
Electronic Communications of the EASST
Volume 37 (2011)

Workshops der wissenschaftlichen Konferenz
Kommunikation in Verteilten Systemen 2011

(WowKiVS 2011)

Paradigm-Independent Engineering of Complex Self-Organizing
Systems

Michael Zapf

12 pages

Guest Editors: Horst Hellbrück, Norbert Luttenberger, Volker Turau
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Paradigm-Independent Engineering of Complex Self-Organizing
Systems

Michael Zapf

zapf@vs.uni-kassel.de,
Distributed Systems Group

Universität Kassel, Wilhelmshöher Allee 73,
34121 Kassel, Germany

Abstract: We present EPAC, a novel approach to design and engineer systems of
autonomous components. EPAC is based on the Model-Driven Architecture concept
and subsumes concepts from different design paradigms thatare related to the con-
struction of complex systems, like multi-agent systems, multi-robot systems, or sen-
sor networks. The design process introduces a generalized metamodel and starts at
a high abstraction level which defines model elements for autonomous components,
for structures, relationships, and behavior. We describe the stages of the modeling
process, pointing out the specific differences to existing approaches.

Keywords: Model-driven software engineering, MDA, autonomous components,
methodology

1 Introduction

During the last decade, agent system and agent application engineering were gradually replaced
by the research on agent system design methodologies. The idea behind such a methodology
is to propose a practical, efficient, and application-independent recipe to design agent software.
We can also find many fields of research with noticeable parallels to agent systems: For instance,
sensor networks are running a distributed application program which makes them collect values,
exchange them with neighboring nodes, or reorganize the network to maintain connectivity [9].

Autonomous cooperative robots have also been a hot topic in research during the last decade.
Many projects are involved in creating teams of robots whichshall solve a task cooperatively,
the most popular one being RoboCup where teams of robots playsoccer; in other projects they
are part of rescue scenarios.

All of the aforementioned research areas have developed owntools and ideas to deliver ade-
quate solutions. These ideas imply specific properties of their target environment, mainly driven
by capabilities and constraints of the objects and devices.The way how problems are conceptu-
alized, the models, and practices that are employed are comprised in a general notion what we
call aparadigm.

Systems situated in different paradigms have specific properties which require an appropri-
ate modeling. On the other hand, methodologies for these various areas have become strictly
separated; the application of an agent-related methodology for sensor networks does not seem
reasonable in the first place. We found many similarities within scenarios that have always been

1 / 12 Volume 37 (2011)

mailto:zapf@vs.uni-kassel.de


Engineering Complex Self-organizing systems

considered as being located in different paradigms, as soonas we get to higher layers of abstrac-
tion:

• The function of the complete system depends on the interoperation of a certain set of self-
contained components, seen as subsystems of their own. Thisallows for the traditional
divide-and-conquer strategy of solving complex problems.

• The subsystems show a high level of autonomy; activities originate from their own deci-
sions, possibly following an internal plan, and need not necessarily be triggered from a
central control.

• The overall system involves so many components or shows a high level of complexity that
self-organization becomes a required feature of the system.

We argue that while the specific features can be specifically handled, there is a need for a
common methodology on an abstract level which offers the potential to share approaches for
different paradigms.

In this article we present a new approach for engineering which we callEPAC(Engineering
Process for systems of Autonomous Components). It starts ata very abstract level, defining
structures and behaviors. Next, the model designer specializes the models for a paradigm, then
for a platform.

Section2 provides background information by summarizing features of existing methodolo-
gies. In Section3 we describe the general concept of our approach, and in Section 4 we explain
how to perform the overall process. Section5 summarizes the basic ideas and expected effects
of applying our approach, and Section6 provides conclusions and an outlook on open issues.

2 Related work

Within the last 15 years, numerous approaches for the designof complex systems have been
proposed, of quite different nature. For instance, there are paradigms like object-oriented pro-
gramming, component-oriented programming, aspect-oriented programming, or agent-oriented
programming; or there are tools like UML which help to createmodels of the systems to be
designed.

Methodologies are commonly understood to support a wide scope within the development pro-
cess, with some of them focusing on the earlier phases of analysis and design, others supporting
the detailed elaboration and creation of software, and alsosome of them attempting to guide the
complete process from analysis to implementation. Methodologies are often grounded on a the-
oretical model of the complete process and of the entities and relations that are of interest in the
target environment. Researchers in agent software engineering widely agree (as usually found in
the introduction of the description of their methodologies) that the traditional tools and method-
ologies fail to represent agent properties in their theoretical model and so essentially make the
designer create concepts which are inherently not agent-oriented.

We have a brief look at some well-known AOSE methodologies inorder to be able to evaluate
the specifics of our approach.

Proc. WowKiVS 2011 2 / 12



ECEASST

2.1 Tropos

Tropos [1, 6] is a methodology which targets many phases in the development process, spanning
from early requirements analysis to detailed design. The Tropos concept of designing a complex
system emphasizes theactor as a more generalized notion of a contributing party or component
within the system which encompasses human or organizational stakeholders, parts of the envi-
ronment, and certainly also components which eventually end up as agents to be implemented.
Diagrams like theactor diagramsand thegoal diagramsallow to intuitively conclude which
activities are required to fulfill some goal.

Despite the general approach, Tropos is essentially a methodology to design agent-oriented
systems in the first place. The central idea of Tropos lies within the concept of goals which
need to be fulfilled by active contributors, the actors. Tropos assumes a target infrastructure
which supports a goal-oriented processing of autonomous components; it does not comment
on realizing the system in system environments that probably cannot afford such a high-level
processing.

2.2 PASSI

PASSI [2, 3] centers the design on roles and tasks to be handled, createsa society model, and
approaches the implementation by dividing functionality among those parts dedicated to single
agents and those for agent groups. The core concept of PASSI is to understand the agent as a
significant unit in both conceptual and implementation views [2]. An agent may play different
roles throughout its lifetime, which determines the agent-internal behavior as well as the inter-
actions within the group, so PASSI explicitly provides modeling support for both views. PASSI
makes strong use of various UML diagrams and concepts like stereotyping.

Many scenarios discussed for PASSI assume a FIPA-based agent implementation, and the
proposed metamodel [3] includes the FIPA agent within its problem domain. Nevertheless, the
methodology is also applicable for non-FIPA and also non-Java environments [2], but it still
targets at the creation of applications with a clear agent-oriented notion.

2.3 Gaia

The Gaia methodology was proposed by Franco Zambonelli, Nicholas Jennings, and Michael
Wooldridge in 2000, with some enhancements in 2003 [12]. It assumes a multi-agent system
to consist of a set of agents playing certain roles in an environment which is determined by
organizational rules. Each role implies a set of responsibilities. By repeated refinements, Gaia
produces a set of agent types and service types which represent the agent functionalities.

Gaia introduces only few formal elements, trying to avoid a too technical point of view, like
role diagramsandprotocol diagrams. It is a comprehensive way of approaching the design of a
complex system using clearly defined phases, however, staying on a comparably abstract level,
and only providing high-level guidelines for a later implementation phase. Gaia at its core does
not deliver an adequate support for model-driven software engineering, particularly with respect
to model and code transformation.

3 / 12 Volume 37 (2011)



Engineering Complex Self-organizing systems

3 An Engineering Process for Systems of Autonomous Components

The prevalent strategy for encouraging system designers tomake use of the AOSE methodolo-
gies is to advocate an “agent view” on the system, understanding it as a collective of coopera-
tive, autonomous agents. In our approach, we suggest another, dual view, by abstracting from
specifics of technologies as far as possible, while still retaining the capability to create models
from formal metamodels. Ideally, theseparadigm-independentmodels (PAIM) can be re-used in
parts or in whole for scenarios within quite different target environments. The PAIM forms an-
other abstraction layer prepended to the modeling layers ofthe well-known MDA [8] modeling
concept.

3.1 The PAIM metamodel

The core of our approach is the notion of a generalized concept of an autonomous computing
entity which we callACE for short. An ACE is an entity that represents a component of the
system with the following properties:

• The ACE is perceived as a subsystem with a clearly defined system boundary. For each
ACE it makes sense to distinguish the ACE from its environment as the rest of the system
where it is embedded.

• The ACE behavior, as perceived during its life cycle, is considered asits ownbehavior.
ACEs are capable of initiating activities.

• ACEs can interact with each other or with other parts of the embedding system.

• An ACE may consist of identifyable autonomous parts (sub-ACEs) which, by their coop-
eration, constitute the structure and behavior of the ACE.

These properties may sound familiar to agent researchers. There are three main reasons why
we suggest to use the term ACE at this level, not agent: First,we explicitly targetcomputational
artifacts, while some other metamodels suggest to include humans in the agent or actor seman-
tics. Second, the term better reflects theindependencefrom the agent paradigm at this level,
allowing to apply this metamodel not only to software agentsbut also to related areas. Third,
an agent-oriented model eventually suggests the designer to map the model concept to a single
agent entity. However, it is not always clear what parts of the system are reasonably designed as
having agent properties. There may also be situations wherewe have collections of independent
entities which show a single group behavior. For this situation we define the semantics of an
ACE model element as representing a possibly substructured, self-contained, autonomous entity
of the system, following a holonic view. Figure1 gives an example how the ACE model ele-
ment may be translated to different paradigms and platforms, and how general concepts map to
different, yet comparable terminology.

TheModel-Driven Architecture, or short MDA [8], has been introduced by the Object Manage-
ment Group in 2001 as a special realization of the MDD notion,defining four levels of abstrac-
tion: computational-independent models (CIM), platform-independent models (PIM), platform-
specific models (PSM), and the platform-specific implementation (PSI). The EPAC process that

Proc. WowKiVS 2011 4 / 12



ECEASST

Figure 1: Specializing towards paradigms and platforms

we are about to describe is not intended to introduce anothertheoretical model. Instead, its
primary objectives are three-fold:

• encourage the re-use of structural and behavioral patternson an abstract level, separating
them from paradigm-related assumptions;

• explicitly integrate the concept of self-organization as amodel element for group behavior
which has been difficult to combine with existing techniquesso far, and

• support the designer by the inclusion of model-driven software development techniques
for creating complex systems of autonomous components.

As our approach is ignorant about metamodels on the paradigmlevel, we expect that other
methodologies may be cooperatively used. Concretely, during the modeling process we may
have collected a set of features and responsibilities associated to an agent role; these findings
may serve as input to a special AOSE modeling technique like Gaia. A complementary usage
would be to switch between the methodologies multiple timesas required, while a successive
usage means to start with one methodology and continue with another one to the end or vice
versa.

3.2 Features and Responsibilities

The ACE behavior on a abstract level is modeled as a collection of featuresthat the ACE may
expose during its lifetime. Related features are then grouped into responsibilities, a concept
already known from other methodologies like Gaia. We distinguish between two classes of
features:

• Primary features (application-related) which represent the proper goals of the system and
its design.

• Autonomic features, covering all kinds of behavior that arerelated to self-organization and
similar self-properties.

5 / 12 Volume 37 (2011)



Engineering Complex Self-organizing systems

Figure 2: PAIM metamodel

The termautonomic featuresrefers to properties which are ensured by the system during
runtime as a background activity. In contrast, primary features are located in the foreground and
cover the set of actual requirements for the system, immediately related to the scenario.

The background activity is specifically focused on structure-preserving actions, configura-
tions, adaptations, corrections and similar; these areas of activity are also main topics of the
Autonomic Computingconcept initiated by IBM [9]. As autonomic features are intended to keep
human operators out of the control loop, they infer self-properties in the involved components.
Realizing self-properties for systems requires the creation of closed control loops, for which we
know already prepared patterns like MAPE(K) or OC cycles [10]. Control loops may also be
hierarchically organized.

Within the design of such systems, particular attention must be paid to the fact that various
responsibilities may have antagonistic nature, which means that they cannot be handled by the
same entity at the same time. An example could be a multi-agent system with mobility and
load balancing: Decisions from one part likely interfere with the other part. Situations like these
give reason to introduce more than one role, and so to avoid togroup together incompatible
responsibilities.

The EPAC process envisages that ACEs may be nested and thus form holarchies. One one
hand, this allows the designer to compose ACEs by more elementary ACEs which follow their
own, possibly contradicting plans. The higher-order ACE will be required to employ some policy
to coordinate the subcomponents. The highest-order ACE, inthis model, would be the overall
system, encompassing all components involved in the scenario. On the other hand, we can treat
higher-level ACEs – containing other ACEs as parts – as bearers of responsibilities.

3.3 Roles and contexts

In the metamodel, a role is a consistent union of responsibilities, where no two responsibilities
have an antagonism relationship. ACEs may take several roles during their lifetime.

A context is commonly understood as the part of a global system in which the actual system of
interest is situated, and which influences its behavior. Contexts may consist of other complex and
intelligent entities, of environmental aspects like spatial location, of physical parameters which

Proc. WowKiVS 2011 6 / 12



ECEASST

the system is exposed to, or logical conditions like system configurations. A role is associated
with one or more contexts, reflecting the possibility that the execution of a role may trigger
context changes.

Context changes may happen if the environment changes, either by inherent change (recon-
figuration), or by a relocation of the system into another environment. These context changes
are usually triggers for behavioral adaptations. Context changes, in this most abstract notion, do
not imply specifics of a paradigm, and thus are consequently situated in the PAIM level. One
example of a PAIM/PIM mapping could then be to map context changes to agent migration in
the mobile agent paradigm, declaring migrations as deliberately triggered context changes. This,
in turn, allows tolift the migration concept up one level. The restructuring of ACEs, probably
as a result of self-organization, is modeled by contextual changes for sub-parts. In that view,
variousconfigurationsmay be modeled, and blackbox elements may be employed to abstract
from deeper detail, for instance, if the internal structurewill be created by self-organization.

With the contexts situated at the PAIM level, we can create behavioral models (e.g. using state
machines or activity diagrams) which include the dynamics of environmental changes or internal
changes at a higher level. One consequence of such a context change could be the replacement
of behavioral parts as a result of an adaptation activity [5].

4 The EPAC process

From the metamodel we can derive a sequence of activities which the system engineer has to
follow in order to successfully create a system, according to our approach.

4.1 Overview

As Figure1 suggests, the EPAC process starts at the highest abstraction level: the paradigm-
independent level, that is, analysing the overall system asa collection of interacting ACEs. As
ACEs have a holonic nature, it is reasonable to view the complete system asa single ACEand
then refine its substructure.

Following the metamodel, features need to be collected which are derived from the actual
scenario. The features have to be sorted into two sets: Primary features are those that represent
the foreground activity, while autonomic features are all features that ensure some desired self-
property of the system.

Figure3 shows that these features are then grouped into responsibilites. From this stage, the
separate handling is over, and the responsibilities are grouped into roles.

Roles can then be assigned to one or more ACEs. At this point wehave to decide whether
we can associate the roles to the currently considered ACE, or whether we need to break apart
the system into smaller subsystems, due to a conflict betweenthe roles. For instance, a conflict
will arise if the execution of the roles requires to be at several locations at the same time. In that
situation, a distribution of the roles among several sub-ACEs is required. The overall system will
then consist of the union of those sub-ACEs.

Note that the process may now recurse if required. Especially in the case where the ultimate
realization of an ACE may spread over separate network locations, a finer granularity is required.

7 / 12 Volume 37 (2011)



Engineering Complex Self-organizing systems

Figure 3: Overall process at the PAIM level

This reflects the traditional notion of divide-and-conquer. Then again, we can isolate primary and
autonomic features, and so on.

It is important to note that while ACEs may be split into sub-parts, this does not imply that all
features need to be distributed among them. For example, thedesigner may consider to associate
the autonomic feature of self-organization to the completeACE. In this case it would not make
sense to break down this feature to the subparts but instead to employ appropriate techniques like
evolutionary algorithms, as shown for example in [11, 16, 15], in order to create a group behavior.
The most important responsibility of the designer is to verify that the generated behavior does
not interfere with the dedicated roles of the sub-ACEs.

4.2 Application of the PIM-PSM-PSI chain

Up to here, the design process ignored any paradigm or platform-specific properties. At some
point we will not be able to elaborate further on the system without inferring features from the
underlying paradigm and platform. For instance, we need to decide whether ACEs can relocate
themselves in the network, thus being mobile agents. Still,we need not select a target platform,
like JADE or AMETAS.

The fact that a PAIM does not specialize on one paradigm doesnotmean we can freely choose
any possible paradigm for the same scenario, as every paradigm has its specific application areas.
An application inherently suited for mobile agents will possibly not run in a sensor network. The
idea of the EPAC process is to allow to unify the high-level modeling process, from where the
modeling can continue by the appropriate paradigm.

If the design has become sufficiently detailed, making use ofstructural and behavioral models
(and possibly other methodologies), the designer may now perform the first transformation step:
Transform the paradigm-independent models to a target paradigm like, for instance,soft-
ware agents. The transformation to the target platform causes certain terminology to be imported
into the model. For instance, we can map ACEs to software agents, interactions to asynchronous
messages, and locational contexts to places.

At this point we still avoid to map the terminology to more concrete terms which we know
from specific agent systems. The designer now has a detailed description of how the scenario

Proc. WowKiVS 2011 8 / 12



ECEASST

could be designed under the software agent paradigm. From here, various specialized method-
ologies may take over, or we directly continue with the specialization. It is also possible to
include another methodology in this process, delivering a suitably refined platform-independent
model, and then return here.

According to the MDA concept, the next step would then be the PSM transformation:Trans-
form the platform-independent model to a target programming / application platform. Fi-
nally, the PSM may be populated with further specific diagrams (like state machines) which
contribute to the final code transformation. As we rely on UMLmodels, the transformation can
be automatized at several points in the process. The automatic conversion amounts to write suit-
able transformation scripts or rulesets, using, for instance, XSL transformation orMOF Model
To Text Transformation[7].

It should be noted, however, that this process will not run from start to end without any con-
tribution by the human designer. At each stage of the transformation process, the designer will
have to add information which is specific for the respective paradigm or platform, as the more
abstract models naturally lack this information. The amount of information within the model is
increased by each transformation step, and not every structural and behavioral feature may be
adequately represented within abstract models. Instead, the process is intended to provide auto-
mated transformations whereever possible, and hence to guide the specification of models and
the implementation by providing common mappings, delivering skeleton modelsandcode.

4.3 Implementation

At the end of the design process, we find a number of diagrams asa result, representing platform-
specific models. These models can represent structural features or behavioral features, also con-
taining commonly used diagram types like state machines diagrams.

Figure 4 shows a part of the XSL transformation used to convert a statemachine diagram
into JADE code. Obviously, this transformation will only produce a code skeleton which still
needs to be completed. One straightforward extension to this sample is to include transition
triggers and effects as message exchange actions. Using another XSLT document we were able
to immediately create code for a second agent system, AMETAS[14, 13]. XSLT is not the only
possible choice for a transformation language; other examples areMOFScript[4] or MOF Model
To Text Transformation[7] which are specifically targeted at creating code from XMI documents
and provide a better readable transformation code than XSL.

5 Rationale of the process

Viewing the basic notion of our approach just as an iterated model specification does not cover
the overall concept appropriately. We summarize the core ideas of our approach at this point.

5.1 Formalized metamodel

Models in EPAC are formulated using the UML language. This allows the designer to make
use of existing tools, like Eclipse UML tools, Papyrus UML, or Enterprise Architect. As UML
is a formal metamodel there are practical ways of automatic verification of user models. UML

9 / 12 Volume 37 (2011)



Engineering Complex Self-organizing systems

Figure 4: Excerpt from the XSL transformation UML/JADE

may be used to formalize a metamodel to be used for our PIM models, or we can useProfiling to
introduce variants of existing model elements. By using theXMI diagram export features, we can
transform models to XML documents in a standardized way and then algorithmically transform
them into new XML documents, for instance, by using XSL transformations, as shown above.

5.2 Abstract modeling

The EPAC methodology encourages to abstract further from the specific terminology up to the
point where the designer considers autonomous computing entities to interact with each other,
and to form a collective which provides a certain functionality. From here on, with sufficiently
detailed models, specifications may be derived by the transformations. In the process of mod-
eling, features which belong to self-organization and related concepts are separated from fore-
ground (primary) features which are the design objectives of the system. By this separation,
techniques like triggering emergent features may become a part of the engineering process.

5.3 Methodology reuse

The EPAC modeling concept may be understood asorthogonal to existing methodologies. It
is compatible with concepts of organizations, roles, responsibilities, acquaintances and similar
notions introduced by other methodologies like Tropos, Gaia, or PASSI. By its abstract view, it
may encourage designers of related domains to apply methodologies which were originally tar-
geted towards agent systems. One example could be to design aself-organizing sensor network
which intelligently reorganizes its structure, dependingon reachability, making use of behavior
patterns which proved to be efficient for agent societies.

Proc. WowKiVS 2011 10 / 12



ECEASST

6 Conclusions

The EPAC process described in this article is intended to broaden the scope of existing method-
ologies in the area of complex system design in order to allowa designer to utilize suitable
concepts, patterns, and processes despite the fact that they were originally intended for another
area. The core concept is the setup of a common metamodel which is useful to describe features
in the related areas, and transformations which translate models from the paradigm-independent
via the platform-independent to a platform-specific representation, which can then eventually be
transformed to code.

Agent-oriented software engineering methodologies are, in most cases, already generic enough
to be employed in related research areas as well, merely requiring the designer to adopt an ”agent
view” on the system to be created. However, we find only littleevidence that AOSE has found
a broader audience outside of the agent community. This lackof acceptance may be remedied
in our view by avoiding to fix the modeling to one paradigm at anearly stage. Rather, follow-
ing the EPAC concept, we suggest to start modeling at a very abstract level, avoiding to assume
paradigm-specific properties, which should encourage designers to approach their design in an
unbiased way, without committing to a paradigm. That way, weexpect that common patterns
for structures and behavior can be recognized more easily and predefined modeling concepts can
be applied. Later, the models can be transformed to a paradigm, and then to specific platforms,
following the MDA concept.

Various parts of EPAC are still work in progress, and we expect amendments in all parts of the
overall process as we complete the metamodel definition, thetransformations to expected target
platforms, and evaluate the applicability to further paradigms or platforms. We are currently
working on the transformation of model diagrams between theprocess stages and for the ultimate
code generation. One especially interesting point is the combination of different diagrams in the
transformation process to form a single result model or code.

Bibliography

[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An
agent-oriented software development methodology.Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, May 2004.

[2] M. Cossentino and C. Potts. PASSI: a process for specify-
ing and implementing multi-agent systems using UML, 2002.
http://www.cc.gatech.edu/classes/AY2002/cs6300fall/ICSE.pdf.

[3] Massimo Cossentino, Salvatore Gaglio, Luca Sabatucci,and Valeria Seidita. The passi and
agile passi mas meta-models compared with a unifying proposal. In CEEMAS, volume
3690 ofLecture Notes in Computer Science, pages 183–192. Springer, 2005.

[4] Eclipse Foundation. MOFScript Home Page, 2010. http://www.eclipse.org/ gmt/mofscript/.

[5] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan. Modeling
of Context-Aware Self-Adaptive Applications in Ubiquitous and Service-Oriented Environ-

11 / 12 Volume 37 (2011)



Engineering Complex Self-organizing systems

ments, pages 146–163. Software Engineering for Self-Adaptive Systems. Springer-Verlag,
Berlin, Heidelberg, 2009.

[6] P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore.The Tropos Methodology: An
Overview. Kluwer Academic Publishing, 2004.

[7] Object Management Group. MOF Model To Text Transformation Language Home Page,
2008. http://www.omg.org/spec/ MOFM2T/1.0/.

[8] Object Management Group. OMG Model Driven ArchitectureHome Page, 2009.
http://www.omg.org/mda/.

[9] J. Kephart and D. Chess. The vision of autonomic computing. IEEE Computer, 36(1), Jan
2003.

[10] Urban Richter, Moez Mnif, Jürgen Branke, Christian M¨uller-Schloer, and Hartmut
Schmeck. Towards a Generic Observer/Controller Architecture for Organic Computing.
In INFORMATIK 2006 - Informatik f̈ur Menschen!, volume P-93 ofLNI, pages 112–119.
Bonner Köllen Verlag, October 2006.

[11] Thomas Weise, Michael Zapf, Mohammad Ullah Khan, and Kurt Geihs. Genetic pro-
gramming meets model-driven development. In7th International Conference on Hy-
brid Intelligent Systems (HIS 2007). IEEE Computer Society, 2007. http://www.it-
weise.de/documents/files/WZKG2007DGPFg.pdf.

[12] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multia-
gent systems: The Gaia methodology.ACM Trans. Softw. Eng. Methodol., 12(3):317–370,
2003.

[13] M. Zapf. Type-based mediation of mobile agents. InInternational ICSC Congress: Intelli-
gent Systems & Applications ISA ’2000, Wollongong, Australien, volume 1, pages 236–241.
ICSC Academic Press, December 2001.

[14] Michael Zapf. Typisierung autonomer Softwareagenten. PhD thesis, Johann Wolfgang
Goethe-Universität, Frankfurt/Main, Germany, April 2002. German only; online available:
http://www.mizapf.de/work/mzapfdiss.pdf.

[15] Michael Zapf and Thomas Weise. Applicability of emergence engineering to distributed
systems scenarios. (TechRep 2008, 5). Presented at EUMAS ’08; http://www.vs.uni-
kassel.de/publications/2009/ZW09.

[16] Michael Zapf and Thomas Weise. Can solutions emerge? InThe third International Work-
shop on Self-Organizing Systems (IWSOS ’08), volume 5343 ofLecture Notes in Com-
puter Science (LNCS), LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications, pages 299–304. Springer, dec 2008.

Proc. WowKiVS 2011 12 / 12


