibilities

The ACE behavior on a abstract level is modeled as a collectideaturesthat the ACE may
expose during its lifetime. Related features are then grdupto responsibilities, a concept
already known from other methodologies like Gaia. We digtish between two classes of
features:

e Primary features (application-related) which represkatgroper goals of the system and
its design.

e Autonomic features, covering all kinds of behavior thatratated to self-organization and
similar self-properties.

5/12 Volume 37 (2011)



Engineering Complex Self-organizing systems @

current_context may chang
i during runtime

‘ Feature }—{ Responsibility ‘ W

—— PAIM-PIM

— 1 transformation
From feature Fun_c_tlon_al Scenario-specific
analysis specification

Constraint: Responsibilites of a role must not be antagonistic

Figure 2: PAIM metamodel

The termautonomic featuresefers to properties which are ensured by the system during
runtime as a background activity. In contrast, primarydezg are located in the foreground and
cover the set of actual requirements for the system, imrntedgieelated to the scenario.

The background activity is specifically focused on strustpreserving actions, configura-
tions, adaptations, corrections and similar; these aréastvity are also main topics of the
Autonomic Computingoncept initiated by IBMJ]. As autonomic features are intended to keep
human operators out of the control loop, they infer selfpgrties in the involved components.
Realizing self-properties for systems requires the avaaif closed control loops, for which we
know already prepared patterns like MAPE(K) or OC cycl&g].[ Control loops may also be
hierarchically organized.

Within the design of such systems, particular attentiontrbaspaid to the fact that various
responsibilities may have antagonistic nature, which mehat they cannot be handled by the
same entity at the same time. An example could be a multitagyestem with mobility and
load balancing: Decisions from one part likely interferéhathe other part. Situations like these
give reason to introduce more than one role, and so to avogidop together incompatible
responsibilities.

The EPAC process envisages that ACEs may be nested and thudhébarchies. One one
hand, this allows the designer to compose ACEs by more elemyeACEs which follow their
own, possibly contradicting plans. The higher-order ACElvé required to employ some policy
to coordinate the subcomponents. The highest-order ACthisrmodel, would be the overall
system, encompassing all components involved in the sicer@n the other hand, we can treat
higher-level ACEs — containing other ACEs as parts — as beafgesponsibilities.

3.3 Rolesand contexts

In the metamodel, a role is a consistent union of respoit&kil where no two responsibilities
have an antagonism relationship. ACEs may take several doleng their lifetime.

A context is commonly understood as the part of a global aystevhich the actual system of
interest is situated, and which influences its behavior.t€&ds may consist of other complex and
intelligent entities, of environmental aspects like sgdtication, of physical parameters which

Proc. WowKiVS 2011 6/12



@ ECEASST

the system is exposed to, or logical conditions like systenfigurations. A role is associated
with one or more contexts, reflecting the possibility thad #xecution of a role may trigger
context changes.

Context changes may happen if the environment changesyr &iyhinherent change (recon-
figuration), or by a relocation of the system into anotheriremvment. These context changes
are usually triggers for behavioral adaptations. Conteanges, in this most abstract notion, do
not imply specifics of a paradigm, and thus are consequeittigted in the PAIM level. One
example of a PAIM/PIM mapping could then be to map contexihgea to agent migration in
the mobile agent paradigm, declaring migrations as deltbér triggered context changes. This,
in turn, allows tolift the migration concept up one level. The restructuring of AQ&obably
as a result of self-organization, is modeled by contexthainges for sub-parts. In that view,
various configurationsmay be modeled, and blackbox elements may be employed taetst
from deeper detail, for instance, if the internal structwitbe created by self-organization.

With the contexts situated at the PAIM level, we can creat@bieral models (e.g. using state
machines or activity diagrams) which include the dynamfanwironmental changes or internal
changes at a higher level. One consequence of such a cohtmge could be the replacement
of behavioral parts as a result of an adaptation actity [

4 The EPAC process

From the metamodel we can derive a sequence of activitiestwthe system engineer has to
follow in order to successfully create a system, accordingur approach.

41 Overview

As Figurel suggests, the EPAC process starts at the highest abstréetiel: the paradigm-
independent level, that is, analysing the overall system @dlection of interacting ACEs. As
ACEs have a holonic nature, it is reasonable to view the cetaystem aa single ACEand
then refine its substructure.

Following the metamodel, features need to be collected twhre derived from the actual
scenario. The features have to be sorted into two sets: Brif@atures are those that represent
the foreground activity, while autonomic features are editéires that ensure some desired self-
property of the system.

Figure 3 shows that these features are then grouped into respdtesibiFrom this stage, the
separate handling is over, and the responsibilities angpgia into roles.

Roles can then be assigned to one or more ACEs. At this poirtiave to decide whether
we can associate the roles to the currently considered ACE&hether we need to break apart
the system into smaller subsystems, due to a conflict betteeroles. For instance, a conflict
will arise if the execution of the roles requires to be at sgMecations at the same time. In that
situation, a distribution of the roles among several sulEAG required. The overall system will
then consist of the union of those sub-ACEs.

Note that the process may now recurse if required. Espgdiathe case where the ultimate
realization of an ACE may spread over separate networkitotsta finer granularity is required.

7112 Volume 37 (2011)



Engineering Complex Self-organizing systems @

o

~ S
¢ «Primary» | | | «Primary»
/ Feature |1 Responsibility (- -,
@ p—— _ Role
\ «Autonomic» )7 _p | “Autonomic» ol
§ Feature | Responsibility |-
| associate with
recurse (SUb)
ACE

Figure 3: Overall process at the PAIM level

This reflects the traditional notion of divide-and-conquinen again, we can isolate primary and
autonomic features, and so on.

It is important to note that while ACEs may be split into sudrtp, this does not imply that all
features need to be distributed among them. For exampldggigner may consider to associate
the autonomic feature of self-organization to the compheE&. In this case it would not make
sense to break down this feature to the subparts but insteadloy appropriate techniques like
evolutionary algorithms, as shown for exampleli,[16, 15], in order to create a group behavior.
The most important responsibility of the designer is tofyettiat the generated behavior does
not interfere with the dedicated roles of the sub-ACEs.

4.2 Application of the PIM-PSM-PS| chain

Up to here, the design process ignored any paradigm or platépecific properties. At some
point we will not be able to elaborate further on the systerthait inferring features from the
underlying paradigm and platform. For instance, we neecktideé whether ACEs can relocate
themselves in the network, thus being mobile agents. $#Ineed not select a target platform,
like JADE or AMETAS.

The fact that a PAIM does not specialize on one paradigm dogsean we can freely choose
any possible paradigm for the same scenario, as every parddis its specific application areas.
An application inherently suited for mobile agents will pitdy not run in a sensor network. The
idea of the EPAC process is to allow to unify the high-leveldsling process, from where the
modeling can continue by the appropriate paradigm.

If the design has become sufficiently detailed, making ustrattural and behavioral models
(and possibly other methodologies), the designer may nofenpe the first transformation step:
Transform the paradigm-independent models to a target paradigm like, for instance soft-
ware agentsThe transformation to the target platform causes cergaiminology to be imported
into the model. For instance, we can map ACEs to softwaretagigiteractions to asynchronous
messages, and locational contexts to places.

At this point we still avoid to map the terminology to more cogte terms which we know
from specific agent systems. The designer now has a detasdtiption of how the scenario

Proc. WowKiVS 2011 8/12



@ ECEASST

could be designed under the software agent paradigm. Froen Vverious specialized method-
ologies may take over, or we directly continue with the spleation. It is also possible to
include another methodology in this process, deliveringitaBly refined platform-independent
model, and then return here.

According to the MDA concept, the next step would then be tB&RransformationTrans-
form the platfor m-independent model to atarget programming / application platform. Fi-
nally, the PSM may be populated with further specific diagrdiike state machines) which
contribute to the final code transformation. As we rely on UMbdels, the transformation can
be automatized at several points in the process. The alitooagiversion amounts to write suit-
able transformation scripts or rulesets, using, for instatXSL transformation oMOF Model
To Text Transformatiofi7].

It should be noted, however, that this process will not ramfistart to end without any con-
tribution by the human designer. At each stage of the tramsftion process, the designer will
have to add information which is specific for the respectimeagdigm or platform, as the more
abstract models naturally lack this information. The amainnformation within the model is
increased by each transformation step, and not every stali@nd behavioral feature may be
adequately represented within abstract models. Insteadyrbcess is intended to provide auto-
mated transformations whereever possible, and hence de gle specification of models and
the implementation by providing common mappings, delivgggkeleton modelandcode

4.3 Implementation

At the end of the design process, we find a number of diagramsessilt, representing platform-
specific models. These models can represent structurarésadr behavioral features, also con-
taining commonly used diagram types like state machinagaiias.

Figure 4 shows a part of the XSL transformation used to convert a stetehine diagram
into JADE code. Obviously, this transformation will onlygaluce a code skeleton which still
needs to be completed. One straightforward extension sostuinple is to include transition
triggers and effects as message exchange actions. UsitlgeaiXSLT document we were able
to immediately create code for a second agent system, AMETASL3]. XSLT is not the only
possible choice for a transformation language; other elesgreMOFScrip{4] or MOF Model
To Text Transformatiofi’] which are specifically targeted at creating code from XMéaiments
and provide a better readable transformation code than XSL.

5 Rationale of the process

Viewing the basic notion of our approach just as an iteratedehspecification does not cover
the overall concept appropriately. We summarize the cazadaf our approach at this point.

5.1 Formalized metamodel

Models in EPAC are formulated using the UML language. Thieved the designer to make
use of existing tools, like Eclipse UML tools, Papyrus UMl Enterprise Architect. As UML
is a formal metamodel there are practical ways of automaiifigation of user models. UML

9/12 Volume 37 (2011)



Engineering Complex Self-organizing systems @

<I[CDATA[ public ]]><xsl:value-of select="$agname"/><![CDATA[() {
[l Put your initialization code here

}
protected void setup() {
FSMBehaviour ab = new FSMBehaviour();
ab.registerFirstState(new ]]>
<xsl:value-of select="subvertex[@xmi:type='uml:Pseudostate']
/@name"/>
<I[CDATA][(this), "]]>
<xsl:value-of select="subvertex[@xmi:type="uml:Pseudostate’]
/@xmi:id"/><![CDATA[");]>
<xsl:for-each select="subvertex[@xmi:type="uml:State'"><![CDATA[
ab.registerState(new []><xsl:value-of select="@name"/>
<I[CDATA[(this), "]]><xsl:value-of select="@xmi:id"/>
<I[CDATA[");]1>
</xsl:for-each>
<xsl:for-each select="transition"><![CDATA[
ab.registerTransition("]]><xsl:value-of select="@source"/>
<I[CDATA[", "]]>
<xsl:value-of select="@target"/><![CDATA[", TRANS]]>
<xsl:value-of select="fn:position()"/>
<![CDATA[);]I>
</xsl:for-each><![CDATA[
addBehaviour(ab);
}

Figure 4: Excerpt from the XSL transformation UML/JADE

may be used to formalize a metamodel to be used for our PIM Imoolewe can us@rofiling to
introduce variants of existing model elements. By usingthk diagram export features, we can
transform models to XML documents in a standardized way bed &lgorithmically transform
them into new XML documents, for instance, by using XSL tfamsations, as shown above.

5.2 Abstract modeling

The EPAC methodology encourages to abstract further frarspecific terminology up to the
point where the designer considers autonomous compultititieerto interact with each other,
and to form a collective which provides a certain functiggalFrom here on, with sufficiently
detailed models, specifications may be derived by the toamsftions. In the process of mod-
eling, features which belong to self-organization andteelaoncepts are separated from fore-
ground (primary) features which are the design objectivieth® system. By this separation,
techniques like triggering emergent features may beconagtapthe engineering process.

5.3 Methodology reuse

The EPAC modeling concept may be understooriisogonalto existing methodologies. It
is compatible with concepts of organizations, roles, rasiilities, acquaintances and similar
notions introduced by other methodologies like Troposaiai PASSI. By its abstract view, it
may encourage designers of related domains to apply mdtgids which were originally tar-
geted towards agent systems. One example could be to des@fiaganizing sensor network
which intelligently reorganizes its structure, dependimgreachability, making use of behavior
patterns which proved to be efficient for agent societies.

Proc. WowKiVS 2011 10/ 12



@ ECEASST

6 Conclusions

The EPAC process described in this article is intended tadwo the scope of existing method-
ologies in the area of complex system design in order to allodesigner to utilize suitable
concepts, patterns, and processes despite the fact tigavéne originally intended for another
area. The core concept is the setup of a common metamodéi vghiseful to describe features
in the related areas, and transformations which translatdels from the paradigm-independent
via the platform-independent to a platform-specific repngstion, which can then eventually be
transformed to code.

Agent-oriented software engineering methodologies ammdst cases, already generic enough
to be employed in related research areas as well, merelyriregithe designer to adopt an "agent
view” on the system to be created. However, we find only lgti@ence that AOSE has found
a broader audience outside of the agent community. Thisdaekceptance may be remedied
in our view by avoiding to fix the modeling to one paradigm ateanly stage. Rather, follow-
ing the EPAC concept, we suggest to start modeling at a vestyaath level, avoiding to assume
paradigm-specific properties, which should encouragegdess to approach their design in an
unbiased way, without committing to a paradigm. That way,expect that common patterns
for structures and behavior can be recognized more easilp@atefined modeling concepts can
be applied. Later, the models can be transformed to a panadigd then to specific platforms,
following the MDA concept.

Various parts of EPAC are still work in progress, and we ekpatendments in all parts of the
overall process as we complete the metamodel definitiortrdineformations to expected target
platforms, and evaluate the applicability to further pégats or platforms. We are currently
working on the transformation of model diagrams betweeptheess stages and for the ultimate
code generation. One especially interesting point is tinebdeation of different diagrams in the
transformation process to form a single result model or code

Bibliography

[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Myloposloand A. Perini. TROPOS: An
agent-oriented software development methodoloytonomous Agents and Multi-Agent
Systems8(3):203-236, May 2004.

[2] M. Cossentino and C. Potts. PASSI: a process for specify-
ing and implementing multi-agent systems using UML, 2002.
http://www.cc.gatech.edu/classes/AY2002/cs6BIBICSE. pdf.

[3] Massimo Cossentino, Salvatore Gaglio, Luca Sabatacd,Valeria Seidita. The passi and
agile passi mas meta-models compared with a unifying palpoh CEEMAS volume
3690 ofLecture Notes in Computer Scienpages 183-192. Springer, 2005.

[4] Eclipse Foundation. MOFScript Home Page, 2010. httpvil.eclipse.org/ gmt/mofscript/.

[5] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohardrillah Khan. Modeling
of Context-Aware Self-Adaptive Applications in Ubiqu#@nd Service-Oriented Environ-

11/12 Volume 37 (2011)



Engineering Complex Self-organizing systems @

[6]

[7]

[8]

ments pages 146-163. Software Engineering for Self-Adaptiv&&ys. Springer-Verlag,
Berlin, Heidelberg, 2009.

P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore.The Tropos Methodology: An
Overview Kluwer Academic Publishing, 2004.

Object Management Group. MOF Model To Text Transformatianguage Home Page,
2008. http://www.omg.org/spec/ MOFM2T/1.0/.

Object Management Group. OMG Model Driven Architectudmme Page, 2009.
http://www.omg.org/mda/.

[9] J. Kephart and D. Chess. The vision of autonomic computiBEE Computer36(1), Jan

[10]

[11]

[12]

[13]

[14]

[15]

[16]

2003.

Urban Richter, Moez Mnif, Jurgen Branke, Christianuli-Schloer, and Hartmut
Schmeck. Towards a Generic Observer/Controller Architector Organic Computing.
In INFORMATIK 2006 - Informatikifr Menschen!volume P-93 olLNI, pages 112-119.
Bonner Kollen Verlag, October 2006.

Thomas Weise, Michael Zapf, Mohammad Ullah Khan, andtKieihs. Genetic pro-
gramming meets model-driven development. 7t International Conference on Hy-
brid Intelligent Systems (HIS 2007)EEE Computer Society, 2007. http://www.it-
weise.de/documents/files/WZKG2007DGPFg.pdf.

Franco Zambonelli, Nicholas R. Jennings, and MichaebWtidge. Developing multia-
gent systems: The Gaia methodologyCM Trans. Softw. Eng. Methodol.2(3):317-370,
2003.

M. Zapf. Type-based mediation of mobile agentsinternational ICSC Congress: Intelli-
gent Systems & Applications ISA '2000, Wollongong, Austnalolume 1, pages 236-241.
ICSC Academic Press, December 2001.

Michael Zapf. Typisierung autonomer SoftwareagenteRhD thesis, Johann Wolfgang
Goethe-Universitat, Frankfurt/Main, Germany, April 20@German only; online available:
http://www.mizapf.de/work/mzapfdiss.pdf.

Michael Zapf and Thomas Weise. Applicability of emerge engineering to distributed
systems scenarios. (TechRep 2008, 5). Presented at EUMZShtp://www.vs.uni-
kassel.de/publications/2009/ZW09.

Michael Zapf and Thomas Weise. Can solutions emergerhdnthird International Work-
shop on Self-Organizing Systems (IWSOS, '08Jume 5343 ofLecture Notes in Com-
puter Science (LNCS), LNCS Sublibrary: SL 5 — Computer Coniwation Networks and
Telecommunicationgpages 299-304. Springer, dec 2008.

Proc. WowKiVS 2011 12/12



